Свойства и применение керамических материалов

Изучение свойств технической керамики, позволяющих применять ее в автомобильной, электронной промышленности, медицинских технологиях, энергетике, машиностроении. Описание этапов керамической технологии, способов повышения вязкости и надежности материалов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 27.12.2016
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Керамическая технология и классификация керамики

2. Свойства и применение керамических материалов

Заключение

Список использованных источников

Введение

Керамика является третьим наиболее широко используемым промышленностью материалом после металлов и полимеров. Она является наиболее конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах. Большие перспективы открывает использование транспортных двигателей с деталями из керамики, керамических материалов для обработки резанием и оптической керамики для передачи информации. Это позволит снизить расход дорогих и дефицитных металлов: титана и тантала в конденсаторах, вольфрама и кобальта в режущих инструментах, кобальта, хрома и никеля в тепловых двигателях.

Основными разработчиками и производителями керамических материалов являются США и Япония.

Керамические материалы, используемые в технике в качестве технической керамики или высококачественной керамики, должны удовлетворять самым высоким требованиям к свойствам материалов. К таким свойствам относятся:

- предел прочности на изгиб;

- биологическая совместимость;

- стойкость к химическому воздействию;

- плотность и жесткость (модуль Юнга);

- предел прочности при сжатии;

- электроизоляционные свойства;

- диэлектрическая прочность;

- твердость;

- устойчивость к коррозии;

- пригодность для пищевых целей;

- пьезоэлектрические свойства и динамические характеристики;

- термостойкость;

- устойчивость к тепловым ударам и колебаниям температуры;

- металлизация (технология связывания);

- износостойкость;

- коэффициент теплового расширения;

- термоизоляция;

- теплопроводность;

Эти разнообразные свойства позволяют использовать техническую керамику в различных областях применения в автомобильной промышленности, электронной промышленности, медицинских технологиях, энергетике и промышленной экологии, а также в машиностроении и производстве оборудования.

1. Керамическая технология и классификация керамики

Керамическая технология предусматривает следующие основные этапы: получение исходных порошков, консолидацию порошков, т. е. изготовление компактных материалов, их обработку и контроль изделий.

При производстве высококачественной керамики с высокой однородностью структуры используют порошки исходных материалов с размером частиц до 1 мкм. Измельчение производится механическим путем с помощью мелющих тел, а также путем распыления измельчаемого материала в жидком состоянии, осаждением на холодных поверхностях из парогазовой фазы, виброкавитационным воздействием на частицы, находящиеся в жидкости, с помощью самораспространяющегося высокотемпературного синтеза и другими методами. Для сверхтонкого помола (частицы менее 1 мкм) наиболее перспективны вибрационные мельницы, или аттриторы.

Консолидация керамических материалов состоит из процессов формования и спекания. Различают следующие основные группы методов формования:

1) Прессование под действием сжимающего давления, при котором происходит уплотнение порошка за счет уменьшения пористости;

2) Пластичное формование выдавливанием прутков и труб через мундштук (экструзия) формовочных масс с пластификаторами, увеличивающими их текучесть;

3) Шликерное литье для изготовления тонкостенных изделий любой сложной формы, в котором для формования используют жидкие суспензии порошков.

При переходе от прессования к пластичному формованию и шликерному литью увеличиваются возможности изготовления изделий сложной формы, однако усложняется процесс сушки изделий и удаления пластификаторов из керамического материала. Поэтому для изготовления изделий сравнительно простой формы предпочтение отдается прессованию, а более сложной - экструзии и шликерному литью.

При спекании отдельные частицы порошков превращаются в монолит и формируются окончательные свойства керамики. Процесс спекания сопровождается уменьшением пористости и усадкой.

В таблице 1 приведена классификация основных видов керамики.

Применяют печи для спекания при атмосферном давлении, установки горячего изостатического прессования (газостаты), прессы горячего прессования с усилием прессования до 1500 кН. Температура спекания в зависимости от состава может составлять до 2000 - 2200°С.

Часто применяются совмещенные методы консолидации, сочетающие формование со спеканием, а в некоторых случаях - синтез образующегося соединения с одновременным формованием и спеканием.

Обработка керамики и контроль являются основными составляющими в балансе стоимости керамических изделий. По некоторым данным, стоимость исходных материалов и консолидации составляет всего лишь 11 % (для металлов 43 %), в то время как на обработку приходится 38 % (для металлов 43 %), а на контроль 51 % (для металлов 14 %). К основным методам обработки керамики относятся термообработка и размерная обработка поверхности. Термообработка керамики производится с целью кристаллизации межзеренной стеклофазы. При этом на 20 - 30 % повышаются твердость и вязкость разрушения материала.

