Экстремумы функций многих переменных

Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 18.08.2009
Размер файла 213,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МОСКОВСКИЙ ИНСТИТУТ ПРАВА

Специальность: «Финансовый менеджмент»

Учебная дисциплина: «Математика»

Курсовая работа

на тему: «Экстремумы»

Студент: Давыденко Андрей Петрович

Руководитель: ____________________

Москва 2005 год

План

Введение

1. Экстремумы функций многих переменных

2. Необходимые условия экстремума

3. Достаточные условия экстремума

4. Локальные экстремумы

5. Условные экстремумы

6. Метод множителей Лагранжа

Заключение

Список использованной литературы:

Приложения

Введение

Цель данной курсовой работы заключается в рассмотрении экстремумов функции одной и многих переменных и описании методов их нахождения.

Задача состоит в формулировании необходимых и достаточных условий существования максимума и минимума функции, выборе метода нахождения экстремумов и их полном математическом обосновании.

Гипотезой данной курсовой работы является рассмотрение и описание экстремумов функции многих переменных, формулировании необходимого и достаточного условия их существования.

В качестве объекта для исследования и описания использовались функции многих переменных.

1. Экстремумы функций многих переменных

Для начала рассмотрим необходимые условия экстремума функции, также определим понятие экстремума. Начнем с понятия экстремума:

Положим, что имеется некоторая функция с двумя переменными

Определение: Точка называется точкой экстремума (максимума или минимума)

функции , если есть соответственно наибольшее или наименьшее значение функции в некоторой окрестности точки .

При этом значение называется экстремальным значением функции (соответственно максимальным или минимальным). Говорят также, что функция имеет в точке экстремум (или достигает в точке экстремума).

Заметим, что в силу определения точка экстремума функции лежит внутри области определения функции, так что функция определена в некоторой (хотя бы и малой) области, содержащей эту точку. Вид поверхностей, изображающих поверхности функций в окрестности точек экстремума показан на рис. 1(Приложение 1).

2. Необходимые условия экстремума

Теперь установим необходимые условия, при которых функция достигает в точке экстремума; для начала будем рассматривать только дифференцируемые функции.

Необходимый признак экстремума: Если в точке дифференцируемая функция имеет экстремум, то ее частные производные в этой точке равны нулю:

, .

Доказательство: Допустим, что функция имеет в точке экстремум.

Согласно определению экстремума функция при постоянном , как функция одного достигает экстремума при . Как известно, необходимым условием для этого является обращение в нуль производной от функции при ,

т. е.

.

Аналогично функция при постоянном , как функция одного , достигает экстремума при . Значит,

Что и требовалось доказать.

Точка , координаты которой обращают в нуль обе частные производные функции , называется стационарной точкой функции.

Уравнение касательной плоскости к поверхности :

для стационарной точки принимает вид .

Следовательно, необходимое условие достижения дифференцируемой функцией экстремума в точке геометрически выражается в том, что касательная плоскость к поверхности - графику функции в соответствующей ее точке параллельна плоскости независимых переменных.

Для отыскания стационарных точек функции нужно приравнять нулю обе ее частные производные

, . (*)

и решить полученную систему двух уравнений с двумя неизвестными.

Пример 1: Найдем стационарные точки функции

Система уравнений (*) имеет вид:

Из второго уравнения следует, что или , или .

Подставляя по очереди эти значения в первое уравнение, найдем четыре стационарные точки:

Какие из найденных точек действительно являются точками экстремума, мы установим после приведения достаточного условия экстремума.

Иногда удается, и, не прибегая к достаточным условиям, выяснить характер стационарной точки функции. Так, если из условия задачи непосредственно следует, что рассматриваемая функция имеет где- то максимум или минимум и при этом системе уравнений (*) удовлетворяет только одна точка (т. е. Одна пара значений x и y), то ясно, что эта пара и будет искомой точкой экстремума функции.

Заметим, наконец, что точками экстремума непрерывной функции двух переменных могут быть точки, в которых функция не дифференцируема (им соответствуют острия поверхности - графика функции).

Так, например, функция имеет, очевидно, в начале координат минимум, равный нулю, но в этой точке функция не дифференцируема; график этой функции есть круглый конус с вершиной в начале координат и осью, совпадающей с осью .

