Практический опыт диагностики и оценки состояния трубопроводов тепловых сетей с использованием внутритрубных дефектоскопов

Проблемы определения технического состояния конструкций трубопроводов тепловой сети, применение методов неразрушающего контроля. Использование телеуправляемого диагностического комплекса для внутритрубной диагностики технологических трубопроводов.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОАО "Теплосеть Санкт-Петербурга"

Практический опыт диагностики и оценки состояния трубопроводов тепловых сетей с использованием внутритрубных дефектоскопов

И.М. Стренадко, главный инженер

Д.Е. Чуйко, начальник службы диагностики

Е.Н. Цыцеров, ведущий инженер-технолог службы диагностики

г. Санкт-Петербург

Тепловые сети, как и все трубопроводы промышленного и коммунального назначения, с техногенной и экологической точек зрения относятся к категории потенциально опасных объектов. От надежной работы систем теплоснабжения зависит обеспечение комфортных условий труда и быта во всех жилых, общественных и производственных зданиях с постоянным или периодическим пребыванием людей. Теплопроводы в городах, как правило, прокладываются под землей. Значительная протяженность подземных трубопроводов тепловой сети, сложные температурно-влажностные условия эксплуатации и применение недостаточно надежных конструкций теплопроводов в армопенобетонной и асбестоцементной изоляции и т.д. приводят к высокой повреждаемости тепловых сетей в Санкт-Петербурге. Условия эксплуатации подземного теплопровода в значительной мере отличаются от других инженерных сетей. Все теплопроводы в силу наличия в них горячей воды переменной температуры связаны с постоянными перемещениями вдоль оси и испытывают температурные напряжения. Подающий теплопровод большую часть года работает с температурой, считающейся наиболее опасной по коррозионным условиям (70-85 ОС). Условия прокладки в черте городской застройки весьма тяжелы, т.к. характеризуются быстрой сменой грунтов, необходимостью пересечения смежных подземных сооружений, а иногда и зданий.

На основании статистического анализа, основная часть повреждений на трубопроводах ОАО "Теплосеть Санкт-Петербурга" связана с повреждениями в металле в результате процессов наружной коррозии (рис. 1). Факторы коррозии с течением времени становятся причиной отказа в работе трубопроводов, в процессе которого разрушается целостность тепловой сети и возникают утечки теплоносителя из трубопровода. Интенсивность утечки зависит от величины разгерметизации трубопровода. В этой ситуации возникает проблема выбора технических средств, предназначенных для обеспечения оперативного обнаружения повреждения и определения остаточного эксплуатационного ресурса тепловых сетей.

Своевременное обнаружение точных координат повреждения обеспечивает возможность:

¦ в плановом (не аварийном) порядке провести ремонт и тем самым не допустить развития повреждения до критической стадии, когда внезапно нарушается работоспособность теплопровода, а ситуация перерастает в аварийную с выбросом теплоносителя на поверхность земли;

¦ снизить объемы и соответственно затраты при ремонтных работах;

¦ уменьшить площадь нарушения благоустроенных территорий и асфальтового покрытий;

¦ уменьшить перерывы теплоснабжения потребителей;

¦ уменьшить потери теплоносителя;

¦ избежать нанесения ущерба третьим лицам и соответственно избежать страховых выплат;

¦ снизить затраты на послеаварийные восстановительные работы, штрафы.

Определение технического состояния конструкций трубопроводов тепловой сети

Испытания на тепловые потери - определение тепловых потерь трубопроводов тепловой сети путем создания специальных температурных режимов. В результате испытаний выявляется усредненное значение тепловых потерь на участках теплопроводов большой протяженности.

Испытанию подвергается целиком магистраль с длительным отключением потребителя, все локальные участки с повышенными теплопотерями определить при этом невозможно.

Гидравлические испытания на прочность и плотность - выявление сквозных повреждений трубопроводов. При этом:

- происходит отключение потребителей от теплоснабжения на несколько суток;

- на опрессованной магистрали, считающейся годной к эксплуатации, могут оставаться не выявленными мелкие повреждения (например, свищи), через которые в процессе эксплуатации проходит теплоноситель, увлажняя изоляционные конструкции и трубопровод, что является дополнительным источником увеличения скорости коррозии стенок трубопроводов.