Большинство керамических материалов с трудом поддается механической обработке. Поэтому основным условием керамической технологии является получение при консолидации практически готовых изделий. Для доводки поверхностей керамических изделий применяют абразивную обработку алмазными кругами, электрохимическую, ультразвуковую и лазерную обработку. Эффективно применение защитных покрытий, позволяющих залечить мельчайшие поверхностные дефекты - неровности, риски и т. д.

Для контроля керамических деталей чаще всего используют рентгеновскую и ультразвуковую дефектоскопию.

Прочность химических межатомных связей, благодаря которой керамические материалы обладают высокой твердостью, химической и термической стойкостью, одновременно обусловливает их низкую способность к пластической деформации и склонность к хрупкому разрушению. Большинство керамических материалов имеет низкую вязкость и пластичность и соответственно низкую трещиностойкость. Вязкость разрушения кристаллической керамики составляет около 1 - 2 МПа/м1/2, в то время как для металлов она составляет более 40 МПа/м1/2.

Возможны два подхода к повышению вязкости разрушения керамических материалов. Один из них традиционный, связанный с совершенствованием способов измельчения и очистки порошков, их уплотнения и спекания. Второй подход состоит в торможении роста трещин под нагрузкой. Существует несколько способов решения этой проблемы. Один из них основан на том, что в некоторых керамических материалах, например в диоксиде циркония ZrO2, под давлением происходит перестройка кристаллической структуры. Исходная тетрагональная структура ZrO2переходит в моноклинную, имеющую на 3 - 5 % больший объем. Расширяясь, зерна ZrO2 сжимают трещину, и она теряет способность к распространению (рисунок 1, а). При этом сопротивление хрупкому разрушению возрастает до 15 МПа/м1/2.

Рисунок 1 - Схема упрочнения конструкционной керамики включениями ZrO2(а), волокнами (б) и мелкими трещинами (в): 1 - тетрагональный ZrO2; 2 - моноклинный ZrO2

керамика технический вязкость технология

Второй способ (рисунок 1, б) состоит в создании композиционного материала путем введения в керамику волокон из более прочного керамического материала, например карбида кремния SiC. Развивающаяся трещина на своем пути встречает волокно и дальше не распространяется. Сопротивление разрушению стеклокерамики с волокнами SiC возрастает до 18 - 20 МПа/м1/2, существенно приближаясь к соответствующим значениям для металлов.

Третий способ состоит в том, что с помощью специальных технологий весь керамический материал пронизывают микротрещинами (рисунок 1, в). При встрече основной трещины с микротрещиной угол в острие трещины возрастает, происходит затупление трещины и она дальше не распространяется.

Определенный интерес представляет физико-химический способ повышения надежности керамики. Он реализован для одного из наиболее перспективных керамических материалов на основе нитрида кремния Si3N4. Способ основан на образовании определенного стехиометрического состава твердых растворов оксидов металлов в нитриде кремния, получивших название сиалонов. Примером высокопрочной керамики, образующейся в этой системе, являются сиалоны состава Si3-хAlxN4-хOх, где х - число замещенных атомов кремния и азота в нитриде кремния, составляющее от 0 до 2,1. Важным свойством сиалоновой керамики является стойкость к окислению при высоких температурах, значительно более высокая, чем у нитрида кремния.

2. Свойства и применение керамических материалов

Принципиальными недостатками керамики являются ее хрупкость и сложность обработки. Керамические материалы плохо работают в условиях механических или термических ударов, а также при циклических условиях нагружения. Им свойственна высокая чувствительность к надрезам. В то же время керамические материалы обладают высокой жаропрочностью, превосходной коррозионной стойкостью и малой теплопроводностью, что позволяет с успехом использовать их в качестве элементов тепловой защиты.

При температурах выше 1000°С керамика прочнее любых сплавов, в том числе и суперсплавов, а ее сопротивление ползучести и жаропрочность выше.

К основным областям применения керамических материалов относятся:

1) Режущий керамический инструмент - характеризуется высокой твердостью, в том числе при нагреве, износостойкостью, химической инертностью к большинству металлов в процессе резания. По комплексу этих свойств керамика существенно превосходит традиционные режущие материалы - быстрорежущие стали и твердые сплавы (таблица 2).

