Технология высокопрочного бетона

Рассмотрение вопросов применения бетонов высокой прочности с целью повышения качества, надежности и долговечности конструкций. Изучение технологии высокопрочного бетона, условий и дополнительных компонентов, необходимых для придания ему особых свойств.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 06.12.2016
Размер файла 18,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Определение и краткая история высокопрочного бетона

Современное массовое строительство в России, строительство высотных зданий, мостов, дорог, туннелей, очистных сооружений потребует применения в больших объемах строительных материалов, в наибольшей степени подходящих по своим технико-экономическим показателям. В целом ряде случаев таким материалом может быть высокопрочный бетон. Высокая механическая прочность, газо- и водонепроницаемость, коррозионная стойкость и стойкость к воздействию агрессивной среды, истиранию ставят этот материал в целом ряде случаев вне конкуренции при сравнении с традиционными строительными материалами.

Сегодня в странах ЕС к высокопрочным принято относить бетоны с прочностью на сжатие от 60 до 130 МПа. Для таких бетонов разработаны нормы и правила, изложенные в вышеупомянутых нормах. Уменьшив размер зерен заполнителя до 600 мкм и менее и понизив В/Ц отношение до 0,15, можно достичь прочности бетона значительно выше 200 МПа. В таком случае говорят о ультравысокопрочных бетонах (UHPS), которые в данной статье не рассматриваются.

Стремление получить бетон с возможно более высокой прочностью присуще строительной науке с момента ее основания. Но впервые термин «высокопрочный бетон» был введен в 1929 г. в Америке, где для высотного строительства исследовались новые составы бетонов и где в лабораторных условиях еще в 30-е годы были получены бетоны, прочность на сжатие которых достигала 130 МПа. В Европе, в частности в ФРГ, первые высокопрочные бетоны были получены в 40-е годы, опять же в лабораторных условиях. И если в 1966 г. была достигнута прочность 140 МПа в лаборатории, то в 1988 г. уже в промышленных условиях производились тюбинги из бетона В85.

Первые высокопрочные бетоны получали, применяя жесткие смеси, особые способы уплотнения, автоклавное твердение. Поскольку было установлено, что в бетоне самым слабым элементом является цементный камень, прочность которого напрямую зависит от водоцементного отношения, то понизить это отношение сколько возможно представлялось вполне естественным стремлением. При В/Ц=0,4 можно исходить из того, что вся вода будет вовлечена в реакцию гидратации цемента, что воспрепятствует образованию капиллярных пор в цементном камне. При дальнейшем понижении В/Ц отношения не вступивший в реакцию «излишний» цемент служит высокопрочным микрозернистым наполнителем, что еще больше повышает прочность бетона. Однако такая «полусухая» смесь в условиях стройплощадки не поддается обработке, и, чтобы повысить удобоукладываемость смеси, приходится добавлять «лишнюю» воду.

Два решающих фактора привели к применению в 70-е годы ВБ в строительстве. Во-первых, это открытие в Японии и ФРГ того явления, что при добавлении в бетонную смесь органических соединений на основе нафталинформальдегида или меламинформальдегида значительно повышают ее подвижность. Во-вторых, была открыта кремнеземная пыль (микрокремнезем) как добавка в бетон. Частички этой пыли, имея размер в 30-100 раз меньший, чем у зерен цемента, заполняют пространство между этими зернами.

Этим достигается высокая плотность цементного камня и контактной зоны. К тому же кремнеземная пыль вступает в пуццолановую реакцию с окисью кальция, которая имеет невысокую механическую прочность. Получаемые в результате реакции кальциясиликатогидраты дополнительно повышают прочность цементного камня.

В последнее время открыты новые высокоэффективные синтетические пластификаторы, а наряду с кремнеземной пылью широко применяется зола-унос и доменные шлаки. Разработанные на сегодняшний день составы позволяют понизить В/Ц отношение до 0,3-0,25 и получать в промышленных условиях бетоны прочностью на сжатие свыше 140 МПа.

Накопленный опыт применения ВБ в строительстве позволил странам ЕС создать нормативную базу для производства и применения бетонов прочностью на сжатие до 130 МПа.

Технология. Общие положения

бетон прочность компонент технология

Обычные нормальные бетоны можно рассматривать как трехкомпонентный строительный материал, состоящий из цемента, воды и заполнителя. Важнейшими характеристиками бетона являются прочность на сжатие, прочность на растяжение и модуль упругости Е. Эти характеристики должны быть целенаправленны и наверняка достигнуты. Также к бетону могут быть предъявлены повышенные требования по водо- и газонепроницаемости, стойкости к агрессивной среде, морозостойкости и стойкости к истиранию.

