Определение шероховатости поверхности с помощью профилографа-профилометра

Шероховатость как совокупность микронеровностей появляющихся на поверхностях готовых изделий или деталей, критерии и показатели ее уровня, классификация и формы. Оценка влияния данной характеристики на качество детали. Функции профилографа-профилометра.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 06.04.2016
Размер файла 369,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Среди показателей качества продукции первостепенное значение имеют параметры шероховатости поверхности, являющейся одной из важнейших эксплуатационных характеристик. От неё зависит не только коэффициент трения изделий, но и множество других свойств - коррозионная и износостойкость, ряд механических характеристик.

Если говорить предметнее, на поверхностях деталей проистекают процессы, оказывающие на них негативное влияние: зарождение трещин, износ, обусловленный трением, эрозионные и коррозионные разрушения, смятие. Часто такие дефекты материалов, оказывают не меньшее влияние чем деформация тел. Придание же поверхности определённых микрогеометрических свойств способствует повышению сопротивляемости детали внешним воздействиям и, как следствие, возрастанию прочности и надёжности. Поэтому параметры шероховатости поверхности

Значение параметров поверхности, обеспечивающих достаточные эксплуатационные характеристики, регулируются путём проведения операций обработки, как правило - шлифования. Качество же уже «подготовленной» поверхности контролируется с помощью приборов для измерения шероховатости. О двух из них - профилометре и профилографе, реализующих контактный метод измерения - пойдёт речь.

Сразу стоит отметить тот факт, что разница в устройстве и принципе действия данных приборов невелика. Отличие заключается лишь в способе представления результатов. Профилометр отражает величину параметра, характеризующего шероховатость, на специальной шкале или индикаторе, а профилограф «выдаёт» результаты после окончания процесса измерения в виде графика (профилограммы), который представляет собой кривую линию, нуждающуюся в расшифровке.

1. Шероховатость поверхности

Любая, обработанная даже тщательнейшим образом поверхность детали, не может быть полностью идеально ровной. Значение гладкости и ровности поверхности детали в любом случае будет отличаться от заданного чертежом значения, т.е. от номинального значения. При этом, отклонение может быть либо макрогеометрическим, либо микрогеометрическим. Макро геометрические отклонения могут быть охарактеризованы волнистостью детали и несоответствием форме. Микрогеометрические отклонения, в свою очередь, определяются не чем иным, кроме шероховатости поверхности.

Шероховатость - это совокупность микронеровностей появляющихся на поверхностях готовых изделий или деталей. При этом шаг неровности, принимаемый в качестве шероховатости, должен быть очень мал, относительно базовой длины всей поверхности.

Вообще, принято выделять три вида шероховатости объекта:

1. Исходная шероховатость - возникающая в результате технологической обработки изделия различными абразивами.

2. Эксплуатационная шероховатость - это приобретаемая в процессе эксплуатации шероховатость в результате износа и рабочего трения.

3. Равновесная шероховатость - это вид эксплуатационной шероховатости, который можно воспроизвести в стационарных условиях трения.

Параметры шероховатости определены в ГОСТ 2789-73 «Шероховатость поверхности. Термины и определения.», принято шесть параметров в качестве критериев для оценки шероховатости, из которых три характеризуют высоту неровности (вертикальные параметры) и три-шаговые размеры неровностей (горизонтальные параметры).

Вертикальные параметры:

- Ra - среднее арифметическое отклонение профиля;

- Rz - высота неровностей профиля по десяти точкам;

- Rmax - наибольшая высота неровностей профиля.

Горизонтальные параметры:

- Sm - средний шаг неровностей;

- S - средний шаг местных выступов профиля;

- tp - относительная опорная длина профиля.

Средним арифметическим отклонением профиля Ra называется среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины:

или приближенно:

Нормируется величина Ra от 0,008 до 100 мкм.