Важно отметить, что при производстве испытаний гидравлическим давлением обычно ссылаются на правила Ростехнадзора, в которых испытательное давление для теплопроводов устанавливается в 1,25 раза больше рабочего. Однако при этом не учитывается, что главным фактором при производстве таких испытаний является тщательный осмотр всего открытого теплопровода. Такие условия при испытании действующих подземных трубопроводов создать нельзя.

Плановое шурфование - определение состояния защитных конструкций и наружной поверхности труб путем периодических шурфовок:

¦ выявляет некоторое количество слабых мест только в зоне работ;

¦ чаще всего не позволяет получить реальную картину о состоянии подземного теплопровода на всем его протяжении (даже в 5-10 м от места шурфовки), а фиксирует только состояние теплопровода в месте шурфовки.

Установка индикаторов коррозии - проверка интенсивности наружной и внутренней коррозии трубопроводов с помощью индикаторов:

¦ определяет скорость коррозии на коротком участке трубопровода;

¦ предполагает равномерность процессов наружной и внутренней коррозии в местах установки и не учитывает очаги локальной коррозии.

Кроме того, проводятся следующие периодические испытания:

¦ испытание тепловых сетей на гидравлические потери;

¦ проверка компенсирующей способности трубопровода и надежности неподвижных и подвижных опор путем температурных испытаний.

Эти испытания, при соблюдении методических указаний, отвечают на поставленные задачи.

Методы неразрушающего контроля

В настоящее время целый ряд технических и физических методов диагностики (акустические методы, методы использования магнитной памяти металла и др.) с тем или иным успехом используются при исследовании технического состояния тепловой сети. Технические данные, получаемые при диагностике тепловых сетей различными методами, подлежат качественной расшифровке и количественному анализу, в результате которого весь спектр обнаруженных потенциально опасных участков на исследуемом объекте должен классифицироваться по степени своей опасности для дальнейшей безопасной эксплуатации тепловых сетей.

ОАО "Теплосеть Санкт-Петербурга" совместно с научно-исследовательскими институтами и другими научными организациями проводятся работы по опытному применению известных и разработке новых технических методов диагностирования для практического применения в обследовании трубопроводов тепловых сетей.

Акустический метод. В период с 2005 - 2009 гг. диагностической организацией с использованием оборудования фирмы НПК "Вектор" (ныне данную технологию внедряет ООО "НПК "КУРС-ОТ") с помощью корреляционного анализатора шумов было обследовано более 50 км тепловых сетей (рис. 2).

Данный метод диагностики не требует отключения трубопровода. Существует возможность диагностировать за небольшое время подающий и обратный трубопроводы. В отчетах в наглядной форме представлена информация об участках с докритическим и критическим утонением стенок, причем по согласованию с нашей компанией под ними понимались соответственно значения 40-60% и менее 40% от номинальной толщины стенки металла трубопровода, что существенно отличается от допустимых для дальнейшей эксплуатации величин, указанных в РД 153-34.0-20.522-99. Критические участки в сумме составили в среднем около 12% всей длины как подающего, так и обратного трубопроводов. Докритические участки в сумме составили в среднем около 47% от всей длины как подающего, так и обратного трубопроводов. К примеру, на участке 100 м критических участков в среднем по результатам диагностики было выявлено общей протяженностью 12 м, а докритических - 47 м. В удовлетворительном состоянии - 41 м. Учитывая трудозатраты, эффективность данного метода диагностики можно считать высокой, т.к. без нарушения технологического режима, без вскрытия теплотрасс, при небольших объемах подготовительных работ продиагностированы десятки километров участков трубопроводов тепловых сетей. Следует отметить, что по результатам анализа диагностических данных, полученных при обследовании и при последующем вскрытии теплотрасс, подтвердилось, что данным методом лучше выявляются протяженные коррозионные участки, а для обнаружения локальных язвенных повреждений в металле метод мало пригоден. По оценкам авторов, при повреждении (утонении стенок) протяженностью 1 м вероятность его обнаружения - 80%, а протяженностью 0,2 м - 60%. Строго говоря, с помощью данного акустического метода диагностики выявляются места механических перенапряжений конструкции трубопровода, которые в ряде случаев могут быть обусловлены не утонением стенки трубы (являющимся одним из важных факторов при принятии решения о ремонте), а другими факторами, например, разрушением скользящих опор, температурными деформациями и напряжениями. Для подтверждения полученных по отчету результатов хотя бы только на критических участках пришлось бы вскрывать километры теплотрасс. Такая работа реально ведется только при аварийном устранении повреждений и при плановых реконструкциях. На основании статистической выборки порядок достоверности этого метода диагностики составляет около 40% по обобщенным данным специалистов службы диагностики ОАО "Теплосеть Санкт-Петербурга" и подрядчика. По нашему мнению, данный метод не дает информацию о толщине стенки металла трубопровода, необходимую для принятия решения о ремонте и прогнозировании сроков дальнейшей эксплуатации.