Высокопрочный бетон является дальнейшим эмпирически обоснованным развитием нормальных бетонов. Для применения высокопрочных бетонов в странах ЕС установлены практические правила, позволяющие использовать эти бетоны при строительстве высотных зданий, мостов, дорог, буровых платформ и пр. Чтобы достичь в промышленных условиях высоких характеристик бетона, необходимо применение:

а) наполнителей - кремнеземной пыли (микрокремнезема), золы-уноса, металлургических шлаков, метакоалина;

б) пластификаторов, которые позволили бы понизить В/Ц отношение, сохранив при этом необходимую подвижность смеси.

Таким образом, в противоположность нормальным бетонам высокопрочный бетон можно рассматривать как пятикомпонентную систему, состоящую из цемента, воды, заполнителя, наполнителей, пластификаторов.

Для придания высокопрочному бетону особых свойств могут применяться дополнительные компоненты, например, замедлители/ускорители твердения, порообразователи и т. д.

Исходные материалы

На характеристики высокопрочного бетона влияют следующие факторы:

количество и качество исходных материалов - цемента, заполнителей, наполнителей и воды;

способ приготовления смеси;

условия окружающей среды;

условия твердения бетона;

воздействие субъективных факторов (опыт и интуиция людей).

При этом практика показала, что при продвижении в экстремальные области науки о бетоне некоторые известные из применения нормальных бетонов зависимости меняются, теряя или же, напротив, приобретая в значении.

Цемент

От применяемых цементов напрямую зависят важнейшие характеристики бетона - прочность, удобоукладываемость при низких В/Ц отношениях, усадка или деформация под длительной нагрузкой.

Важнейшими характеристиками используемых в ВБ цементов являются:

минералогический состав клинкера;

размер и соотношение зерен цемента.

Большинство обычных цементов могут быть использованы при производстве высокопрочных бетонов. Это могут быть как портландцементы, так и шлакопортландцементы или пуццолановые цементы. Однако в большинстве случаев применяются портландцементы ввиду высокой ранней и 28-суточной прочности ВБ на их основе. При этом важно заметить, что нормативная прочность цемента, установленная при В/Ц=0,5, не играет определяющей роли для прочности бетона при низких В/Ц отношениях. Критерием выбора тех или иных цементов, выпускаемых по европейским нормам, могут быть их следующие особенности в сравнении с наиболее часто применяемым СЕМI 42,5R (аналог ПЦ 500Д20).32,5R - прочность до В95, грубый помол позволяет достигать меньшего В/Ц отношения, при одинаковой консистенции смеси и меньшем В/Ц отношении достигается сравнимая 28-дневная прочность.52,5R, CEMI 52,5 - тонкий помол требует большого расхода пластификаторов, при низком В/Ц отношении трудно или невозможно достичь требуемой для укладки смеси консистенции, при одинаковых В/Ц отношении и консистенции смеси несколько большая 28-суточная прочность, меньшая живучесть смеси, высокая ранняя прочность, большее тепловыделение при твердении, большие усадочные деформации, отсутствует нарастание прочности после 28 суток твердения бетона.

СЕМIII 32,5 и СЕМIII42,5 - низкая ранняя и 28-суточная прочность, нарастание прочности после 28 суток твердения, от 90 до 360 суток твердения возможно достижение сравнимой с 28-суточной прочности, незначительное тепловыделение при твердении, более долгая живучесть смеси, меньшая усадка, незначительный опыт применения таких цементов при использовании ВБ в строительстве.

(CEMI - портландцемент, CEMII - композиционный портландцемент, CEMIII - шлакопортландцемент; цифра означает прочность в МПа, буква R - быстросхватывающийся.)

Важно обратить внимание, что цементы одного вида и класса прочности, но различные по минералогическому составу клинкера и процентному соотношению размера зерен, могут давать в ВБ при низких В/Ц отношениях различные результаты.

В большинстве случаев в странах ЕС для приготовления высокопрочных бетонов используют портландцемент марки СЕМI 42,5R. Чтобы уменьшить тепловыделение при твердении ВБ и связанные с этим усадку, образование трещин, отшелушивание поверхностного слоя, применяют, особенно в жаркий период, смесь из портланд- и шлакопортландцемента. Хороший результат дает также замена части цемента молотыми шлаками или золой-уносом. Расход цемента для приготовления высокопрочных бетонов лежит обычно в пределах 380-450 кг/куб. м.

Заполнители

С возрастанием прочности бетона механические свойства заполнителей играют все возрастающую роль. Также нужно принимать во внимание форму и размер зерен, количественное соотношение содержания зерен разного размера, а также химическое взаимодействие между заполнителем и цементной матрицей. И если в нормальных бетонах заполнитель играет роль лишь инертного материала, то в ВБ качества и свойства заполнителей вносят значительный вклад в достижение бетоном возможной прочности.