Высотой неровностей профиля по десяти точкам Rz называется cумма средних абсолютных значений высот пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля в пределах базовой длины:

Где, ypmi - высота i-гo наибольшего выступа профиля;

yumi - глубииа i-й наибольшей впадины профиля.

Нормируется величина Rz от 0,025 до 1000 мкм.

Наибольшей высотой неровностей профиля Rmax yазываетеи расстояние между линией выступов профиля и линией впадин профиля в пределах базовой длины.

Нормируется величина Rmax от 0,025 до 1000 мкм.

Средним шагом неровностей профиля Sm называется среднее арифметическое значение шага неровностей профиля в пределах базовой длины:

Sm = Sm1 + Sm2+ + Smn

р

Другими словами, под средним шагом неровностей понимается среднее арифметическое значение длин отрезков средней линии, пересекающих профиль в трех соседних точках и ограниченных двумя крайними точками.

Нормируется величина Sm от 0,002 до 12,5 мм.

Средним шагом местных выступов профиля S называется среднее значение шага местных выступов профиля в пределах базовой длины:

S = S1 + S2 + + Sn

р

Другими словами, под этим параметром понимается среднее арифметическое значение длины отрезков средней линии между проекциями на нее двух наивысших точек соседних выступов профиля.

Нормируется величина S от 0,002 до 12,5 мм.

Относительной опорной длиной профиля tp называется отиошение сумм длин отрезков в пределах базовой длины, отсекаемых на заданном уровне р в материале профиля линии, эквидистантной средней линии, к базовой длине:

tp =[(b1.+ b1 +………. b1)/p] *100%.

Нормируется величина tp от 10 до 90%.

Значение р - уровень сечения профиля задается в процентах от Rmax величинами от 5 до 90%. Если указано, что t30 60%, то это означает, что при отсечении профиля поверхностных неровностей, отступая от вершины на 30% от Rmax не менее 60% сечения должно проходить по материалу и не более 40% по воздуху.

В зависимости от назначения детали на чертеже указывается обычно один вертикальный и один горизонтальный параметр. Наиболее часто в качестве параметра используются Ra и Rz без указания горизонтальных параметров. В большинстве случаев этих параметров вполне достаточно.

При нормировании шероховатости поверхности предпочтительным является параметр Ra, который более информативно, чем Rz и Rmax, характеризует неровности профиля. Параметры Rz и Rmax, нормируют в тех случаях, когда по функциональным требованиям необходимо ограничить полную высоту неровностей профиля, а также когда прямой контроль параметра с помощью профилометров или образцов сравнения не представляется возможным, например для поверхностей, имеющих малые размеры или сложную конфигурацию (режущие кромки инструментов, детали часов и др.).

Для ответственных поверхностей проводится нормирование не только высотных параметров, но и шаговых Sm, S и параметра tp, так как они обеспечивают некоторые функциональные свойства деталей и соединений (табл. 1).

Таблица 1. Эксплуатационные свойства поверхности и обеспечивающая их номенклатура параметров шероховатости

Эксплуатационное свойство поверхности

Параметры шероховат

Износоустойчивость при всех видах трения

Ra (Rz), направление неровностей

Виброустойчивость

Ra (Rz), Sm, S, направление неровностей

Контактная жесткость

Ra (Rz), tp

Прочность соединения

Ra (Rz)

Прочность конструкции при циклических нагрузках

Rmax, Sm, S, направлениенеровностей

Герметичность соединений

Ra (Rz), Rmax, tp

Параметр tp содержит наибольшую информацию о высотных свойствах профиля (комплексно характеризует высоту и форму неровностей профиля) и позволяет судить о фактической площади контакта при контактировании поверхностей на заданном уровне сечения p.

В дополнении к количественным параметрам в некоторых случаях целесообразно нормировать направление неровностей, например, в связи с направлением относительного перемещения трущихся сопряжённых поверхностей или струи жидкости и газа относительно поверхности, а также для обеспечения необходимой виброустойчивости и прочности при циклических нагрузках.

