Математическая модель

Основные этапы математического моделирования. Общие понятия и определение модели и их классификация. Математическая модель в задачах оптимизации. Элементарные математические модели. Задача о нахождении связи между структурой и свойствами веществ.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 29.03.2010
Размер файла 105,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель -- это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования -- исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование -- это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

1) Построение модели. На этом этапе задается некоторый «нематематический» объект -- явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие -- как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф -- это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v0 = 30 м/с под углом ? = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Пренебрегая размерами снаряда, будем считать его материальной точкой. Введем систему координат xOy, совместив ее начало O с исходной точкой, из которой пущен снаряд, ось x направим горизонтально, а ось y -- вертикально (рис. 1).

Рис. 1

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t -- время, g = 10 м/с2 -- ускорение свободного падения.

Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим ответ:

y = x - 90x2, S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h0 и радиус r0 жестяного бака объема V = 30 м3, имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = ?r2h, S = 2?r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r0, при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r0. Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h0 = 2r0. Подставляя в выражение для r0 и h0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго -- 70 т на заводы, причем на первый -- 40 т, а на второй -- 80 т.

Обозначим через aij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a11 = 1,2 р., a12 = 1,6 р., a21 = 0,8 р., a22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x1 и x2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x3 и x4 -- со второго склада на первый и второй заводы соответственно. Тогда:

x1 + x2 = 50, x3 + x4 = 70, x1 + x3 = 40, x2 + x4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x1 + 1,6x2 + 0,8x3 + x4.

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x1, x2, x3 и x4, удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x1 = x4 - 30, x2 = 80 - x4, x3 = 70 - x4, (2)

а x4 не может быть определено однозначно. Так как xi ?0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30?x4?70. Подставляя выражение для x1, x2, x3 в формулу для f, получим

f = 148 - 0,2x4.

Легко видеть, что минимум этой функции достигается при максимально возможном значении x4, то есть при x4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x1 = 40, x2 = 10, x3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) -- исходное количество атомов радиоактивного вещества, а N(t) -- количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N'(t) пропорциональна N(t), то есть N'(t)=-?N(t), ?>0 -- константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e-?t. Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона ? = 2,084?10-6, и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A1, надо посетить города A2, A3 и A4, причем каждый город точно один раз, и затем вернуться обратно в A1. Известно, что все города попарно соединены между собой дорогами, причем длины дорог bij между городами Ai и Aj (i, j = 1, 2, 3, 4) таковы:

b12 = 30, b14 = 20, b23 = 50, b24 = 40, b13 = 70, b34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф -- математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки -- числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V1, V2, ..., Vk, V1 такая, что вершины V1, ..., Vk -- различны, а любая пара вершин Vi, Vi+1 (i = 1, ..., k - 1) и пара V1, Vk соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A1:

1) A1, A4, A3, A2, A1;2) A1, A3, A2, A4, A1;3) A1, A3, A4, A2, A1.

Найдем теперь длины этих циклов (в км): L1 = 160, L2 = 180, L3 = 200. Итак, маршрут наименьшей длины -- это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

yэ(3) = - 42°, yэ(4) = 0°, yэ(5) = 28°, yэ(6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y?? an + b,

где a, b -- константы, подлежащие определению.

Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

- 42 ? 3a + b, 0 ? 4a + b, 28 ? 5a + b, 69 ? 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b ? - 42 - 3a, b ? - 4a, b ? 28 - 5a, b ? 69 - 6a.

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b ? 16 - 4,5a. Подставим в исходную систему уравнений это значение b и, вычисляя a, получим для a следующие значения: a?37, a?28, a?28, a?36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a?34. Итак, искомое уравнение имеет вид

y ? 34n - 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

yр(3) = - 37°, yр(4) = - 3°, yр(5) = 31°, yр(6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: yр(7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения yэ(7) = 98°.

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука () после чего воспользуемся \emph{вторым законом Ньютона}, чтобы выразить его в форме дифференциального уравнения:

где означает вторую производную от по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором». В процессе ее построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться. В некотором приближении (скажем, пока отклонение груза от равновесия невелико и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на ее поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости. Впрочем, при уточнении модели, сложность ее математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Жесткие и мягкие модели

Гармонический осциллятор -- пример так называемой «жесткой» модели. Как уже было сказано, она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о ее применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жесткой». Она может задаваться, например, следующим уравнением:

Здесь -- некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жесткости пружины от степени ее растяжения, -- некоторый малый параметр. Явный вид функции нас в данный момент не интересует~. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жесткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жесткой модели. В противном случае применение результатов, полученных при изучении жесткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания. Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор -- пример структурно-неустойчивой системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Математические модели обычно обладают важным свойством универсальности: принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в -образном сосуде, изменение силы тока в колебательном контуре или колебания популяций биологических видов. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений.

Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать ее поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра -- прямая задача математического моделирования.

Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с ее моделью. Еще одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям -- такие задачи требуется решать при проектировании систем.


Подобные документы

  • Математика как наука о числах, скалярных величинах и простых геометрических фигурах. Математические модели, отражающие объективные свойства и связи. Основные понятия математики, ее язык. Аксиоматический метод, математические структуры, функции и графики.

    реферат [58,1 K], добавлен 26.07.2010

  • Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.

    курс лекций [1,1 M], добавлен 02.03.2010

  • Синтез оптимального управления при осуществлении разворота. Разработка математической модели беспилотных летательных аппаратов. Кинематические уравнения движения центра масс. Разработка алгоритма оптимального управления, результаты моделирования.

    курсовая работа [775,3 K], добавлен 16.07.2015

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа [69,9 K], добавлен 09.10.2016

  • Деятельность при решении задач складывается из умственных действий и осуществляется эффективно, если первоначально она происходит на основе внешних действий с предметами. Главная проблема - дети не могут перейти от текста задачи к математической модели.

    дипломная работа [79,2 K], добавлен 24.06.2008

  • Проектирование математической модели. Описание игры в крестики-нолики. Модель логической игры на основе булевой алгебры. Цифровые электронные устройства и разработка их математической модели. Игровой пульт, игровой контроллер, строка игрового поля.

    курсовая работа [128,6 K], добавлен 28.06.2011

  • Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.

    контрольная работа [328,2 K], добавлен 07.12.2013

  • Исследование понятия "форма" в биологии и векторной геометрии. Математическая модель формообразования и пути познания энергетических процессов в геометрии. Деление отрезка в золотом сечении. Уравнение экспансии как векторная основа формообразования.

    реферат [400,8 K], добавлен 20.08.2009

  • Основные этапы математического моделирования - приближенного описания класса явлений или объектов реального мира на языке математики. Методы кодирования информации. Построение устройства, которое позволяет переводить код азбуки Морзе в машинный код.

    курсовая работа [507,2 K], добавлен 28.06.2011

  • Предмет и задачи исследования операций. Основные понятия и принципы исследований, математические модели. Детерминированная задача согласования по определению минимального времени выполнения комплекса работ, времени начала и окончания каждой операции.

    курсовая работа [233,9 K], добавлен 20.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.