Продукция прокатного производства

Проведение исследования формовки заготовки при спиральной сварке трубы. Осуществление прокатки дисковыми или коническими валками. Использование прямого и обратного методов прессования. Характеристика основных операций технологического процесса волочения.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 19.09.2016
Размер файла 158,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Продукция прокатного производства. Прессование. Волочение

Продукция прокатного производства

Форма поперечного сечения называется профилем проката. Совокупность профилей различной формы и размеров - сортамент.

В зависимости от профиля прокат делится на четыре основные группы: листовой, сортовой, трубный и специальный. В зависимости от того нагретая или холодная заготовка поступает в прокатные валки - горячий и холодный.

Листовой прокат из стали и цветных металлов подразделяется на толстолистовой (4…60 мм), тонколистовой (0,2…4мм) и жесть (менее 0,2 мм). Толстолистовой прокат получают в горячем состоянии, другие виды листового проката - в холодном состоянии.

Прокатку листов и полос проводят в гладких валках.

Среди сортового проката различают:

· заготовки круглого, квадратного и прямоугольного сечения для ковки и прокатки;

· простые сортовые профили (круг, квадрат, шестигранник, полоса, лента);

· фасонные сортовые профили:

o профили общего назначения (уголок, швеллер, тавр, двутавр);

o профили отраслевого назначения (железнодорожные рельсы, автомобильный обод);

o профили специального назначения (профиль для рессор, напильников).

Трубный прокат получают на специальных трубопрокатных станах. Различают бесшовные горячекатаные трубы диаметром 25…550 мм и сварные диаметром 5…2500 мм.

Трубы являются продуктом вторичного передела круглой и плоской заготовки.

Общая схема процесса производства бесшовных труб предусматривает две операции: 1- получение толстостенной гильзы (прошивка); 2 - получение из гильзы готовой трубы (раскатка).

Первая операция выполняется на специальных прошивочных станах в результате поперечно-винтовой прокатки. Вторую операцию выполняют на трубопрокатных раскатных станах различных конструкций: пилигримовых, автоматических и др.

Схема прокатка труб на пилигримовом стане представлена на рис. 1.

Рис.1. Схема прокатки труб на пилигримовом стане

В толстостенную гильзу 1 вводят оправку (дорн) 2 подающего механизма, длина которой больше длины гильзы. Гильза перемещается к валкам 3, калибр которых разделяется на две части: рабочую и холостую. Рабочая часть валка имеет рабочий и калибрующий участки. Процесс работы заключается в периодической подаче на определенную длину гильзы вместе с оправкой в зазор между валками в момент совпадения холостой части обоих валков (рис.1.а). Затем выполняется процесс прокатки, и гильза перемещается в направлении вращения валков, т.е. обратном ходу прокатываемой трубы (рис. 1.б). При этом рабочий участок обжимает гильзу по диаметру и толщине стенки, а калибрующий участок обеспечивает выравнивание диаметра и толщины стенки. После выхода из рабочей части оправка с гильзой продвигаются вперед, поворачиваясь на 900 вокруг продольной оси. По окончании прокатки валки разводят, и подающий механизм обратным ходом вытягивает оправку из трубы.

Сварные трубы изготавливают на трубосварочных агрегатах различными способами: печной сваркой, контактной электросваркой и др. из полос - штрипсов. Процесс получения трубы состоит из получения заготовки в виде свернутой полосы и сварки ее в трубу.

Особое место занимают станы спиральной сварки. Трубы получают завивкой полосы по спирали на цилиндрических оправках с непрерывной сваркой спирального шва автоматической сварочной головкой (рис.2). Формовка осуществляется путем пластического изгиба в плоскости, расположенной под углом к продольной оси.

Рис.2. Схема формовки заготовки при спиральной сварке трубы

Преимущества способа состоят в следующем: диаметр трубы не зависит от ширины исходного полосы, так как он определяется и углом подъема спирали; спиральный шов придает трубе большую жесткость; спирально-сварные трубы имеют более точные размеры.