Правильное решение, принимаемое при выборе параметров шероховатости поверхности деталей, а также при выборе методов обработки, обеспечивающих получение поверхностей с заданной шероховатостью, оказывает серьёзное влияние на качество конструкции, её технологичность и позволяет установить наиболее экономичные методы изготовления деталей.

Для обеспечении условий взаимозаменяемости назначение шероховатости сопряжённых поверхностей может производиться в зависимости от точности сопряжения (выбранной посадки) и точности обработки (выбранного квалитета).

Следует отметить, что приведенный материал по шероховатости поверхности основан на ГОСТ 2789-73, который несколько устарел, так как за прошедшее время разработаны международные стандарты, содержащие много дополнительных параметров, характеризующих шероховатость и текстуру поверхности. Это объясняется несколькими причинами. Разработана большая группа высокоточых приборов, позволяющих измерять самые незначительные отклонения и дефекты поверхности. Большинство современных приборов снабжены программным обеспечением, позволяющим вычислять различные параметры поверхности. И, наконец, самое важное. Проведены многочисленные эксперименты, показывающие связь исходной шероховатости поверхности и дальнейшие функциональные свойства соединений. Например, как известно, 20 лет назад двигатели внутреннего сгорания (и автомобили) требовали достаточно длительной обкатки после изготовления. В этом требовании было заложено некоторое противоречие. Цилиндр двигателя изготавливался хонингованием и его поверхность имела достаточно малую шероховатость. После обкатки его шероховатость сильно изменялась. Это относится ко всем посадкам скольжения, качения (шарикоподшипники) и т.п. Но эксперименты показали, что если параметры текстуры и шероховатости поверхности назначать в соответствии с результатами серьезных экспериментов, полученные детали и соединения не требуют предварительной обкатки и долго сохраняют заданные параметры шероховатости.

В настоящее время в международной практике качество деталей определяется четырьмя группами показателей - допуски на размер, форму, расположение поверхностей и текстура поверхности. Текстура поверхности согласно ИСО 4287:1997 - это повторяющиеся и случайные отклонения от геометрической (номинальной) поверхности, которая формирует трехмерную топографию поверхности.

1.1 Проверяемая поверхность

Текстура поверхности включает шероховатость, волнистость, направление неровностей, изъяны поверхности и отклонение формы в пределах ограниченной поверхности.

Особенно сильно выросла роль шероховатости поверхности, от которой зависят многие свойства деталей: адгезия, жесткость, износостойкость, светоотражение, маслоудержание, виброустойчивость, трение и др. Для описания функциональных свойств поверхности в зарубежной практике используется более 100 параметров шероховатости и число их увеличивается. Международный стандарт ИСО 4287:1997 содержит 14 параметров шероховатости, последний американский стандарт - 16 параметров, а до недавнего времени в национальном стандарте США был только один параметр шероховатости Ra.

Кроме стандартизированных параметров используются различные специальные, например:

- семейство Rk параметров (ИСО 13565-2:1998) описывает требования к зеркалу цилиндра бензиновых двигателей внутреннего сгорания;

- семейство Rpq параметров (ИСО 13565-3:1998) - требования к зеркалу цилиндров дизельных двигателей.

- параметры для ультрачистых труб и т.д.

Хотя среднее арифметическое отклонение Ra и среднее квадратическое отклонение Rq широко распространены для оценки качества обработки поверхности, но они отражают только стабильность производственного процесса и мало говорят о том, как поверхность будет работать.

Рисунок 1. Показатели шероховатости

При задании шероховатости, как правило, используется параметр сравнения арифметического отклонения профиля (Ra).

Конкретные параметры шероховатости, указываемые в конструкторской и технологической документации, выбираются из числа стандартизованных и определяются экспериментально на основе измерений. Наиболее распространено нормирование и оценивание шероховатости по величине Ra.