В ФРГ качества и свойства заполнителей для ВБ определяются DIN 1045-2. При этом содержание зерен песка менее 0,125 до 0,25 мм должно быть как можно низким (до 3%), 0,25-2 мм лежит в пределах 21-36%, остаток заполнителя - речная галька крупностью до 16 или 8 мм соответственно. Верхняя граница зерен заполнителя в 8 или 16 мм определена с тем, чтобы могла быть достигнута возможно большая плотность наполнения тела бетона и снижены внутренние напряжения, вызванные неоднородностью структуры. В отдельных, редких случаях может быть установлена верхняя граница размера зерен заполнителя в 32 мм.

Для достижения бетоном прочности свыше 100 МПа требуется в качестве заполнителя щебень базальтовых, габбро- или гранитных пород. В ФРГ для бетонов С90/105 и С110/115 используется в основном базальтовый щебень.

Вода

Количество воды для затворения бетона складывается из содержания влаги заполнителя, наполнителя и добавленной воды.

Для того чтобы достичь намеченного в/ц отношения, нужно следить за количеством воды, привнесенной заполнителем и (возможно) наполнителем, а также принимать во внимание водопоглощение всех компонентов бетона.

Для защиты арматуры от коррозии следует обращать особое внимание на содержание хлоридов в воде.

Наполнители

В качестве наполнителей для ВБ до сегодняшнего дня применялись микрокремнезем в виде пыли или водной суспензии состава 1:1, зола-унос, метакоалин. В некоторых случаях применяется кварцевая или известковая мука, чтобы повысить плотность наполнения бетона. Добавление этих наполнителей в бетон вызывает следующие эффекты, ведущие к увеличению прочности и улучшению свойств бетона:

уменьшение порообразования в цементном камне (благодаря своим микроразмерам зерна наполнителя проникают в пространство между зернами частично не вступившего в реакцию цемента и значительно повышают плотность цементного камня);

образование дополнительных кальция-силикатогидратов как первичных носителей прочности цементного камня посредством пуццолановой реакции;

упрочнение контактной зоны между цементным камнем и заполнителем вследствие уменьшения количества и размеров пор и образования дополнительно кальция-силикатогидратов в этой зоне.

бетон цемент заполнитель прочность

Зола-унос

Зола-унос (з-у) образуется при сжигании каменного угля и улавливается из дыма электрофильтрами. Она представляет собой частички тонкой стекловидной пыли с удельной поверхностью от 3 000 кв. см/г. По химическому составу з-у сравнима с натуральными пуццоланами. Благодаря пуццолановым свойствам з-у используется многие годы при производстве бетонов нормальной прочности, особенно для массивных деталей, с целью уменьшения теплообразования при твердении. При приготовлении ВБ накоплен также значительный положительный опыт применения з-у.

Микрокремнезем

Микрокремнезем (мк) - аморфный кремнезем (белая сажа силикатный дым) - образуется как побочный продукт при производстве ферросилиция и осаждается на рукавах электрофильтров. Большую часть мк образуют частички аморфной двуокиси кремния почти идеальной круглой формы средним размером около 0,1 мкм и удельной поверхностью 16-22 кв. м/г.

В ФРГ в качестве наполнителя применяют в основном мк. Согласно действующим нормам, количество мк не должно превышать 10% от массы цемента. Но даже 2% от массы цемента достаточно, чтобы значительно увеличить прочность и улучшить свойства бетона.

Хороший результат дает совместное использование в качестве наполнителя мк и з-у. Вследствие различия в размерах частичек мк и з-у достигается более плотная структура бетона, что особенно благотворно влияет на стойкость бетона к агрессивному воздействию среды. Второй благоприятный эффект - это пониженное теплообразование при твердении бетона, особенно если часть цемента заменить золой-уносом. При этом количество з-у не должно превышать 25% от массы цемента (в случае применения шлакопортландцемента - 8%).

Общее количество вяжущего в бетоне в случае совместного применения мк и з-у можно определить по формуле:

Вс=ц+мк+0,4 з-у,

где: Вс - расчетное количество вяжущего в 1 куб. м смеси; ц - количество цемента; мк - количество микрокремнезема (не более 10%ц); з-у - количество золы-уноса (не более 25%ц).

В этом случае В/Ц отношение будет называться модифицированным и определяться по формуле:

В/Ц=(В+Вмк+Вн+Вз):Вс,

где: В/Ц - модифицированное водоцементное отношение; В - количество воды в 1 куб. м смеси; Вмк - количество воды в микрокремнеземной суспензии; Вн - количество воды в наполнителе; Вз - количество воды в заполнителе вследствие влажности.

Метакоалин

Метакоалин (мтк) получают спеканием при температуре 450-800 0С содержащих коалин естественных минералов. По сравнению с микрокремнеземом мтк проявляет вдвое большее пуццолановое действие.

В зависимости от помола размер частиц мтк лежит в области между мк и цементом.