Специальные виды проката.

Периодический профиль - профиль, изменяющийся по определенному закону, повторяющемуся по длине. Периодические профили получают продольной, поперечной и винтовой прокаткой.

При продольной периодической прокатке получают профили с односторонним периодом, с двухсторонним совпадающим периодом, с несовпадающим верхним и нижним периодом. Окончательную форму изделию придают за один проход. Длина периода профиля определяется длиной окружности валка. При каждом обороте валков из них должен выходить отрезок полосы с целым числом периодов, поэтому наибольшая длина периода не может быть больше длины окружности валков.

Рис. 3. Схема прокатки на трехвалковом стане

Прокатка осуществляется дисковыми или коническими валками, расположенными под углом 120 0 друг к другу. Валки могут быть установлены с некоторым перекосом. Способ заключается в том, что три приводных валка 1 вращают заготовку 2, которая принудительно перемещается в осевом направлении со значительным натяжением. Гидравлическое устройство перемещает зажимной патрон 3 вместе с металлом в направлении рабочего хода. Во время прокатки валки сближаются и разводятся на требуемый размер гидравлической следящей системой в соответствии с заданным профилем копировальной линейки или системой ЧПУ по заранее заданной программе. Переход от одного профиля к другому осуществляется без замены валков, только за счет смены копира или программы.

Рис 4. Схема прокатки шестерни с осевой подачей заготовки

Поперечной прокаткой накатывают зубья шестерен между двумя вращающимися валками. Возможны два способа обработки зубьев: с осевой подачей обрабатываемой заготовки (прутковая прокатка) и прокатка с радиальной подачей валков (штучная прокатка). Прутковая прокатка шестерен (рис.4) применяется для обработки прямозубых и косозубых шестерен с небольшими модулями (до 6 мм) и диаметром до 200 мм. Образование зубьев при прокатке осуществляется перемещением нагретой в кольцевом индукторе 2 заготовки 1 между двумя вращающимися зубчатыми валками 3, модуль которых равен модулю прокатываемой шестерни 4.

В начале прокатки заготовка приводится во вращение дополнительным зубчатым колесом, находящимся в зацеплении с валками. После выхода из зацепления шестерня вращается валками.

Станы винтовой прокатки широко применяют для прокатки стальных шаров диаметром 25…125 мм. Схема прокатки представлена на рис.5.

Рис.5. Схема прокатки шаров

Валки 2 и 4 вращаются в одном направлении, в результате заготовка 1 получает вращательное движение. Для осевого перемещения оси валков располагают под углом к оси вращения. От вылета из валков заготовка предохраняется центрирующими упорами 3. В валках нарезают винтовые калибры. По характеру деформации калибр разделяется на формующий участок, где осуществляется захват заготовки и ее постепенное обжатие в шар, и отделочный участок, где придаются точные размеры шару и происходит его отделение от заготовки. Диаметр валков в 5…6 раз превышает диаметр прокатываемых шаров, и составляет 190…700 мм. Производительность стана определяется числом оборотов валков, так как за один оборот Существуют станы для прокатки ребристых труб, для накатки резьб и т.д. заготовка прокатка прессование волочение

Прессование

Прессование - вид обработки давлением, при котором металл выдавливается из замкнутой полости через отверстие в матрице, соответствующее сечению прессуемого профиля.

Это современный способ получения различных профильных заготовок: прутков диаметром 3…250 мм, труб диаметром 20…400 мм с толщиной стенки 1,5…15 мм, профилей сложного сечения сплошных и полых с площадью поперечного сечения до 500 см2.

Впервые метод был научно обоснован академиком Курнаковым Н.С. в 1813 году и применялся главным образом для получения прутков и труб из оловянисто-свинцовых сплавов. В настоящее время в качестве исходной заготовки используют слитки или прокат из углеродистых и легированных сталей, а также из цветных металлов и сплавов на их основе (медь, алюминий, магний, титан, цинк, никель, цирконий, уран, торий).