В зависимости от способа механической обработки Ra составляет при точении - 0,4…3,2 мкм, при шлифовании - 0,025…0,4 мкм.

Шероховатость поверхности оценивается визуально сравнением с образцами шероховатости, либо измеряется контактными или бесконтактными (оптическими) методами и приборами.

Образцы шероховатости поверхности представляют собой бруски с плоской или цилиндрической поверхностью с известными значениями параметра шероховатости. Образцы шероховатости комплектуются в наборы, где на каждом образце указывается номинальное значение параметров шероховатости и способ механической обработки образца. Визуальное сравнение поверхностей изделия и образца дает удовлетворительные результаты только для относительно грубых поверхностей (0,6…0,8 мкм и более).

Рисунок 2. Образцы шероховатости поверхности

Контактные методы измерения шероховатости основываются на последовательном ощупывании исследуемого профиля на заданной длине с помощью алмазной иглы (щупа). Перемещение иглы в вертикальном направлении повторяет профиль шероховатости и преобразуется в электрический сигнал, который усиливается и измеряется аналоговым или цифровым прибором.

Стоит отметить, что именно шероховатость, оказывает наиболее сильное влияние на эксплуатационные характеристики двигателей машин, а также деталей и узлов различного оборудования. Возможно, именно поэтому, точное определение значения шероховатости - одна из самых важных задач метрологии.

Оценка шероховатости может производиться двумя способами: либо поэлементно, путем сравнения отдельных параметров, либо в комплексе, используя сравнительный анализ исследуемого образца с эталоном.

2. Методы определения шероховатости

Оценка шероховатости может производиться двумя способами: либо поэлементно, путем сравнения отдельных параметров, либо в комплексе, используя сравнительный анализ исследуемого образца с эталоном.

Наиболее точным, на момент написания статьи, является поэлементный способ, который может быть осуществлен различными методами определения шероховатости:

1) Щуповой метод измерения шероховатости поверхности - это контактный метод, измерения при котором производятся при помощи профилометра. Профилометр представляет собой чувствительный датчик, оборудованный тонкой, остро заточенной алмазной иглой, с так называемой, ощупывающей головкой. Алмазная игла прижимается и перемещается параллельно исследуемой поверхности. В местах возникновения микронеровностей (выступов и впадин), возникают механические колебания измерительной головки иглы. Эти колебания передаются в датчик, преобразующий механическую энергию колебания в электрический сигнал, который усиливается преобразователем и измеряется. Записанные параметры этого сигнала в точности повторяют неровности на шероховатой поверхности детали. Профилометры, по признаку типа преобразователя сигналов, разделяют на пьезоэлектрические, электронные, индукционные и индуктивные. Наиболее распространены приборы, использующие индуктивные преобразователи. В качестве примера профилометра можно привести приборы моделей «СЕЙТРОНИК-ПШ8», а также старый-добрый «профилометр модели 130». Помимо профилометров существуют также профилографы, которые позволяют не просто измерить, но и записать параметры шероховатого профиля в заранее выбранном масштабе. Исследование поверхностней щуповым методом производится в несколько этапов: так, сначала профиль исследуемого объекта «ощупывается» несколько раз, а только затем, на основании серии измерений вычисляется усредненное значение параметра, характеризующегося как количественное выражение неровности относительно длины участка.

2) Оптический метод - это бесконтактный метод измерения шероховатости, который состоит из целой группы методов. Самые распространенные из них - это:

- метод светового свечения и теневой метод;

- микроинтерференционный метод;

- растровый метод.