Следовательно, если иметь в виду не только дифференцируемые, но и вообще непрерывные функции, то нужно сказать, что точками экстремума могут быть стационарные точки и точки, в которых функция не дифференцируема.

Вполне аналогично определяется понятие экстремума функции любого числа независимых переменных.

и устанавливаются необходимые условия экстремума. Именно: Дифференцируемая функция n переменных может иметь экстремумы только при тех значениях x, y, z,..., t, при которых равны нулю все ее n частных производных первого порядка:

Эти равенства образуют систему n уравнений с n неизвестными.

3. Достаточные условия экстремума

Теперь определим достаточные условия для экстремума функции двух переменных. Так же как и для функции одной переменной, необходимый признак экстремума в случае многих переменных не является достаточным. Это значит, что из равенства нулю частных производных в данной точке вовсе не следует, что эта точка обязательно является точкой экстремума. Возьмем функцию Ее частные производные равны нулю в начале координат, однако функция экстремума не достигает. В самом деле, функция , будучи равной нулю в начале координат, имеет в любой близости к началу координат как положительные значения (в первом и третьем координатных углах), так и отрицательные (во втором и четвертом координатных углах), и значит, нуль не является ни наибольшим, ни наименьшим значением этой функции.

Достаточные условия экстремума для функции нескольких переменных носят значительно более сложный характер, чем для функции одной переменной. Мы рассмотрим эти условия без доказательства только для функции двух переменных.

Пусть точка является стационарной точкой функции

, т. е.

Вычислим в точке значение вторых частных производных функции и обозначим их для краткости буквами A, B и C:

Если , то функция имеет в точке экстремум: при A<0 и C<0 и минимум при A>0 и C>0 (Из условия следует, что A и C обязательно имеют одинаковые знаки).

Если, то точка не является точкой экстремума.

Если, то неясно, является ли точка точкой экстремума и требуется дополнительное исследование.

Пример:

1) Ранее в примере было установлено, что функция

имеет четыре стационарные точки:

Вторые частные производные данной функции равны

В точке имеем: A=10, B=0, C=2. Здесь ; значит, точка является точкой экстремума, и так как A и C положительны, то этот экстремум - минимум.

В точке соответственно будет A=-10, B=0, C=-4/3; .

Это точка максимума. Точки и не являются экстремумами функции (т.к. в них).

2) Найдем точки экстремума функции ;

Приравнивая частные производные нулю:

,

находим одну стационарную точку - начало координат. Здесь A=2, B=0, C= -2. Следовательно, и точка (0, 0) не является точкой экстремума. Уравнение есть уравнение гиперболического параболоида (Приложение 2 (Рис. 2.)) по рисунку видно, что точка (0, 0) не является точкой экстремума.

4. Локальные Экстремумы

Определение1: Говорят, что функция имеет в точке локальный максимум, если существует такая окрестность точки , для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции < 0.

Определение2: Говорят, что функция имеет в точке локальный минимум, если существует такая окрестность точки , для которой для всякой точки M с координатами (x, y) выполняется неравенство: . При этом, т. е. приращение функции > 0.

Определение 3: Точки локальных минимума и максимума называются точками экстремума.

5. Условные Экстремумы

При отыскании экстремумов функции многих переменных часто возникают задачи, связанные с так называемым условным экстремумом. Это понятие можно разъяснить на примере функции двух переменных.

Пусть заданы функция и линия L на плоскости 0xy. Задача состоит в том, чтобы на линии L найти такую точку P(x, y), в которой значение функции является наибольшим или наименьшим по сравнению со значениями этой функции в точках линии L, находящихся вблизи точки P. Такие точки P называются точками условного экстремума функции на линии L. В отличие от обычной точки экстремума значение функции в точке условного экстремума сравнивается со значениями функции не во всех точках некоторой ее окрестности, а только в тех, которые лежат на линии L.

Совершенно ясно, что точка обычного экстремума (говорят также безусловного экстремума) является и точкой условного экстремума для любой линии, проходящей через эту точку. Обратное же, разумеется, неверно: точка условного экстремума может и не быть точкой обычного экстремума. Поясню сказанное обычным примером. Графиком функции является верхняя полусфера (Приложение 3 (Рис 3)).