Высокие свойства режущей керамики позволили существенно повысить скорости механической обработки стали и чугуна (таблица 3).

Для изготовления режущего инструмента широко применяется керамика на основе оксида алюминия с добавками диоксида циркония, карбидов и нитридов титана, а также на основе бескислородных соединений - нитрида бора с кубической решеткой (-BN), обычно называемого кубическим нитридом бора, и нитрида кремния Si3N4. Режущие элементы на основе кубического нитрида бора в зависимости от технологии получения, выпускаемые под названиями эльбор, боразон, композит 09 и др., имеют твердость, близкую к твердости алмазного инструмента, и сохраняют устойчивость к нагреву на воздухе до 1300 - 1400°С. В отличие от алмазного инструмента кубический нитрид бора химически инертен по отношению к сплавам на основе железа. Его можно использовать для чернового и чистового точения закаленных сталей и чугунов практически любой твердости.

Состав и свойства основных марок режущей керамики приведены в таблице 4.

Режущие керамические пластины используются для оснащения различных фрез, токарных резцов, расточных головок, специального инструмента.

2) Керамические двигатели - из второго закона термодинамики следует, что для повышения КПД любого термодинамического процесса необходимо повышать температуру на входе в энергетическое преобразовательное устройство: КПД = 1 - T21, где Т1 и Т2 - температуры на входе и выходе энергетического преобразовательного устройства соответственно. Чем выше температура T1 тем больше КПД. Однако максимально допустимые температуры определяются теплостойкостью материала. Конструкционная керамика допускает применение более высоких температур по сравнению с металлом и поэтому является перспективным материалом для двигателей внутреннего сгорания и газотурбинных двигателей. Помимо более высокого КПД двигателей за счет повышения рабочей температуры преимуществом керамики является низкая плотность и теплопроводность, повышенная термо- и износостойкость. Кроме того, при ее использовании снижаются или отпадают расходы на систему охлаждения.

Вместе с тем следует отметить, что в технологии изготовления керамических двигателей остается ряд нерешенных проблем. К ним прежде всего относятся проблемы обеспечения надежности, стойкости к термическим ударам, разработки методов соединения керамических деталей с металлическими и пластмассовыми. Наиболее эффективно применение керамики для изготовления дизельных адиабатных поршневых двигателей, имеющих керамическую изоляцию, и высокотемпературных газотурбинных двигателей.

Конструкционные материалы адиабатных двигателей должны быть устойчивы в области рабочих температур 1300 - 1500 К, иметь прочность при изгибе  не менее 800 МПа и коэффициент интенсивности напряжений не менее 8 МПа*м1/2. Этим требованиям в наибольшей мере удовлетворяет керамика на основе диоксида циркония ZrO2 и нитрида кремния. Наиболее широко работы по керамическим двигателям проводятся в Японии и США. Японская фирма «Isuzu Motors Ltd» освоила изготовление форкамеры и клапанного механизма адиабатного двигателя, «Nissan Motors Ltd» - крыльчатки турбокомпрессора, фирма «Mazda Motors Ltd» - форкамеры и пальца толкателя.

Компания «Cammin Engine» (США) освоила альтернативный вариант двигателя грузовика с плазменными покрытиями из ZrO2, нанесенными на днище поршня, внутреннюю поверхность цилиндра, впускные и выпускные каналы. Экономия топлива на 100 км пути составила более 30 %.

Фирма «Isuzu» (Япония) сообщила об успешной разработке керамического двигателя, работающего на бензине и дизельном топливе. Двигатель развивает скорость до 150 км/ч, коэффициент полноты сгорания топлива на 30 - 50% выше, чем у обычных двигателей, а масса на 30 % меньше.

Конструкционной керамике для газотурбинных двигателей в отличие от адиабатного двигателя не требуется низкая теплопроводность. Учитывая, что керамические детали газотурбинных двигателей работают при более высоких температурах, они должны сохранять прочность на уровне 600 МПа при температурах до 1470 - 1670 К (в перспективе до 1770 - 1920 К) при пластической деформации не более 1 % за 500 ч работы. В качестве материала для таких ответственных деталей газотурбинных двигателей, как камера сгорания, детали клапанов, ротор турбокомпрессора, статор, используют нитриды и карбиды кремния, имеющие высокую теплостойкость.

Повышение тактико-технических характеристик авиационных двигателей невозможно без применения керамических материалов.