Итак, растровый метод предполагает следующую последовательность действий: на исследуемую поверхность кладется стеклянная пластинка, с нанесенной на неё растровой сеткой (т.е. системой равноудаленных параллельных линий), с маленьким шагом. Затем, на пластинку подаются световые лучи под наклоном. При падении световых лучей под наклоном в местах микроскопических неровностей, штрихи отраженной растровой сетки накладываются на штрихи реально нарисованной сетки, в результате чего возникают муаровые полосы, которые и свидетельствуют о наличии выступов или впадин на поверхности изучаемого объекта. При помощи растрового микроскопа и определяют параметры неровности. Точную методику определения параметров можно посмотреть в соответствующем ГОСТе. Отметим, что растровый метод применим для обследования поверхностей, следы неровностей на которых имеют преимущественно одинаковое направление (например, царапины в цилиндрах двигателей внутреннего сгорания).

Метод светового и теневого свечения - это наиболее часто применяемые методы измерения параметров неровностей. Метод светового свечения сводится к тому, что: световой поток от источника света, проходя сквозь узкую щель, превращается в тонкий, узкий пучок. Затем, при помощи объектива, он направляется на исследуемую поверхность под определенным углом. Отражаясь, луч опять проходит через объектив и формирует изображение щели в окуляре. При этом, абсолютно ровная поверхность будет иметь идеально прямой световой пучок (линия), а шероховатая поверхность - искривленный.

Теневой метод - это усовершенствованный и продолженный метод светового свечения. Состоит он в том, что: недалеко от изучаемой поверхности приспосабливается линейка со скошенным ребром. Пучок света преодолевает тоже самое расстояние, однако, будто ножом, срезается ребром линейки. При этом, на измеряемой поверхности можно наблюдать тень, верхняя часть которой в точности повторяет изучаемый профиль. При помощи микроскопа, такое изображение рассматривают, анализируют и делают выводы о параметрах и характере шероховатости.

Микроинтерференционный метод - реализуется при помощи специального измерительного прибора, который состоит из измерительного микроскопа и интерферометра. Используя интерферометр, получают интерференционную картину поверхности исследуемого объекта с искривлениями полос в местах неровностей. Параметры шероховатости измеряют, затем, при помощи микроскопа.

Также, следует выделить отдельно метод слепков, который применяется для оценки шероховатости различных труднодоступных поверхностей, а также поверхностей, обладающих сложным строением. Метод слепков, представляет собой снятие негативных копий поверхности при помощи воска, парафина или гипса, а также последующее их изучение щуповым или оптическим методом.

2.1 Профилограф - профилометр

профилометр шероховатость деталь

Профилограф-профилометр - это комбинированный прибор для измерения шероховатости поверхности он состоит из - профилографа и профилометра.

Рассмотрим понятия профилограф и профилометр более подробно.

Профилометр представляет собой прибор для измерения шероховатости контактным методом: по оцениваемой поверхности перемещается игла, колеблющаяся в местах неровностей. Эти колебания вызывают возбуждение ЭДС и, соответственно, малых токов. Они усиливаются и регистрируются с помощью гальванометра, показания которого выводятся на дисплей прибора и позволяют судить о характере исследуемой поверхности - высоте микронеровностей. Однако нередко для оценки шероховатости выбирается не высота, а другой параметр шероховатости.

Рисунок 3. Профилометр

Устройство и принцип действия профилометра

Генератором сигнала в профилометре является тонко заточенная - чаще всего алмазная - игла. Она перемещается по нормали к поверхности, шероховатость которой оценивается. Выработанный сигнал - механический - преобразуется в токовый с помощью преобразователя, который может быть пьезоэлектрическим, ёмкостным или индуктивным. Затем сигнал поступает на электронный усилитель, а затем интегрируется и визуализируется - на экране прибора, таким образом, виден уже усреднённый параметр, который характеризует поверхностные неровности на участке определённой длины не только количественно, но и качественно.

В зависимости от вида трассы интегрирования выделяют несколько типов профилометров.

· С постоянной трассой интегрирования. В таких приборах трасса интегрирования по длине равна трассе ощупывания. Результат измерений в данном случае доступен только после завершения процедуры;

· Со скользящей трассой интегрирования. В СИТ данного типа трасса интегрирования в несколько раз короче трассы ощупывания, а отсчёт показаний выполняется параллельно с перемещением иглы по поверхности.