Эта функция имеет максимум в начале координат; ему соответствует вершина M полусферы. Если линия L есть прямая, проходящая через точки А и В (ее уравнение x+y-1=0), то геометрически ясно, что для точек этой линии наибольшее значение функции достигается в точке , лежащей посередине между точками А и В. Это и есть точка условного экстремума (максимума) функции на данной линии; ей соответствует точка M1 на полусфере, и из рисунка видно, что ни о каком обычном экстремуме здесь не может быть речи.

Отметим, что в заключительной части задачи об отыскании наибольшего и наименьшего значений функции в замкнутой области нам приходится находить экстремальные значения функции на границе этой области, т.е. на какой-то линии, и тем самым решать задачу на условный экстремум.

Приступим теперь к практическому отысканию точек условного экстремума функции Z= f(x, y) при условии, что переменные x и y связаны уравнением (x, y) = 0. Это соотношение будем называть уравнение связи. Если из уравнения связи y можно выразить явно через х: y=(x), мы получим функцию одной переменной Z= f(x, (x)) = Ф(х).

Найдя значение х, при которых эта функция достигает экстремума, и определив затем из уравнения связи соответствующие им значения у, мы и получим искомые точки условного экстремума.

Так, в вышеприведенном примере из уравнения связи x+y-1=0 имеем y=1-х. Отсюда

Легко проверить, что z достигает максимума при х = 0,5; но тогда из уравнения связи y=0,5, и мы получаем как раз точку P, найденную из геометрических соображений.

Очень просто решается задача на условный экстремум и тогда, когда уравнение связи можно представить параметрическими уравнениями х=х(t), y=y(t). Подставляя выражения для х и у в данную функцию, снова приходим к задаче отыскания экстремума функции одной переменной.

Если уравнение связи имеет более сложный вид и нам не удается ни явно выразить одну переменную через другую, ни заменить его параметрическими уравнениями, то задача отыскания условного экстремума становится более трудной. Будем по-прежнему считать, что в выражении функции z= f(x, y) переменная (x, y) = 0. Полная производная от функции z= f(x, y) равна:

Где производная y`, найдена по правилу дифференцирования неявной функции. В точках условного экстремума найденная полная производная должна ровняться нулю; это дает одно уравнение, связывающее х и у. Так как они должны удовлетворять еще и уравнению связи, то мы получаем систему двух уравнений с двумя неизвестными

Преобразуем эту систему к гораздо более удобной, записав первое уравнение в виде пропорции и введя новую вспомогательную неизвестную :

(знак минус перед поставлен для удобства). От этих равенств легко перейти к следующей системе:

f`x=(x,y)+`x(x,y)=0, f`y(x,y)+`y(x,y)=0 (*),

которая вместе с уравнением связи (x, y) = 0 образует систему трех уравнений с неизвестными х, у и .

Эти уравнения (*) легче всего запомнить при помощи следующего правила: для того, чтобы найти точки, которые могут быть точками условного экстремума функции

Z= f(x, y) при уравнении связи (x, y) = 0, нужно образовать вспомогательную функцию

Ф(х,у)=f(x,y)+(x,y)

Где -некоторая постоянная, и составить уравнения для отыскания точек экстремума этой функции.

Указанная система уравнений доставляет, как правило, только необходимые условия, т.е. не всякая пара значений х и у, удовлетворяющая этой системе, обязательно является точкой условного экстремума. Достаточные условия для точек условного экстремума я приводить не стану; очень часто конкретное содержание задачи само подсказывает, чем является найденная точка. Описанный прием решения задач на условный экстремум называется методом множителей Лагранжа.

6. Метод множителей Лагранжа

Метод множителей Лагранжа имеет наглядный геометрический смысл, который я сейчас поясню.

Предположим, что на рис 4 (Приложение 4) изображены линии уровня функции Z= f(x, y) и линия L, на которой отыскиваются точки условного экстремума.

Если в точке Q линия L пересекает линию уровня, то эта точка не может быть точкой условного экстремума т.к. по одну сторону от линии уровня функция Z= f(x, y) принимает большие значения, а по другую - меньшие. Если же в точке P линия L не пересекает соответствующую линию уровня и, значит, в некоторой окрестности этой точки лежит по одну сторону от линии уровня, то точка P будет как раз являться точкой условного экстремума. В такой точке линия L и линия уровня Z= f(x, y) =С касаются друг друга (предполагается, что линии гладкие). И угловые коэффициенты касательных к ним должны быть равны. Из уравнения связи (x, y) = 0 имеем

y`=-`x/`y, а из уравнения линии уровня y`=-fx`/fy`. Приравнивая производные и произведя простейшее преобразование мы получим уравнение

Приведенное рассуждение теряет силу, если линия уровня такова, что во всех ее точках fx`=0, fy`=0. Можно рассмотреть, например, функцию z = 4-x2 и линию уровня x=0, соответствующую значению z = 4.