Технологический процесс прессования включает операции:

· подготовка заготовки к прессованию (разрезка, предварительное обтачивание на станке, так как качество поверхности заготовки оказывает влияние на качество и точность профиля);

· нагрев заготовки с последующей очисткой от окалины;

· укладка заготовки в контейнер ;

· непосредственно процесс прессования;

· отделка изделия (отделение пресс-остатка, разрезка).

Прессование производится на гидравлических прессах с вертикальным или горизонтальным расположением плунжера, мощностью до 10 000 т.

Применяются две метода прессования: прямой и обратный (рис. 6.)

При прямом прессовании движение пуансона пресса и истечение металла через отверстие матрицы происходят в одном направлении. При прямом прессовании требуется прикладывать значительно большее усилие, так как часть его затрачивается на преодоление трения при перемещении металла заготовки внутри контейнера. Пресс-остаток составляет 18…20 % от массы заготовки (в некоторых случаях - 30…40 %). Но процесс характеризуется более высоким качеством поверхности, схема прессования более простая.

Рис. 6. Схема прессования прутка прямым (а) и обратным (б) методом

1 - готовый пруток; 2 - матрица; 3 - заготовка; 4 - пуансон

При обратном прессовании заготовку закладывают в глухой контейнер, и она при прессовании остается неподвижной, а истечение металла из отверстия матрицы, которая крепится на конце полого пуансона, происходит в направлении, обратном движению пуансона с матрицей. Обратное прессование требует меньших усилий, пресс-остаток составляет 5…6 %. Однако меньшая деформация приводит к тому, что прессованный пруток сохраняет следы структуры литого металла. Конструктивная схема более сложная

Процесс прессования характеризуется следующими основными параметрами: коэффициентом вытяжки, степенью деформации и скоростью истечения металла из очка матрицы.

Коэффициент вытяжки определяют как отношение площади сечения контейнера к площади сечения всех отверстий матрицы.

Степень деформации:

Скорость истечения металла из очка матрицы пропорциональна коэффициенту вытяжки и определяется по формуле:

где: - скорость прессования (скорость движения пуансона).

При прессовании металл подвергается всестороннему неравномерному сжатию и имеет очень высокую пластичность.

К основным преимуществам процесса относятся:

· возможность обработки металлов, которые из-за низкой пластичности другими методами обработать невозможно;

· возможность получения практически любого профиля поперечного сечения;

· получение широкого сортамента изделий на одном и том же прессовом оборудовании с заменой только матрицы;

· высокая производительность, до 2…3 м/мин.

Недостатки процесса :

· повышенный расход металла на единицу изделия из-за потерь в виде пресс-остатка;

· появление в некоторых случаях заметной неравномерности механических свойств по длине и поперечному сечению изделия;

· высокая стоимость и низкая стойкость прессового инструмента;

· высокая энергоемкость.

Волочение

Сущность процесса волочения заключается в протягивании заготовок через сужающееся отверстие (фильеру) в инструменте, называемом волокой. Конфигурация отверстия определяет форму получаемого профиля. Схема волочения представлена на рис.7.

Рис.7. Схема волочения

Волочением получают проволоку диаметром 0,002…4 мм, прутки и профили фасонного сечения, тонкостенные трубы, в том числе и капиллярные. Волочение применяют также для калибровки сечения и повышения качества поверхности обрабатываемых изделий. Волочение чаще выполняют при комнатной температуре, когда пластическую деформацию сопровождает наклеп, это используют для повышения механических характеристик металла, например, предел прочности возрастает в 1,5…2 раза.

Исходным материалом может быть горячекатаный пруток, сортовой прокат, проволока, трубы. Волочением обрабатывают стали различного химического состава, цветные металлы и сплавы, в том числе и драгоценные.

Рис.8. Общий вид волоки

Основной инструмент при волочении - волоки различной конструкции. Волока работает в сложных условиях: большое напряжение сочетается с износом при протягивании, поэтому их изготавливают из твердых сплавов. Для получения особо точных профилей волоки изготавливают из алмаза. Конструкция инструмента представлена на рис. 8.