Ультразвуковой метод. В период с 2005 по 2009 гг. диагностической организацией с использованием ультразвуковой системы Wavemaker проводились работы по диагностике тепловых сетей, было обследовано более 5 км тепловых сетей (рис. 3).

Данный метод диагностики не требует отключения трубопровода. На предварительно подготовленную поверхность, свободную от теплоизоляции, надевается надувное кольцо с преобразователями. Спиральная акустическая волна распространяется в обе стороны от кольца и по ее отражению от неоднородностей можно судить об изменении площади поперечного сечения металла. В процессе диагностики выявляются места с изменением площади поперечного сечения на 5% и более от номинальной толщины стенки металла трубопровода. Акустическая волна, создаваемая генератором, имеет ограниченную мощность, ее затухание определяется наличием сварных швов, углов поворота, переходов диаметра. До нас этот метод никогда не использовался для проведения диагностики трубопроводов тепловых сетей. Таким образом, при подземной прокладке можно использовать метод Wavemaker только для диагностики участков трубопроводов, прилегающих к тепловым камерам, а также при шурфовках (плановых и аварийных). Самым большим достоинством метода является сравнительная быстрота получения результата диагностики, что в ряде случаев делает возможным получение информации о состоянии металла непосредственно на месте производства аварийных работ. Применение данного метода на тепловых сетях требует значительных усилий по подготовке рабочего места и, самое главное, снятия теплоизоляции, площадью 300x300 мм, с последующим выполнением зачистки трубопровода и восстановлением разрушенной изоляции. В результате проведения диагностики из-за затухания акустической волны, создаваемой генератором, большие по длине участки трубопроводов оказываются не обследованными. После шурфовок и осмотров трубопроводов был сделан вывод, что достоверность метода составляет не более 50% и не дает полной информации о состоянии трубопровода и такой информации, как толщина стенки металла трубопровода, необходимой для принятия решения о ремонте и прогнозированию сроков дальнейшей эксплуатации.

Метод акустической эмиссии. В период с 2005-2008 гг. с использованием метода акустической эмиссии специализированной организацией проводились работы по диагностике тепловых сетей. Было обследовано более 2 км тепловых сетей (рис. 4).

Метод основан на принципе генерации (эмиссии) акустических сигналов в местах нарушения структуры металла при постепенном ступенчатом повышении давления рабочей среды. При одном подъеме давления данным методом можно продиагностировать около 1000 м трубопровода.

Как показал опыт практического применения, для обследования участка тепловой сети нужна тщательная подготовка рабочего места. Датчики устанавливаются на трубопроводе продольно по длине участка, расстояние между соседними датчиками должно быть около 30 м. В местах установки датчиков металл необходимо тщательно зачищать до зеркального блеска "пятнами" диаметром около 7 см. Для проведения диагностических работ давление теплоносителя необходимо поднять не менее чем на 10% от эксплуатационного значения и затем в течение 10 минут произвести запись акустических сигналов. После компьютерной обработки полученной информации в отчете предоставляются координаты дефектов в металле с указанием степени их опасности (от 1-го до 4-го класса). Один комплект аппаратуры включает в себя 16 датчиков.