В отдельную группу выделяют профилометры с механотронным преобразователем, измеряющие параметры неровности с указанием Ra - среднего арифметического значения отклонения профиля.

Многие приборы оснащаются анализатором, позволяющим по гармоническим составляющим поступающего от иглы сигнала (вернее, по характеризующей их прямой) судить от неровностях поверхности.

Погрешность профилометров не выходит за пределы ±25%, а у многих современных приборов - ±10%.

Рисунок 4. Профилограф

Профилограф, также как и профилометр, служит для контроля параметров шероховатости поверхности, однако, результаты измерений представляется в виде кривой, которая характеризует волнистость и шероховатость. Обработку кривой - профилограммы - проводят графоаналитическим методом.

Устройство и принцип действия профилографа

Прибор состоит из трёх основных блоков. Первый - измерительный, включающий иглу, её привод и измерительный столик - позволяет получить сигнал, на основе которого в последствие будет построена характеризующая микронеровности кривая. Второй - электронныйблок позволяет усилить и преобразовать сигнал, который затем поступает в третий блок - записывающее устройство, вычерчивающее профилограмму в увеличенном масштабе на металлизированной бумаге, светочувствительную бумагу или специальную плёнку. Погрешность прибора не превышает ±5-10%.

Принцип действия профилографа практически не отличается от принципа действия профилометра - игла перемещается по нормали к исследуемой поверхности; от неё на преобразователь, а затем на электронный усилитель поступает сигнал, который, однако, не отражается на экране, а отображается графически.

Профилограмма записывается в увеличенном масштабе (увеличение по горизонтали до 100000 раз, по вертикали 400-200000 раз) - это делает её расшифровку гораздо удобнее.

Профилограф - профилометр позволяет одновременно проводить запись параметров микронеровностей поверхности на носитель - электротермическую бумагу или др., и наблюдать за результатами проведения измерений в режиме реального времени - с помощью показывающего прибора, который может быть аналоговым или цифровым.

Действие профилографа-профилометра, как и, основано на ощупывании контролируемой поверхности заточенной иглой с малым радиусом закругления и преобразовании её колебаний в электрический сигнал индуктивным или другим методом. Наибольшее применение находят профилограф-профилометры с индуктивным преобразователем.

Первоначально в середине прошлого века находили применение профилографы с обработкой и представлением аналогового сигнала (например модели 201). Дальнейшее развитие техники позволило создать аналоговые приборы с цифровым представлением результатов (например модели 252 и др.). Профилограф-профилометр модели 252, в котором использован индуктивный преобразователь, позволяет записывать профиль неровностей в увеличенном масштабе в виде профилограммы или измерять параметры шероховатости с индикацией в цифровом виде. Прибор снабжен преобразователем, электронным измерительным блоком со счетно-решающим блоком и записывающим устройством.

Профилограф-профилометр состоит из таких частей как:

- измерительный блок;

- показывающий прибор;

- стойка;

- мотопривод;

- измерительный столик;

- датчик;

- записывающий прибор.

Индуктивный преобразователь выполняют в виде сдвоенного сердечника с двумя катушками. Катушки и две половины первичной обмотки дифференциального входного трансформатора включены по мостовой схеме, питание которой происходит от генератора с частотой 10 кГц. При перемещении по контролируемой поверхности алмазная игла преобразователя вместе со щупом, подвешенном на опоре, совершает колебания. Повороты перераспределяют индуктивности катушек, изменяя тем самым выходное напряжение дифференциального трансформатора. Изменения амплитуды напряжения характеризуют высоту микронеровностей, а изменение частоты (при работе прибора в режиме профилометра) - их шаг. Настройку прибора, перед измерением, производят аналоговым нуль-индикатором. Числовые значения параметров определяют с помощью цифрового отсчетного устройства. При работе прибора в режиме профилографа информация подаётся на записывающее. В настоящее время нашли применение приборные комплексы с применением преобразования аналогового сигнала в цифровой, последующей обработки по предусмотренной программе. Такие комплексы разработаны рядом как зарубежных так и отечественных производителей. Представление результатов проводится, как на экране монитора, так, и на бумажном носителе информации. Немаловажно, что результаты измерений сегодня могут сохраняться на электронных носителях. Профилограф-профилометр такого типа показан на рисунке 5, из которого хорошо виден его состав.