Волока 1 закрепляется в обойме 2. Волоки имеют сложную конфигурацию, ее составными частями являются: заборная часть I, включающая входной конус и смазочную часть; деформирующая часть II с углом в вершине (6…18 0 - для прутков, 10…24 0 - для труб); цилиндрический калибрующий поясок III длиной 0,4…1 мм; выходной конус IV.

Технологический процесс волочения включает операции:

· предварительный отжиг заготовок для получения мелкозернистой структуры металла и повышения его пластичности;

· травление заготовок в подогретом растворе серной кислоты для удаления окалины с последующей промывкой, после удаления окалины на поверхность наносят подсмазочный слой путем омеднения, фосфотирования, известкования, к слою хорошо прилипает смазка и коэффициент трения значительно снижается;

· волочение, заготовку последовательно протягивают через ряд постепенно уменьшающихся отверстий;

· отжиг для устранения наклепа: после 70…85 % обжатия для стали и 99 % обжатия для цветных металлов ;

· отделка готовой продукции (обрезка концов, правка, резка на мерные длины и др.)

Технологический процесс волочения осуществляется на специальных волочильных станах. В зависимости от типа тянущего устройства различают станы: с прямолинейным движением протягиваемого металла (цепной, реечный); с наматыванием обрабатываемого металла на барабан (барабанный). Станы барабанного типа обычно применяются для получения проволоки. Число барабанов может доходить до двадцати. Скорость волочения достигает 50 м/с.

Процесс волочения характеризуется параметрами: коэффициентом вытяжки и степенью деформации.

Коэффициент вытяжки определяется отношением конечной и начальной длины или начальной и конечной площади поперечного сечения:

Степень деформации определяется по формуле:

Обычно за один проход коэффициент вытяжки не превышает 1,3, а степень деформации - 30 %. При необходимости получить большую величину деформации производят многократное волочение.

Список литературы

1. Барабанщиков Ю.Г. Материаловедение и технология конструкционных материалов / Ю.Г. Барабанщиков. - СПб. : Изд-во Политехн. ун-та, 2006. - 150 с.

2. Безъязычный В. Ф. Математические методы в технологии машиностроения // Ярославский пед. вестн. - 2010. - № 3-1. - С. 45-50.

3. Богодухов С. И. Материаловедение и технологические процессы в машиностроении : учеб. пособие для студ. Вузов / С. И. Богодухов, А. Д. Проскурин, Р. М. Сулейманов и др. ; под общ. ред. С. И. Богодухова. - Старый Оскол : ТНТ (Тонкие наукоемкие технологии), 2010. - 559 с.

4. Богодухов С.И. Курс материаловедения в вопросах и ответах: Учеб. пособие для ВУЗов / С.И. Богодухов, В.Ф. Гребенюк, А.В. Синюхин. - М.: Машиностроение, 2003. - 255с.: ил.

5. Вихревые технологии в машиностроении : [монография] / Б. А. Сентяков [и др.] ; ГОУ ВПО "Ижевский гос. технический ун-т". - Екатеринбург : Ин-т экономики УрО РАН ; Ижевск : [б. и.], 2008. - 349 с.

6. Гарифулин Ф. А. Материаловедение : учеб. для студентов вузов / Ф.А. Гарифуллин, Ф.Ф. Ибляминов, Л.А. Сухинина и др. ; Альметьев. гос. нефт. ин-т, Казан. гос. технол. ун-т. - Альметьевск, 2004. - 308 с. : ил.

7. Григорьянц А. Г. Лазерные технологии в машиностроении // Наукоемкие технологии в машиностроении. - 2011. - № 2. - С. 14-22.

8. Иванов Д. А. Струйные технологии в машиностроении : монография / Д. А. Иванов, А. В. Васильева ; М-во образования и науки Рос. Федерации, С.-Петерб. гос. ун-т сервиса и экономики (СПбГУСЭ). - СПб. : Изд-во СПбГУСЭ, 2010. - 147 с.