Учитывая трудоемкость подготовительных работ для обследования данным методом подземного трубопровода, более целесообразным представляется его применение на участках надземной прокладки. Эффективность метода акустико-эмиссионного контроля можно условно оценить как среднюю. Достоверность результатов при диагностике методом акустической эмиссии участков оказалась, по нашей оценке, на уровне 40%. Данный метод не дает информацию о толщине стенки металла трубопровода, необходимую для принятия решения о его ремонте и прогнозирования сроков дальнейшей эксплуатации.

Описанные выше методы технического диагностирования не позволяют полностью осуществить техническую диагностику состояния подземных теплопроводов и выявить все участки, требующие ремонта, т.е. не позволяют полностью получить требуемую информацию о фактическом состоянии трубопроводов, что вызывает необходимость совершенствования этих методов, а также разработку новых инструментальных методов на основе современного развития технических средств.

Методы внутритрубной диагностики

Одним из примеров совершенствования существующих методов является работа, проводимая ОАО "Теплосеть Санкт-Петербурга" совместно со специализированными диагностическими организациями, по оценке состояния коррозионно-опасных зон с использованием программных комплексов для анализа статистической информации и результатов тепловизионной съемки, а также аппаратов, перемещаемых внутри трубы, которые оснащены телевизионной и ультразвуковой техникой.

Но прежде, чем говорить о разработанных модулях, предназначенных для проведения внутритрубной диагностики, остановимся на принципах формирования программ проведения данного вида диагностики.

Формирование программ диагностики и критерии выбора участка для проведения внутритрубной диагностики (ВТД). Выбор участков под обследование методом ВТД осуществляется специалистами службы диагностики с использованием географической информационно-аналитической системы "Теплосеть" (ГИАС "Теплосеть") и результатов обследования инфракрасной тепловизионной аэрофотосъемки, загружаемых в ГИАС "Теплосеть" (рис. 5).

Ввод паспортной информации о трубопроводах, а также информации, полученной в результате обследований дефектов, диагностики, коррозионных измерений, выполняется по определенному алгоритму в электронную схему тепловой сети. В нашем случае система мониторинга - это, по существу, программная оболочка на основе цифровой пространственной модели, позволяющая работать с информацией по всем базам данных, относящимся к тепловой сети, и представлять ее в виде, удобном для просмотра и восприятия. Рабочее название этой системы - ГИАС "Теплосеть" (подробнее см. статью И.Ю. Никольского на с. 19-24 - прим. ред.). В настоящее время система мониторинга позволяет рационально составлять программы как реконструкции, так и выборочного капитального ремонта с целью продления ресурса трубопровода до его вывода в реконструкцию и определяет участки для диагностики.

Критерии выбора участка для диагностики в ГИАС "Теплосеть":

¦ коэффициент удельной повреждаемости;

¦ наличие внешних факторов, ускоряющих коррозионный износ;

¦ технологическая значимость данного участка тепловой сети, которая напрямую связана с величиной прогнозируемого недоотпуска тепловой энергии при аварийном устранении повреждений в зимний период;

¦ социальная значимость, определяемая тяжестью возможных социально-экономических последствий в случае повреждений;

¦ результаты тепловизионной съемки и градиента температуры на участке.

Площадная аэрофотосъемка в ИК-диапазоне (рис. 6) выполняется с помощью тепловизора, в качестве транспортного средства используется вертолет Ми-8.

Отчетные материалы представляются в виде каталога температурных аномалий. В удобной для сравнения форме приводятся фрагменты карты расположения тепловых сетей, съемки в оптическом и инфракрасном диапазонах волн. Метод очень эффективен для планирования ремонтов, диагностики и выявления участков с повышенными тепловыми потерями. Съемка проводится весной (март - апрель) и осенью (октябрь - ноябрь), когда система отопления работает, но снега на земле нет. На обследование и получение результатов по всей территории г. Санкт-Петербурга уходит всего две недели. Данный метод позволяет не только определить места разрушения изоляции и разгерметизации трубопроводов, но и отслеживать развитие во времени такого рода изменений. По результатам тепловизионной съемки специалисты службы диагностики с целью определения причины аномалии (мест повышенных тепловых потерь) выполняют надземное обследование с использованием приборов корреляционной и акустической диагностики.