Рисунок 5. Профилограф - профилометр. 1-деталь, 2-измерительный датчик, 3-мотопривод, 4-системный блок, 5-монитор, 6-печатающее устройство, 7 клавиатура, 8 - мышь

Формы измеряемых поверхностей: плоские, цилиндрические, конические и другие поверхности как наружные, так и внутренние, сечение которых в плоскости измерения представляет прямую линию. В процессе измерений производится: трассирование, запись профиля и его визуализация на экране монитора, представление геометрических размеров параметров профиля, вычисления параметров шероховатости, а также записи результатов измерений на компьютер и распечатки их на принтере. Программное обеспечение позволяет в диалоговом режиме управлять процессом измерения, выбирая оптимальные режимы, вводить необходимую фильтрацию, вычислять параметры шероховатости, выводить на экран монитора и анализировать геометрические особенности микропрофиля. Результаты измерений сохраняются в памяти компьютера и могут быть распечатаны в виде протокола. Измеряемые поверхности должны быть чистыми и сухими. Принцип действия - электронный. Метод измерения - контактный, последовательного преобразования профиля в цифровой сигнал с дальнейшей его обработкой. Представление результатов измерения - на экране монитора и в виде распечатки на принтере. Профилограф - профилометры подвергают первичной, периодической, внеочередной и инспекционной. Первичной поверке подлежит, как правило, каждый выпущенный экземпляр прибора. Периодической поверке подлежат средства измерения, находящиеся в эксплуатации или на хранении, через определённые интервалы времени. Периодическую поверку должен проходить каждый прибор.

Заключение

Развитие науки, управление технологическими процессами немыслимы без получения количественной информации о тех или иных свойствах физических объектов. Измерения - единственный способ получения количественной информации о величинах, характеризующих те или иные физические объекты, физические явления и процессы. Современная информационно-измерительная техника располагает средствами измерения нескольких сот различных электрических (электрическое напряжение, электрическое сопротивление и др.) и неэлектрических (тепловых, механических, оптических и др.) величин. Число, подлежащих измерению неэлектрических величин, интересующих науку, производство, медицину во много раз больше числа электрических величин. Измерение неэлектрических величин может осуществляться как электрическими устройствами с предварительным преобразованием неэлектрической величины в электрическую, так и неэлектрическими устройствами.

Электрические средства измерений имеют ряд преимуществ перед другими средствами измерений. Они характеризуются:

1. Простотой изменения чувствительности в широком диапазоне измеряемых значений. Использование электронной техники позволяет повысить чувствительность измерительного прибора в тысячи раз, что дает возможность измерять такие величины, которые другими методами не могут быть измерены.

2. Малой инерционностью (широким частотным диапазоном), что позволяет проводить измерения как медленно меняющихся, так и быстро меняющихся во времени величин.

3. Возможностью создания комплексных измерительно-информационных систем, передачи результатов измерения на большие расстояния, математической обработки и использования их для создания управляющих систем.

4. Возможностью комплектования измерительных и обслуживаемых ими автоматических систем из блоков однотипной электронной аппаратуры.

Благодаря этим преимуществам электрические средства измерений заняли ведущее место при измерении как электрических, так и неэлектрических величин.

Список литературы

1. Клаасен К.Б. «Основы измерений. Электронные методы и приборы в измерительной технике». - М.: Постмаркет, 2014. - 352 с.