9. Иванов И. С. Технология машиностроения : учеб. пособие для студентов вузов по специальности 150406 "Машины и аппараты текстильной промышленности" / И. С. Иванов. - М. : ИНФРА-М, 2010. - 192 с.

10. Ковалев С. В. Новые материалы и технологии в машиностроении // Вестн. Моск. гос. ун-та приборостроения и информатики. Сер.: Приборостроение и информ. технологии. - 2010. - № 25. - С. 106-121.

11. Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для студентов электротехнических и электромеханических спец. ВУЗов / С.Н. Колесов, И.С. Колесов. - М. Высшая школа, 2004. - 518с.: ил.

12. Маталин А. А. Технология машиностроения : учебник для студ. высш. учеб. заведений, обучающихся по спец. 151001 направления подготовки "Конструкторско-технологическое обеспечение машиностроительных производств". - [Изд. 2-е, испр.]. - СПб. [и др.] : Лань, 2008. - 512 с.

Размещено на Allbest.ru


Подобные документы

  • Анализ производства на РУП "Белорусский металлургический завод". Краткая характеристика участка горячей прокатки труб. Технология производства литой заготовки. Описание технологического процесса прокатки бесшовной трубы на редукционно-растяжном стане.

    отчет по практике [1,4 M], добавлен 12.05.2012

  • Признаки классификации прокатки как процесса пластического деформирования тел на прокатном стане между вращающимися приводными валками. Контроль качества материала. Расчет слитка, его гомогенизация, мойка и сушка. Маркировка и упаковка прокатного листа.

    курсовая работа [2,5 M], добавлен 19.04.2015

  • Анализ технологического процесса и оборудования прокатного стана, анализ технологических схем производства толстого листа, предлагаемая технологическая схема прокатки. Выбор оборудования прокатного стана, разработка технологии прокатки и расчет режимов.

    курсовая работа [2,6 M], добавлен 04.05.2010

  • Описание выбора цеха холодной прокатки, прокатного стана и разработка технологического процесса для производства листа шириной 1400мм и толщиной 0,35мм из стали 08кп производительностью 800 тысяч тонн в год (Новолипецкий металлургический комбинат).

    реферат [476,0 K], добавлен 15.02.2011

  • Определение технологических параметров прессования для производства труб из углеродистых и легированных сталей, а также размеров необходимого технологического оборудования. Методика расчета таблиц прессования с использованием размеров готовой трубы.

    контрольная работа [137,4 K], добавлен 27.12.2013

  • Сущность процесса прокатки металла. Очаг деформации и угол захвата при прокатке. Устройство и классификация прокатных станов. Прокатный валок и его элементы. Основы технологии прокатного производства. Технология производства отдельных видов проката.

    реферат [752,8 K], добавлен 18.09.2010

  • Металл для прокатного производства. Подготовка металла к прокатке. Зачистка слитков, полуфабрикатов. Нагрев металла перед прокаткой. Прокатка металла. Схемы косой, продольной и поперечной прокатки. Контроль технологических операций охлаждения металла.

    реферат [60,6 K], добавлен 04.02.2009

  • Конструктивно-технологическая характеристика изделия. Описание сплава АМг6. Течение металла при горячей прокатке. Выбор прокатного стана, размеров слитка и режимов обжатий. Технология производства листов. Режимы их окончательной термической обработки.

    курсовая работа [1,6 M], добавлен 07.10.2013

  • Описание непрерывного стана 1200 холодной прокатки Магнитогорского металлургического комбината им. В.И. Ленина. Оборудование и технология прокатки. Выбор режимов обжатий и расчет параметров, рекомендации по совершенствованию технологии прокатки.

    курсовая работа [5,5 M], добавлен 27.04.2011

  • Требования ГОСТ к заданному изделию. Выбор схемы технологического процесса производства, типа оборудования и его основных параметров. Ориентировочный расчет деформационного и скоростного режимов прокатки. Технологический процесс производства.

    курсовая работа [19,5 K], добавлен 14.02.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.