Диагностический модуль для внутритрубной диагностики Ду 700-1400. В 2009 г. нашим предприятием совместно с диагностической организацией был опытно внедрен новый метод диагностики - внутритрубная диагностика (ВТД) с использованием телеуправляемого диагностического комплекса (ТДК) (рис. 7).

Созданный для внутритрубной диагностики телеуправляемый диагностический комплекс включает в себя взрывозащищенное средство доставки (внутритрубный дефектоскоп), на которое могут быть установлены различные сменные модули неразрушающего контроля: визуального и измерительного контроля (модуль ВИК), а также бесконтактного ("сухого") ультразвукового контроля с применением электромагнитно-акустических преобразователей (ЭМАП) прямого и наклонного ввода УЗ-импульса (ЭМА-модуль).

Загрузка внутритрубного дефектоскопа с установленными диагностическими модулями производится через имеющиеся горловины теплофикационных камер и смотровых колодцев (люк - лазы Ду 600), а при необходимости - в местах ремонта. Для подготовки места запуска внутритрубного дефектоскопа внутрь трубопровода осуществляется вырезка козырька размером 800x800 мм (рис. 8), в прилегающих камерах выполняется вырезка размером 200x200 мм для осуществления вентиляции диагностируемого участка трубопровода. Внутритрубный дефектоскоп может перемещаться как по горизонтальным трубопроводам Ду 700-1400 со скоростью 50 мм/с, так и по наклонным и вертикально расположенным участкам Ду 700-1000 со скоростью 25 мм/с, а также проходить крутозагнутые отводы и равнопроходные тройники. Внутритрубный дефектоскоп способен перемещаться внутри технологических трубопроводов на расстояние до 240 м от мест загрузки. Диагностическое и вспомогательное оборудование размещается в передвижной автолаборатории на базе автомобиля "Газель".

Использование ЭМАП позволяет проводить диагностику трубопроводов, в том числе диагностику объектов, имеющих загрязненную поверхность (ржавчина, коррозия и т.д.), без использования контактной жидкости, по неподготовленной поверхности, через воздушный зазор до 1,5 мм. Диапазон толщин стенок, доступных для контроля, находится в пределах 6-30 мм. Для проведения контроля ЭМАП располагаются диаметрально-противоположно в ЭМА-модуле, установленном на узел ротации внутритрубного дефектоскопа. Узел ротации обеспечивает поворот преобразователей по окружности трубопровода, а телескопические манипуляторы - выдвижение преобразователей до поверхности трубопровода для обеспечения постоянного воздушного зазора между контролируемой поверхностью и преобразователями. Внутритрубный дефектоскоп обеспечивает поступательное и спиральное перемещение модуля внутри трубопровода, за счет чего реализуются динамические режимы контроля - сплошное сканирование тела трубы или сканирование с заданным шагом от 10 до 200 мм.

Сплошной и пошаговый ЭМА-контроль осуществляется на прямолинейных участках трубопровода, а внутри отводов проводится измерение остаточной толщины стенки. Результаты внутритрубного сканирования с применением ВИК- и ЭМА-модулей выводятся на экраны мониторов принимающего и управляющего компьютеров (рис. 9), установленных в автолаборатории, с целью оценки контролером обнаруженных дефектов тела трубы.

С целью получения информации об остаточной толщине стенки трубы в потенциально опасных участках принято решение о дооснащении телеуправляемого диагностического комплекса модулем вихретокового контроля, который позволит определять утонения стенки в диапазоне 0,5-6 мм на корродированных поверхностях.

Для обеспечения полноценного контроля технического состояния трубопроводов теплосетей в 2010-2011 гг. была выполнена следующая модернизация:

¦ усовершенствована конструкция для обеспечения функционирования ТДК в условиях повышенной влажности (до 100%), а также в частично погруженном в воду состоянии;

¦ дооснащен ТДК модулем вихретокового контроля для определения остаточной толщины на участках коррозионного поражения трубопроводов в диапазоне 0,5-6,0 мм;

¦ разработан новый сканер для перемещения ЭМАП вдоль оси трубопровода с обеспечением производительности контроля не менее 10 м/ч;

¦ доработан ЭМАП для обеспечения контроля в условиях состояния внутренних поверхностей, специфичных для трубопроводов тепловых сетей;

¦ разработано специализированное программное обеспечение, обеспечивающее архивирование и отображение результатов контроля в реальном времени.