2. Бирюков С.В., Чередов А.И. Методы и средства измерений: Учебное пособие. - Омск: Изд-во ОмГТУ, 2013. - 88 с.

3. Д.Ф. Тартаковский А.С. Ястребов. Метрология, стандартизация и технические средства измерений: Учеб. для вузов. - М.: Высш. шк., 2012 - 205 с.

4. Дивин, А.Г. Методы и средства измерений, испытаний и контроля: Учебное пособие. В 5 ч. / А.Г. Дивин, С.В. Пономарев. - Тамбов: Изд-во ГОУ ВПО ТГТУ, 2011. - Ч. 1. - 104 с. - 100

5. Мальков О.В., Литвиненко А.В. Измерение параметров шероховатости поверхности детали.

6. Рябов В.П., Позняк Е.С. Методы и средства измерений, испытаний и контроля. - М.: МУГП. - 2009. - 157 С.

7. Интернет словарь - «Википедия» - https://ru.wikipedia.org

Размещено на Allbest.ru


Подобные документы

  • Разработки по созданию трехмерных измерительных систем на основе профилографа-профилометра. Методы расчета параметров шероховатости на основе трехмерного измерения микротопографии поверхности. Методика преобразования трехмерного отображения поверхности.

    контрольная работа [629,0 K], добавлен 23.12.2015

  • Классификация качественных видов контроля. Анализ детали. Требования точности ее размеров. Выбор средств измерения для линейных размеров, допусков формы и расположения поверхностей. Контроль шероховатости поверхности деталей. Принцип работы профилографа.

    контрольная работа [1,8 M], добавлен 05.01.2015

  • Профиль, параметры и методы измерения шероховатости поверхности. Использование профилометра PS1 компании Mahr (Германия) для измерения неровностей. Оптический метод светового сечения. Принцип деяния интерферометров, растровых и окулярных микроскопов.

    презентация [529,5 K], добавлен 26.02.2014

  • Изучение методов измерения шероховатости поверхности. Анализ преимуществ и недостатков метода светового сечения и теневой проекции профиля. Оценка влияния шероховатости, волнистости и отклонений формы поверхностей деталей на их функциональные свойства.

    курсовая работа [426,6 K], добавлен 03.10.2015

  • Влияние точности геометрических параметров на взаимосвязь изделий в строительстве. Понятие шероховатости поверхности, критерии ее выбора для поверхности деталей. Санкции, налагаемые федеральными органами по стандартизации, метрологии и сертификации.

    контрольная работа [1,3 M], добавлен 02.10.2011

  • Понятие шероховатости поверхности. Разница между шероховатостью и волнистостью. Отклонения формы и расположения поверхностей. Требования к шероховатости поверхностей и методика их установления. Функциональные назначения поверхностей, их описание.

    реферат [2,2 M], добавлен 04.01.2009

  • Анализ формы точности, шероховатости, размеров материала и обработки детали, а также характера нагружения. Определение технологического маршрута обработки поверхности детали в зависимости от точности размеров и шероховатости поверхностей детали.

    курсовая работа [594,7 K], добавлен 25.09.2012

  • Показатели качества, физико-механические и химические свойства поверхностного слоя деталей машин. Обзор методов оценки фрактальной размерности профиля инженерной поверхности. Моделирование поверхности при решении контактных задач с учетом шероховатости.

    контрольная работа [3,6 M], добавлен 23.12.2015

  • История развития мер и измерительной техники. Основные единицы системы измерений. Классификация видов измерений, механические средства для их проведения. Применение щуповых приборов для определения параметров шероховатости поверхности контактным методом.

    курсовая работа [1,7 M], добавлен 16.04.2014

  • Анализ конструкционной углеродистой стали 45. Технологический анализ рабочего чертежа детали. Расчет коэффициентов точности обработки, шероховатости поверхности, использования материала. Определение припусков на размеры. Описание токарной операции.

    курсовая работа [792,5 K], добавлен 21.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.