Можно искать условный экстремум функции f(x,y,z) при двух уравнениях связи: 1(x, y, z) = 0 и 2(x, y, z) = 0

Эти уравнения определяют линию в пространстве. Таким образом задача сводится к отысканию такой точки линии, в которой функция принимает экстремальное значение, причем сравниваются значения функции только в точках рассматриваемой линии.

Метод множителей Лагранжа в этом случае принимается следующим образом: строим вспомогательную функцию

Ф(x, y, z) = f(x, y, z)+11(x, y, z) +22(x, y, z), где 1 и 2- новые дополнительные неизвестные, и составляем систему уравнений для

отыскания экстремумов этой функции.

Добавляя сюда два уравнения связи получаем систему уравнений с пятью неизвестными x, y, z, 1, 2. Искомыми точками условного экстремума могут быть только те, координаты х, у, z которых являются решением этой

системы.

Заключение

Математический анализ это совершенно естественная, простая и элементарная наука, ничуть не более заумная, сложная или “высшая”, чем, скажем, “элементарная” геометрия. Многие теоремы, традиционно входившие в курс геометрии, куда сложнее, чем основополагающие теоремы классического анализа. Ныне противопоставление элементарной математики и анализа непродуктивно, и вовсе необязательно проявлять бездну остроумия только лишь из боязни использовать свойства производной.

Привнесение элементов математического анализа в школьные программы неизбежно приведет к перестройке и других областей математического образования - изменится содержание конкурсных задач, кружковой работы, математических олимпиад и многого другого. Теперь уже невозможно не учитывать, что школьник должен знать нечто из ранее недоступной ему высшей математики.

При этом следует иметь в виду, что если освоены лишь самые основы математического анализа, можно уже делать попытки подобраться ко многим современным проблемам.

При рассмотрении данной темы теоретические сведения подтвердились практическим доказательством и математическим обоснованием.

Список использованной литературы

1.А.Ф.Бермант, И.Г.Араманович Краткий курс математического анализа.-М.: Наука, 1973.

2.И.Е.Жак Дифференциальное исчисление.-М.:Государственное учебно-педагогическое издательство министерства просвещения РСФСР, 1960.

3.Г.И.Запорожец Руководство к решению задач по математическому анализу.-М.: Высшая школа,1966.

4.В.А.Зорич Математический анализ.-М.: Наука, 1981.

5.А.П.Картышев, Б.Л.Рождественский Математический анализ.-М.: Наука, 1984.

6.А.Н.Колмогоров, С.В.Фомин Элементы теории функций и функционального анализа. -М.: Наука, 1981.

7.Л.Д.Кудрявцев Курс математического анализа. -М.: Высшая школа, 1981.

8.А.Г.Моркович, А.С.Солодовников Математический анализ -М.: Высшая школа, 1990.

9.Н.С.Пискунов Дифференциальное и интегральное исчисление. т.1.-М.: Наука, 1978.

10.К.А.Рыбников История математики. - М.:Издательство Московского университета, 1994.

Приложение 1

Рисунок 1: Вид поверхностей, изображающих поверхности функций в окрестности точек экстремума.

Приложение 2

Рисунок 2: Уравнение

Приложение 3

Рисунок 3: График функции

Приложение 4

Рисунок 4: Линии уровня функции Z= f(x, y)


Подобные документы

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа [61,5 K], добавлен 14.01.2015

  • Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.

    курс лекций [445,7 K], добавлен 27.05.2010

  • Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.

    реферат [145,4 K], добавлен 03.08.2010

  • Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.

    курсовая работа [95,1 K], добавлен 12.10.2009

  • Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.

    контрольная работа [148,6 K], добавлен 02.02.2014

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа [533,9 K], добавлен 26.04.2014

  • Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.

    курс лекций [309,0 K], добавлен 08.04.2008

  • Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.

    курсовая работа [259,9 K], добавлен 04.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.