3) Керамика специального назначения - к керамике специального назначения относятся сверхпроводящая керамика, керамика для изготовления контейнеров с радиоактивными отходами, броневой защиты военной техники и тепловой защиты головных частей ракет и космических кораблей.

4) Контейнеры для хранения радиоактивных отходов - одним из сдерживающих факторов развития ядерной энергетики является сложность захоронения радиоактивных отходов. Для изготовления контейнеров применяют керамику на основе оксида В2О3 и карбида бора В4С в смеси с оксидом свинца РbО или соединениями типа 2РbО*PbSO4. После спекания такие смеси образуют плотную керамику с малой пористостью. Она характеризуется сильной поглощающей способностью по отношению к ядерным частицам - нейтронам и  -квантам.

5) Ударопрочная броневая керамика - по своей природе керамические материалы являются хрупкими. Однако при высокой скорости нагружения, например в случае взрывного удара, когда эта скорость превышает скорость движения дислокаций в металле, пластические свойства металлов не будут играть никакой роли и металл будет таким же хрупким, как и керамика. В этом конкретном случае керамика существенно прочнее металла.

Важными свойствами керамических материалов, обусловивших их применение в качестве брони, является высокие твердость, модуль упругости, температура плавления (разложения) при в 2 - 3 раза меньшей плотности. Сохранение прочности при нагреве позволяет использовать керамику для защиты от бронепрожигающих снарядов.

В качестве критерия пригодности материала для броневой защиты М может быть использовано следующее соотношение:

(1)

где Е - модуль упругости, ГПа; Нк - твердость по Кнупу, ГПа;  - предел прочности, МПа; Тпл - температура плавления, К;  - плотность, г/см3.

В таблице 5 приведены основные свойства широко применяемых броневых керамических материалов в сравнении со свойствами броневой стали.

Наиболее высокие защитные свойства имеют материалы на основе карбида бора. Их массовое применение сдерживается высокой стоимостью метода прессования. Поэтому плитки из карбида бора используют при необходимости существенного снижения массы броневой защиты, например для защиты кресел и автоматических систем управления вертолетов, экипажа и десанта. Керамику из диборида титана, имеющую наибольшую твердость и модуль упругости, применяют для защиты от тяжелых бронебойных и бронепрожигающих танковых снарядов.

Для массового производства керамики наиболее перспективен сравнительно дешевый оксид алюминия. Керамику на его основе используют для защиты живой силы, сухопутной и морской военной техники.

По данным фирмы «Morgan M. Ltd» (США), пластина из карбида бора толщиной 6,5 мм или из оксида алюминия толщиной 8 мм останавливает пулю калибром 7,62 мм, летящую со скоростью более 800 м/с при выстреле в упор. Для достижения того же эффекта стальная броня должна иметь толщину 10 мм, при этом масса ее будет в 4 раза больше, чем у керамической. Наиболее эффективно применение композиционной брони, состоящей из нескольких разнородных слоев. Наружный керамический слой воспринимает основную ударную и тепловую нагрузку, дробится на мелкие частицы и рассеивает кинетическую энергию снаряда. Остаточная кинетическая энергия снаряда поглощается упругой деформацией подложки, в качестве которой может использоваться сталь, дюралюминий или кевларовая ткань в несколько слоев. Эффективно покрытие керамики легкоплавким инертным материалом, играющим роль своеобразной смазки и несколько изменяющим направление летящего снаряда, что обеспечивает рикошет.

Конструкция керамической брони показана на рисунке 2.

Рисунок 2 - Конструкция керамической бронепанели: а, б - составляющие элементы бронепанели для защиты от бронебойных пуль разного калибра; в - фрагмент бронепанели, собранный из элементов а и б; 1 - бронебойная пуля калибра 12,7 мм; 2 - пуля калибра 7,62 мм; 3 - защитное покрытие частично снято

Бронепанель состоит из отдельных последовательно соединенных керамических пластин размером 50 * 50 или 100 * 100 мм. Для защиты от бронебойных пуль калибром 12,6 мм используют пластины из Аl2О3 толщиной 15 мм и 35 слоев кевлара, а от пуль калибром 7,62 мм - пластины из Аl2О3 толщиной 6 мм и 12 слоев кевлара.

Во время войны в Персидском заливе широкое использование армией США керамической брони из Аl2О3, SiC и В4С показало ее высокую эффективность. Для броневой защиты также перспективно применение материалов на основе AlN, TiB2 и полиамидных смол, армированных керамическими волокнами.

