главнаяреклама на сайтезаработоксотрудничество База знаний Allbest
 
 
Сколько стоит заказать работу?   Искать с помощью Google и Яндекса
 


Производные высшего порядка

Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.

Рубрика: Математика
Вид: лекция
Язык: русский
Дата добавления: 05.03.2009
Размер файла: 20,4 K

Полная информация о работе Полная информация о работе
Скачать работу можно здесь Скачать работу можно здесь

рекомендуем


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже.

Название работы:
E-mail (не обязательно):
Ваше имя или ник:
Файл:


Cтуденты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны

Подобные работы


1. Производная функции
Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.
презентация [282,0 K], добавлена 14.11.2014

2. Производные функций
Нахождение частной производной первого порядка. Определение области определения функции. Расчет производной от функции, заданной неявно. Полный дифференциал функции двух переменных. Исследование функции на экстремум, ее наименьшее и наибольшее значения.
контрольная работа [1,1 M], добавлена 12.11.2014

3. Производная и ее применение в алгебре, геометрии, физике
Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.
статья [122,0 K], добавлена 11.01.2004

4. Определение производной
Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.
презентация [246,0 K], добавлена 21.09.2013

5. Функции и их производные
Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.
контрольная работа [75,5 K], добавлена 07.09.2010

6. Основные правила дифференцирования
Производная - основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Исследование правил дифференцирования, которые используют при нахождении производных. Определение производной алгебраической суммы конечного числа.
презентация [175,0 K], добавлена 21.09.2013

7. Применение производной к решению задач
Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа [612,2 K], добавлена 01.06.2014

8. Основы математического анализа
Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.
контрольная работа [1,1 M], добавлена 26.03.2014

9. Функции многих переменных
Понятие, предел и непрерывность функции двух переменных. Частные производные первого порядка, нахождение полного дифференциала. Частные производные высших порядков и экстремум функции нескольких переменных. Необходимые условия существования экстремума.
контрольная работа [148,6 K], добавлена 02.02.2014

10. Производные вокруг нас
Сущность понятия "производная". Ускорение как вторая производная от функции, описывающая движение тела. Решение задачи на определение мгновенной скорости движения точки в момент времени. Производная в реакциях, её роль и место. Общий вид формулы.
презентация [187,1 K], добавлена 22.12.2013


Другие работы, подобные Производные высшего порядка


Лекция №5 ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

Пусть функция y=f(x) дифференцируема на некотором отрезке [a; b]. Значение производной f'(x), вообще говоря, зависит от x, т.е. производная f'(x) представляет собой тоже функцию переменной x. Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y''или f''(x). Итак, y'' = (y')'.

Например, если

у = х5, то y'= 5x4, а y''= 20x4.

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y'''или f'''(x).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n - 1)-го порядка и обозначается символом y(n) или f(n)(x): y(n) = (y(n-1))'.

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Примеры.

1. Найти производную четвертого порядка функции y= ln x.

.

.

2. Найти производную n-го порядка функции y = ekx.

y'= k·ekx, y''= k2·ekx, y''' = k3·ekx, …,y(n) =kn·ekx.

3. Найти производную n-го порядка функции y = sin x.

Имеем

Выясним механический смысл второй производной. (Механический смысл первой производной - скорость).

Пусть материальная точка движется прямолинейно по закону s=s(t), где s - путь, проходимый точкой за время t. Тогда скорость vэтого движения есть v= s'(t) = v(t), т.е. тоже некоторая функция времени.

В момент времени t скорость имеет значение v=v(t). Рассмотрим другой момент времени t+Дt. Ему соответствует значение скорости v1 = v(t+Дt). Следовательно, приращению времени Дt соответствует приращение скорости

Дv= v1 - v = v(t + Дt) - v(t).

Отношение называется средним ускорением за промежуток времени Дt.

Ускорением в данный момент времени t называется предел среднего ускорения при Дt>0:

.

Таким образом, ускорение прямолинейного движения точки есть производная скорости по времени. Но как мы уже видели, скорость есть производная пути s по времени t: v = s'. Учитывая это, имеем:

a = v'(t) = (s')' = s''(t),

т.е. ускорение прямолинейного движения точки равно 2-й производной пути по времени

a = S''(t).


Скачать работу можно здесь Скачать работу "Производные высшего порядка" можно здесь
Сколько стоит?

Рекомендуем!

база знанийглобальная сеть рефератов