Механическая активация портландцемента в аппарате вихревого слоя

Анализ результатов экспериментальных исследований по активации водно-цементных суспензий при производстве пенобетона неавтоклавного твердения и повышению активности портландцемента путем механической обработки в электромагнитных аппаратах вихревого слоя.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 30.05.2017
Размер файла 185,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ростовский государственный строительный университет

Механическая активация портландцемента в аппарате вихревого слоя

И.А. Филонов

Х.С. Явруян

г. Ростов-на-Дону

Неавтоклавные пенобетоны по прочностным характеристикам существенно уступают автоклавным, что несколько сдерживает их широкое применение. Это связано в первую очередь с тем, что процессы гидратации пенобетонов в условиях автоклавной обработки протекают полностью и продукты гидратации (в основном это тоберморитоподобные гидросиликаты кальция Ca5Si6O16(OH)2nH2O) термодинамически устойчивы при нормальной температуре и практически не растворимы в воде [1].

Ускорить протекание реакции гидратации портландцемента возможно за счет механической активации клинкерообразующих минералов в водной среде. При этом существенно увеличивается скорость растворения зерен клинкера, быстрее наступает пересыщение раствора, больше выделяется гидрооксида кальция и образуется большее количество центров кристаллизации.

Известно, что механическая активация портландцемента положительно влияет на его конечные свойства, но в приложении к ячеистому бетону это явление изучено недостаточно. Механическая активация позволяет не только увеличить удельную поверхность вяжущего вещества, но и изменить структуру поверхности его частиц, то есть аморфизировать ее.

Одним из методов механоактивации портландцемента является его обработка в вихревом слое ферромагнитных частиц, который создается путем воздействия на них вращающегося электромагнитного поля. Полученные ранее результаты использования установки обработки материалов (УОМ) для диспергации строительных материалов показали её высокую эффективность и низкую энергоемкость (в сравнении с шаровыми мельницами и дезинтеграторами) [2].

Основной целью данных исследований является оценка возможности и эффективности активирования цемента в УОМ при производстве неавтоклавного пенобетона. При этом на данном этапе не ставится задача получения пенобетона пониженной плотности. Для достижения поставленной цели в процессе исследований требовалось оценить степень влияния обработки портландцемента в УОМ на физико-механические свойства неавтоклавного пенобетона.

В ходе экспериментов, из портландцемента ЦЕМ I 42,5Н (по ГОСТ 31108-2003) производства ОАО "Себряковцемент", готовились контрольная и рабочая водные суспензии с В/Т = 0,5. Рабочая суспензия обрабатывалась в УОМ проточным способом. Пенообразователь ПБ-2000 вводился в лабораторный пенобетоносмеситель во время перемешивания суспензии. Пенобетонная смесь приготавливалась в течение 3 минут. Из полученной пенобетонной смеси изготавливались образцы-кубы с ребром 100 мм. После предварительной выдержки образцы подвергались тепловлажностной обработке в лабораторной пропарочной камере по режиму, ч: 3 + 8 + 8 при температуре изотермического прогрева 75 °С, а затем сушке при температуре 100 ±5 °С. После этого определялась плотность и прочность полученных образцов, а также рассчитывался коэффициент конструктивного качества (АК). Полученные результаты представлены в таблице 1.

Таблица 1 - Средние значения определяемых показателей

Образцы пенобетона

Предел прочности при сжатии

Средняя плотность

Коэффициент конструктивного качества

МПа

%

кг/мі

%

МПа•м6/кг2

%

Контрольные

11,58

100

1,19

100

8,18

100

Рабочие

20,18

174

1,31

110

11,76

143

На основании полученных данных можно сделать вывод о том, что механическая активация портландцемента позволяет, практически не влияя на плотность, значительно повышать прочность пенобетона за счет упрочнения межпоровых перегородок. Таким образом, подтверждена возможность и доказана эффективность применения активации цемента при производстве пенобетона.

На эффективность процесса активирования материала в установках с вихревым слоем оказывают влияние многие параметры и характеристики самой установки. К таким параметрам относятся напряженность магнитного поля, скорость его вращения, объем рабочей зоны установки, коэффициенты заполнения рабочей зоны мелющими телами и материалом, отношение длины ферромагнитной частицы к ее диаметру и др. Кроме того, большое значение имеют свойства материала и длительность его обработки.

Задача следующего этапа исследований - подбор, оптимальных именно для портландцемента, параметров и времени обработки с целью увеличения его активности. Для выполнения поставленной задачи был проведен ряд опытов по сухому домолу цемента. При этом изменялись коэффициент заполнения рабочего пространства мелющими телами (навеска мелющих тел менялась от 250 до 750 г с шагом 50 г) и продолжительность активации (5, 10, 15, 30, 45, 60 и 90 с). Все комбинации были проработаны при отношении длины ферромагнитных стержней к их диаметру (l/d) равном 10 (длина 20, диаметр 2 мм). портландцемент суспензия пенобетон вихревой

В экспериментах использовался портландцемент М 500 Д-0 Новороссийского цементного завода. Для оценки эффективности влияния параметров активации цемента сравнивались активности контрольного и обработанного в установке цемента. С этой целью из контрольных и обработанных (рабочих) навесок цемента согласно ГОСТ 310.4 изготавливались и испытывались после 28 суток твердения в воде образцы-балочки размером 40Ч40Ч160 мм. При этом для обеспечения возможности корректного сравнения получаемых результатов, водоцементное отношение фиксировалось и оставалось неизменным при изготовлении всех сравниваемых серий образцов.

Для выбора оптимальной величины навески мелющих тел были усреднены значения активности обработанного цемента по времени активации (от 5 до 90 с). Прирост активности обработанного цемента относительно контрольного представлен на рис. 1.