Основным критерием, учитываемым при принятии решения по замене трубопровода, являлась информация о фактической толщине стенки металла трубопровода, необходимая для расчета на прочность и наработки на отказ трубопровода тепловой сети. В программу немедленного аварийного ремонта включались участки с утонением толщины металла от 40% и более, участки с утонением металла от 20 до 40% планируются к замене в последующие периоды.

В 2009 г. выполнена диагностика 800 пм, обнаружено 24 потенциально опасных участка, заменено 11 п м подающего трубопровода.

В 2010 г. выполнена диагностика 1400 пм, обнаружено 33 потенциально опасных участка, заменено 106 п м подающего трубопровода.

В 2011 г. выполнена диагностика 2700 пм, обнаружено 52 потенциально опасных участка, заменено - 240 п м подающего трубопровода.

Диагностический модуль для внутритрубной диагностики Ду 300-600. Учитывая технологическую потребность в диагностике трубопроводов диаметром от 300 до 600 мм ОАО "Теплосеть Санкт-Петербурга" совместно с диагностическими организациями продолжило разработку аппаратов, погружаемых внутрь трубопровода и позволяющих определить фактическую толщину стенки металла трубопровода, оснащенных телевизионной и ультразвуковой техникой.

В 2011 г. впервые был применен диагностический модуль, позволяющий диагностировать трубопроводы диаметром Ду 300-600, который разрабатывался подрядной организацией в тесном контакте с ОАО "Теплосеть Санкт-Петербурга" (рис. 10).

Данный модуль представляет из себя электромеханическую каретку с приводом на задние колеса. Максимальная дальность доставки видео- и ультразвукового оборудования ограничивается тяговым усилием двигателя каретки и составляет 130 м. Измерительное оборудование установлено в головной части робота, представляющее собой конструктивный элемент с возможностями производить вращательные движения вокруг своей оси на 180О по часовой и против часовой стрелки за счет установленного в роботе электромеханического привода (рис. 11). Пневматические болгарки имеют круги лепесткового типа, используемые для зачистки внутренней поверхности трубопровода от коррозии. Воздух на пневмоинструмент подается через пневмопредохранители по пневмотрубкам высокого давления от автономного бензинового компрессора. Толщинометрия производится посредством двух толщиномеров, установленных в корпус каретки робота. Датчики толщиномеров выведены на голову робота и расположены на одной оси с зачистными пневмоболгарками. В качестве контактной жидкости между датчиками и поверхностью металла используется вода, подающаяся через электроклапан по пневмотрубке при помощи водяного насоса. Выдвижение пневмоболгарок и плотное прилегание датчиков толщиномеров к контролируемому участку стенки трубы осуществляется при помощи пневмоцилиндров.

Загрузка внутритрубного дефектоскопа с установленными диагностическими модулями производится через шурфы (рис. 12), габаритные размеры оборудования в настоящее время не позволяют осуществлять его загрузку через люк - лазы Ду 600. Для подготовки места запуска внутритрубного дефектоскопа внутрь трубопровода осуществляется вырезка металла трубопровода в верхней части в месте шурфовки длиной не менее 1,2 м и шириной 0,5Ду трубопровода, а в прилегающих камерах выполняется вырезка размером 200x200 мм для осуществления вентиляции диагностируемого участка трубопровода. Внутритрубный аппарат может перемещаться только горизонтально, скорость контроля более 100 мм/с.

Диагностическое и вспомогательное оборудование размещается в передвижной автолаборатории на базе автомобиля "Газель". Управление внутритрубным дефектоскопом осуществляется через ноутбук с помощью специализированной программы. Контроль осуществляется с заданным шагом 100 мм. Результаты внутритрубного сканирования с применением визуально измерительного контроля и выполнением ультразвуковой толщинометрии выводятся на экраны монитора принимающего и управляющего компьютера, с целью оценки контролером повреждений, обнаруженных в результате контроля (рис. 13).