6) Керамика в ракетно-космическом машиностроении - при полете в плотных слоях атмосферы головные части ракет, космических кораблей, кораблей многоразового использования, нагреваемые до высокой температуры, нуждаются в надежной теплозащите.

Материалы для тепловой защиты должны обладать высокой теплостойкостью и прочностью в сочетании с минимальными значениями коэффициента термического расширения, теплопроводности и плотности.

Исследовательский центр НАСА США (NASA Ames Research Centre) разработал составы теплозащитных волокнистых керамических плит, предназначенных для космических кораблей многоразового использования. Свойства плит ряда составов приведены в таблице 6. Средний диаметр волокон 3 - 11 мкм.

Для повышения прочности, отражательной способности и абляционных характеристик внешней поверхности теплозащитных материалов их покрывают слоем эмали толщиной около 300 мкм. Эмаль, содержащую SiC или 94 % SiO2 и 6 % В2О3, в виде шликера наносят на поверхность, а затем подвергают спеканию при 1470 К. Плиты с покрытиями используют в наиболее нагреваемых местах космических кораблей, баллистических ракет и гиперзвуковых самолетов. Они выдерживают до 500 десятиминутных нагревов в электродуговой плазме при температуре 1670 К. Варианты системы керамической теплозащиты лобовых поверхностей летательных аппаратов приведены на рисунке 3.

Рисунок 14.3 - Система керамической теплозащиты лобовых поверхностей летательных аппаратов для температур от 1250 до 1700оС: 1 - керамика на основе SiC или Si3N4; 2 - теплоизоляция; 3 - спеченная керамика

Высокопористый волокнистый слой теплоизоляции на основе FRCI, АЕТВ или HTR защищен облицовкой из слоя карбида кремния. Облицовочный слой предохраняет теплоизолирующий слой от абляционного и эрозионного разрушения и воспринимает основную тепловую нагрузку.

Заключение

Промышленная керамика вот уже много десятков лет применяется в машиностроении, в металлургии, в химической промышленности, в деревообрабатывающей и в авиационной промышленности. Зачастую предприятия, фирмы, заводы просто не могут обойтись без изделий, которые смогли бы работать в экстремальных условиях работы.

Развитие данной отрасли промышленности имеет высокие перспективы, что влечет за собой увеличение качества обработки материалов, длительности их службы, производительности, износостойкости и многих других факторов.

Список использованных источников

1. Лахтин Ю.М. «Материаловедение Учебник для высших технических учебных заведений».: 1990. - 514с.

2. Кнунянц И.Л. «Краткая химическая энциклопедия» Том 2. - М.: Химия, 1963. - 539с.

3. Карабасов Ю.С. «Новые материалы» 2002. - 255с.

4. Балкевич В.Л. «Техническая керамика».: 1984.

Размещено на Allbest.ru


Подобные документы

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.

    курсовая работа [134,7 K], добавлен 06.06.2014

  • Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат [17,6 K], добавлен 26.04.2011

  • Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.

    курсовая работа [442,7 K], добавлен 17.10.2008

  • Керамика на основе ZrO2: структура и механические свойства. Керамика на основе ультрадисперсных порошков. Технология получения керамических материалов. Метод акустической эмиссии. Структура, фазовый состав и механические свойства керамики ZrO2.

    дипломная работа [1,2 M], добавлен 04.08.2012

  • Виды керамики, характеристика материалов, используемых для формования керамических изделий. Приготовление керамической массы. Полусухое и гидростатическое прессование. Различные варианты вибрационного формования. Специфика применения шликерного литья.

    реферат [678,6 K], добавлен 13.12.2015

  • Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа [2,1 M], добавлен 27.05.2015

  • Анализ существующих технологических процессов алмазно-абразивной обработки напылённых покрытий и технической минералокерамики. Физико-механические свойства керамических материалов. Влияние технологических факторов на процесс обработки напылённой керамики.

    дипломная работа [4,0 M], добавлен 28.08.2011

  • Изучение товарной продукции в виде керамической плитки для полов и сферы ее применения в строительстве. Потребительские свойства керамической плитки. Описании технологии ее производства. Характеристика сырья полусухого производства. Контроль качества.

    реферат [37,4 K], добавлен 11.03.2011

  • Изучение технологии изготовления керамики - материалов, получаемых из глинистых веществ с минеральными или органическими добавками или без них путем формования и последующего обжига. Этапы производства: формовка изделия, нанесение декора, сушка, обжиг.

    реферат [21,2 K], добавлен 03.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.