Рис. 1 - Увеличение активности цемента в зависимости от массы мелющих тел

Так, при массе навески 250 г увеличение активности составило в среднем 4,1%, а при массе 750 г - 9,5%. Из графика видно, что максимальное значение 14,5% соответствует массе навески мелющих тел, равной 550 г. Таким образом, данная масса навески была принята за оптимальную.

Далее рассматривалась зависимость прироста активности портландцемента от времени обработки при массе навески 550 г (рис. 2).

Рис. 2 - Увеличение активности цемента в зависимости от времени обработки

Для l/d = 10 при увеличении времени обработки с 15 до 30 с прирост прочности изменился от 10,3 до 17,1% (на 65%), а при увеличении времени обработки с 30 до 60 с - от 17,1 до 20,5% (на 20%) после чего рост прекратился. Следовательно, дальнейшее увеличение времени воздействия не рационально.

Таким образом, в качестве оптимальных можно принять массу навески мелющих тел 550 г и время обработки не превышающее 30 секунд.

Следующим этапом работы стало изучение влияния соотношений длины мелющих тел к их диаметру на активность цемента при прочих равных условиях.

Для осуществления поставленной задачи был произведен домол портландцемента при выбранных ранее оптимальных навеске мелющих тел (550 г) и времени активации (30 с) с использованием мелющих тел разной длины. Длина ферромагнитных стержней выбиралась таким образом, что соотношение l/d составило 5, 10 и 20 (диаметр стержня 2 мм, длины 10, 20 и 40 мм соответственно).

На рисунках 3 и 4 приведены полученные результаты.

Рисунок 3 - Активность контрольного и рабочих образцов цемента, МПа

Из диаграммы, представленной на рис. 3 видно, что активность контрольного образца цемента составляет 531 МПа, а того же цемента, обработанного в установке при соотношении l/d мелющих тел равном 5, 10 и 20 - 573, 585 и 534 МПа соответственно.

Таким образом, относительный прирост активности цемента при обработке (рис. 4) составил 7,9, 10,2 и 0,6 %.

Рисунок 4 - Увеличение активности цемента при обработке мелющими телами с различными соотношениями l/d, %

Обобщив результаты всех проведенных экспериментов можно сделать вывод, что оптимальным является отношение длины к диаметру мелющих тел равное 10, навеска мелющих тел 550 г и время обработки цемента в установке - 30 секунд.

Литература

1. В.Ю. Мурог, П.Е. Вайтехович. Влияние домола цемента на прочность бетонных изделий // Строительные материалы. 2004. №6. С. 36-37.

2. Торлин Р.А., Новожилов А.А., Шуйский А.И., Торлина Е.А. Активизация частично гидратированного цемента в установке обработки материалов // Материалы международной научно-практической конференции "Строительство-2008" С. 17.

Размещено на Allbest.ru


Подобные документы

  • Сырье, технология и способы производства портландцемента: мокрый, сухой и комбинированный. Твердение и свойства портландцемента, его разновидности, состав и технология получения, область применения. Расширяющиеся и безусадочные цементы, процесс активации.

    курсовая работа [935,7 K], добавлен 18.01.2012

  • Особенности производства портландцемента или гидравлического вяжущего вещества, получаемого путем совместного тонкого измельчения клинкера и необходимого количества гипса. Расчет состава сырьевой шихты, расходных бункеров, варочных котлов, шахтных печей.

    реферат [103,5 K], добавлен 21.03.2015

  • Сырьевые материалы для производства портландцемента. Расчет состава сырьевой смеси для производства портландцементного клинкера. Составление технологической схемы производства портландцемента сухим способом. Подбор технологического оборудования.

    курсовая работа [84,2 K], добавлен 02.07.2014

  • Исследование и разработка электропривода вихревого, предназначенного для подачи воды из скважины потребителям и совершающего работу по заданному циклу. Определение его эквивалентной мощности. Выбор пусковой, защитной аппаратуры и аппаратов коммутации.

    курсовая работа [1,3 M], добавлен 17.05.2015

  • Принцип действия, устройство, схема вихревого насоса, его характеристики. Рабочее колесо вихревого насоса. Движение жидкости в проточных каналах. Способность к сухому всасыванию. Напор и характеристики вихревых насосов. Гидравлическая радиальная сила.

    презентация [168,5 K], добавлен 14.10.2013

  • Процесс тонкого измельчения клинкера и необходимого количества гипса для получения портландцемента. Режим работы предприятия, определение производительности. Расчет основного технического и транспортного оборудования для производства шлакопортландцемента.

    курсовая работа [68,3 K], добавлен 06.02.2011

  • Анализ существующей методики получения поверхностного слоя методом электроискрового легирования, которая не учитывает образование слоя на начальном этапе. Зависимость переноса массы от плотности анода и катода. Образование первичного и вторичного слоя.

    статья [684,1 K], добавлен 21.04.2014

  • Геометрические параметры и физико-механическое состояние поверхностного слоя деталей. Граничный и поверхностный слой. Влияние механической обработки, состояния поверхностного слоя заготовки и шероховатости на эксплуатационные свойства деталей машин.

    презентация [1,9 M], добавлен 26.10.2013

  • Выбор способа и технологическая схема производства пуццоланового портландцемента. Характеристика и определение потребности сырья. Выбор основного технологического и транспортного оборудования. Контроль технологического процесса и качества продукции.

    курсовая работа [56,8 K], добавлен 26.10.2011

  • Особенности технологии изготовления белого портландцемента по мокрому способу. Операции по приготовлению сырьевой смеси. Классификация дробления по конечному размеру частиц, получаемых при измельчении. Корректировка состава шлама. Обжиг сырьевой смеси.

    контрольная работа [125,2 K], добавлен 30.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.