С целью адаптации существующего дефектоскопа и обеспечения полноценного контроля технического состояния трубопроводов теплосетей в 2011 г. была выполнена следующая модернизация:

¦ установлена на ультразвуковой датчик демпферная подушка, обеспечивающая более ровный контакт поверхности стенки металла трубопровода и ультразвукового датчика;

¦ для повышения надежности передачи данных о толщине стенки металла обследованного трубопровода заменена технология передачи информации по протоколу Ethernet между внутритрубным дефектоскопом и оператором на протокол Com.

В 2011 г общая протяженность продиагностированных участков составила 1665 п м, заменено 132 п м подающего трубопровода. Оперативно до возникновения повреждения устранено более 30 потенциально опасных участков тепловых сетей и два перекоса сильфонных компенсаторов, обнаруженных по результатам ВИК.

Достоинства внутритрубной диагностики с применением телеуправляемого диагностического комплекса следующие.

1. Отображение результатов диагностики (в первую очередь, фактической толщины стенки) в режиме реального времени и обеспечение их архивирования.

2. Получение достоверной информации о реальной геометрии трубопровода, фактическом расположении сварных соединений, а также о состоянии внутреннего пространства трубопровода.

3. Значительное сокращение объема земляных и подготовительных работ для проведения контроля трубопровода снаружи по сравнению с шурфовочными работами.

4. Применение различных модулей неразрушающего контроля при проведении ВТД позволяет выявлять:

¦ поверхностные дефекты сварных соединений (непровары, подрезы, утяжины и т.д.);

¦ вмятины, посторонние предметы, загрязнения во внутритрубном пространстве;

¦ внутренние дефекты тела трубы (расслоения, неметаллические включения);

¦ участки наружной поверхности трубопровода со сплошной и язвенной коррозией, забоины и пр.;

¦ трещиноподобные дефекты, ориентированные вдоль оси трубопровода;

¦ толщину стенки трубы.

Ограничения внутритрубной диагностики. Опыт работы показал ряд существенных отличий внутреннего состояния трубопроводов теплосетей от газопроводов, что внесло свои коррективы в сложившуюся методику проведения контроля трубопроводов тепловых сетей, они следующие.

1. Наличие твердых коррозионных отложений (рис. 14), недемонтированных врезок временного трубопровода (рис. 15), деформации сильфонных компенсаторов (рис. 16), не позволяющие проводить ЭМА и УЗК-контроль в динамическом режиме (а также ВИК кольцевых сварных швов).

2. Двухстороннее коррозионное повреждение тела трубы (наружная и внутренняя поверхность), вызывающее нестабильный акустический контакт.

3. Значительная температура и влажность внутри трубопровода, что требует проведения серьезных подготовительных работ перед началом диагностики.

В этой связи на трубопроводах проводилось внутритрубное обследование с выявлением вмятин, посторонних предметов, загрязнений во внутритрубном пространстве, а также УЗТ и ЭМА-толщинометрия в статическом режиме. В плоскости сечения трубопровода замеры толщины выполнялись через каждые 60О (2 часа) по окружности и с шагом 100 мм вдоль оси трубы, по результатам замеров строилась толщинограмма по каждой проконтролированной трубе.

Выводы и рекомендации

1. Выполнение ВТД и проведение ремонтных работ по результатам диагностики позволили в значительной мере повысить эксплуатационную надежность трубопроводов ОАО "Теплосеть Санкт-Петербурга".

2. Применение ВТД обеспечивает выявление мест коррозионных повреждений без предварительной подготовки поверхности в диапазоне от 3 мм и выше.

3. В целях совершенствования внутритрубной диагностики и ее широкого применения необходима следующая доработка оборудования ВТД:

¦ доработка существующих образцов внутритрубных дефектоскопов с целью их адаптации для контроля трубопроводов тепловых сетей с повышенной влажностью внутри трубопровода и высокой температурой до 60 ОС;

¦ разработка дополнительных методов зачистки, таких как гидродинамическая очистка трубопроводов и др.;

¦ уменьшение габаритов модулей и осуществление возможности прохода нескольких углов поворота трубопроводов (более 2-х на одном участке тепловой сети);

¦ увеличение расстояния перемещения от места загрузки до 500 м.