Наносиликат

Наносиликат (нс) - это синтетически произведенная кремневая кислота. Содержание SiO2 достигает 100%. По пуццолановому эффекту нс сравним с микрокремнеземом. До сегодняшнего дня нс применялся преимущественно как основа для производства стабилизаторов.

Заключение

Высокопрочный бетон - это прежде бетон с более совершенной структурой цементного камня, с высокой прочностью сцепления его с заполнителями, которые должны иметь не только высокую прочность и чистоту, но и оптимальный гранулометрический состав. Толщина слоев цементного камня между зернами прочных и плотных заполнителей должна быть как можно меньше, это достигается эффективным уплотнением бетонной смеси.

Проблема повышения прочности бетона была актуальной на протяжении всего периода развития и совершенствования технологии бетона. Применение бетонов высокой прочности для изготовления конструкций, особенно предварительно напряженных, обеспечивает не только существенное расширение возможностей и повышение научно-технического уровня строительства, но имеет и важное технико-экономическое значение. Значительно повышается качество, надежность и долговечность конструкций.

Список использованной литературы

Модифицированные бетоны нового поколения в сооружениях ММДЦ «Москва - Сити». Часть 1. С.С. Каприелов, В.И. Травуш, Н.И. Карпенко, А.В. Шейнфельд и др. Строительные материалы. 2006. № 10. С. 13 - 17.

Берг О.Я., Щербаков Е.Н., Высокопрочный бетон. М., 1971

Рыжов И.Н. Самоуплотняющиеся бетонные смеси - производство и применение. Бетон и железобетон. Оборудование. Материалы. Технологии. 2008. Сборник № 1. С. 120 - 122.

Ваучский М.Н., Иванов А.Н. Наномир: высокие технологии XXI века. Строительная газета. № 1 (10012). 1 января 2009. С. 12.

Размещено на Allbest.ru


Подобные документы

  • Расчет производительности предприятия, потребности в сырьевых материалах. Выбор количества технологического оборудования. Расчет складов сырьевых материалов и готовой продукции. Разработка технологии производства товарного бетона, контроль качества.

    курсовая работа [2,1 M], добавлен 25.07.2012

  • Назначение, область применения, классификация бетона. Технология изготовления (получения) бетона. Технологические факторы, влияющие на свойства бетонной смеси. Выбор номенклатуры показателя качества бетона. Факторы, влияющие на снижение качества бетона.

    курсовая работа [569,0 K], добавлен 10.03.2015

  • Технико-экономические преимущества бетона и железобетона. Основные недостатки бетона как строительного материала. Виды добавок для бетонов. Материалы, необходимые для приготовления тяжелого бетона. Реологические и технические свойства бетонной смеси.

    реферат [19,2 K], добавлен 27.03.2009

  • Производство и виды бетона, вяжущие вещества и наполнители, способы увеличения прочности, области применения. Основные виды цемента, портландцемент, сырье и добавки для его производства. Развитие современные технологий по производству цемента и бетона.

    контрольная работа [17,6 K], добавлен 05.10.2009

  • Материалы для производства жаростойких бетонов. Требования к материалам для изготовления жаростойких бетонов. Виды заполнителей для жаростойких бетонов, нормативные документы и рекомендуемая область применения. Расчет состава жаростойкого бетона.

    реферат [61,5 K], добавлен 13.10.2010

  • Классификация, разновидности и составляющие материалы асфальтовых бетонов. Технология производства асфальтового бетона. Анализ вредных и опасных производственных факторов. Требования безопасности и расчет параметров производственного оборудования.

    курсовая работа [905,0 K], добавлен 08.01.2009

  • Характеристика фасонных частей из высокопрочного чугуна и условия их эксплуатации. Выбор режимов резки и оборудования. Разработка конструкции приспособлений для резки. Режим работы и фонд рабочего времени. Расчет технологической себестоимости заготовки.

    дипломная работа [6,8 M], добавлен 26.10.2011

  • Бетон - искусственный композиционный материал: свойства, эффективность применения в строительстве. Проект предприятия по выпуску сборного железобетона: номенклатура изделий, подбор компонентов, расчет агрегатно-поточных линий, технология изготовления.

    курсовая работа [225,5 K], добавлен 15.11.2010

  • Изучение технологии изготовления бетона - искусственного камня, получаемого в результате формования и твердения рационально подобранной смеси вяжущего вещества, воды и заполнителей (песка и щебня или гравия). Классификация бетона и требования к нему.

    реферат [25,2 K], добавлен 10.04.2010

  • Автоклавная тепловлажнастная обработка бетона как наиболее энергоемкий процесс производства. Конструктивный расчет и режим работы автоклава. Массовый баланс воды в технологии, энергетический баланс и эксергетический баланс потоков энергии системы.

    курсовая работа [5,1 M], добавлен 19.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.