Заключение

трубопровод диагностика внутритрубный

Подводя итог, следует отметить, что на сегодняшний день существующие методы внутритрубной диагностики не способны дать 100% представления о фактическом состоянии трубопровода и его рабочем ресурсе. Необходимо выполнять комплекс диагностических мероприятий с использованием целого ряда других видов неразрушающего контроля (инфракрасная диагностика, акустическая и корреляционная диагностика и т.д.). Достоверность имеющихся методов внутритрубной диагностики находится на уровне - 75 - 80%, которая в 1,5-2 раза выше, чем достоверность других методов неразрушающего контроля, дающих информацию о состоянии металла трубопровода и используемых ранее в ОАО "Теплосеть Санкт-Петербурга". Благодаря совершенствованию метода внутритрубной диагностики и модулей неразрушающего контроля, а также разработке новых инструментальных методов контроля трубопроводов на основе современного развития технических средств, станет возможным заменить гидравлические испытания на диагностику трубопроводов тепловой сети неразрушающими методами контроля.

В связи с этим необходимо продолжать работы по совершенствованию используемых методов внутритрубной диагностики, модернизировать оборудование, снижать себестоимость, увеличивать объемы диагностических работ.

Размещено на Allbest.ru


Подобные документы

  • Основные этапы диагностирования трубопроводов. Анализ методов диагностики технического состояния: разрушающие и неразрушающие. Отличительные черты шурфового диагностирования и метода акустической эмиссии. Определение состояния изоляционных покрытий.

    курсовая работа [577,3 K], добавлен 21.06.2010

  • Испытания смонтированного оборудования трубопроводов. Гидравлическое, пневматическое испытание стальных трубопроводов. Промывка, продувка. Методы неразрушающего контроля качества сварных соединений. Охрана труда при изготовлении и монтаже трубопроводов.

    курсовая работа [39,7 K], добавлен 19.09.2008

  • Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Технологическая последовательность монтажа внутрицеховых и межцеховых трубопроводов. Метод крупноблочного монтажа конструкций.

    курсовая работа [19,5 K], добавлен 19.09.2008

  • Категорирование трубопроводов, их классификация по параметрам среды. Окраска и надписи на трубопроводах. Типовые режимы изменения состояния технологического оборудования ТЭС. Остановка оборудования с расхолаживанием трубопроводов, основные операции.

    реферат [49,6 K], добавлен 15.04.2019

  • Общие сведения о вибрации. Параметры, характеризующие вибрационное состояние трубопроводов. Причины вибрации трубопроводов. Обзор методов защиты от вибрации. Конструкция и расчет высоковязкого демпфера. Расчет виброизолятора для устранения проблемы.

    курсовая работа [1,1 M], добавлен 14.11.2017

  • Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Трубы и детали трубопроводов из цветных металлов и их сплавов, их конфигурация, техническая характеристика, области применения.

    курсовая работа [17,6 K], добавлен 19.09.2008

  • Средства контроля и диагностики тягового подвижного состава. Стенды и оборудование для испытания топливной аппаратуры. Характеристика системы мониторинга дизеля. Технико-экономическое обоснование применение переносного диагностического комплекса.

    дипломная работа [5,5 M], добавлен 08.03.2018

  • Проект теплоснабжения промышленного здания в г. Мурманск. Определение тепловых потоков; расчет отпуска тепла и расхода сетевой воды. Гидравлический расчёт тепловых сетей, подбор насосов. Тепловой расчет трубопроводов; техническое оборудование котельной.

    курсовая работа [657,7 K], добавлен 06.11.2012

  • Особенности геологического строения и коллекторские свойства пластов Ромашкинского нефтяного месторождения. Анализ методов борьбы с коррозией трубопроводов, а также мероприятия по охране недр и окружающей среды, применяемые в НГДУ "Лениногорскнефть".

    дипломная работа [3,6 M], добавлен 26.06.2010

  • Дефекты сварки полиэтиленовых трубопроводов. Технические требования по проведению ультразвукового контроля, сущность этого способа диагностики состояния. Приборы, необходимые для его проведения. Методика ультразвукового контроля сварных соединений.

    курсовая работа [22,2 K], добавлен 02.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.