Параметры смазочных материалов

Физико-химические параметры, характеризующие смазочный материал: плотность, температура вспышки, вязкость кинематическая, динамическая вязкость, температура застывания, показатель индекса вязкости, число нейтрализации. Их нормирование и значение.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 01.02.2016
Размер файла 22,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Каждый смазочный материал имеет техническое описание, где указаны основные физико-химические параметры, такие как: плотность, температура вспышки, вязкость кинематическая, динамическая вязкость, температура застывания, показатель индекса вязкости, число нейтрализации и так далее. Рассмотрим, что обозначает каждый из параметров, и как его изменение характеризует рабочие характеристики смазочного материала. Плотность или объемная масса вещества. Измеряется в кг/мі и приводится для масел при температурах +15°С или +20°С. В зависимости от качества базового масла и состава присадок плотность масел лежит в пределах 700-950 кг/мі. Вязкость или показатель густоты масла означает, что чем гуще масло, тем выше его вязкость. Характеризуется двумя показателями: кинематической (текучесть масел при нормальной (40°С) и высокой (100°С) температурах и динамической (сопротивление взаимному сдвигу двух слоев масла, перемещающихся с определенной скоростью на определенном расстоянии друг от друга) вязкостью. Измеряется в ммІ/сек (сантистокс, cSt) или в Па*с (сантипуаз, cP=10-3*Па*с), соответственно.

Сантистокс (сSt) - единица измерения кинематической вязкости, в основе которой лежит величина силы, которая необходима для преодоления внутреннего трения жидкости.

Сантипуаз (cP) - единица измерения динамической вязкости, которой выражают внутреннее трение масла при низких температурах.

смазочный вязкость нейтрализация химический

cP=cSt * плотность.

Индекс вязкости - безразмерный показатель, характеризующий зависимость вязкости от температуры. С ростом величины индекса вязкости (ИВ) зависимость вязкости масел от изменений температуры снижается.

Температура вспышки - температура, при которой из масла выделяются пары углеводородов в количестве, достаточном, чтобы при поднесении источника огня произошла их вспышка. Значительное понижение температуры вспышки работавшего масла, например, ниже 180°С, может сигнализировать о разбавлении масла топливом, что в свою очередь характеризует недостаточно эффективную работу топливной системы.

Температура воспламенения - температура, при которой пары углеводородов, испаряющиеся с поверхности нагреваемого в открытом тигле масла, горят при поднесении открытого огня не менее 5 сек. Т воспламенения выше Т вспышки на 10-50°С.

Температура застывания - температура, при которой масло перестает течь под действием силы тяжести. Она должна быть, как правило, на 5-7°С ниже той температуры, при которой масло прокачивается по системе смазки двигателя. Зависит от вязкости и химической структуры масла. Наилучшие показатели у синтетических масел. Значение температуры застывания необходимо для понимания до какой максимально низкой температуры возможен перелив продукта из одной тары в другую при его длительном хранении, и не характеризует низкотемпературные свойства масла, а именно его свойство прокачиваться при низких температурах. Поэтому при сравнении масел одной категории разных производителей сравнивать температуры застывания не стоит.

Общее щелочное число (TBN) - показывает запас нейтрализующих свойств масла; создается добавляемыми в масло моюще-диспергирующими присадками. Чем больше щелочное число, тем большее количество кислот, образующихся при окислении масла и сгорании топлива, может быть переведено в нейтральные соединения. Однако важно не сколько значение щелочного числа, сколько скорость его снижения при работе масла в двигателе.

Сульфатная зольность - показатель содержания присадок, в основном органических соединений металлов. Довольно высокая сульфатная зольность моторных масел (по сравнению с другими маслами) в основном обусловлена наличием в их составе моющих присадок, содержащих металлы. Сульфатная зольность ограничивается нормативной документацией только в Европе (классификация ACEA). В моторных маслах для бензиновых двигателей сульфатная зольность не должна превышать 1.5%, для дизельных двигателей малой мощности - 1.8% и для дизельных двигателей высокой мощности - 2.0%. Сульфатная зольность масел, совместимых с катализатором дожига отработавших газов, сильно ограничивается и варьируется в зависимости от группы масел С по спецификации ACEA.

Испаряемость - показатель, характеризующий склонность масла к испарению. Во время работы двигателя, вследствие высокой температуры, наиболее легкие фракции масла улетучиваются. Повышенная испаряемость масла будет приводить к увеличению расхода масла на угар и на долив. Масла на синтетическоВязкость является одной из важнейших характеристик смазочных масел, определяющих силу сопротивления масляной пленки разрыву. Чем прочнее масляная пленка на поверхности трения, тем лучше уплотнение колец в цилиндрах, меньше расход масла на угар. В соответствии с нормативнотехнической документацией вязкостно-температурные свойства моторных масел оцениваются индексом вязкости.

Вязкость динамическая - это сила сопротивления двух слоев смазочного материала площадью 1 см2, отстоящих друг от друга на расстоянии 1 см и перемещающихся один относительно другого со скоростью 1 см/с. Вязкость кинематическая определяется как отношение динамической вязкости к плотности жидкости.

Индекс вязкости - относительная величина, показывающая степень изменения вязкости в зависимости от температуры. Индекс вязкости рассчитывают по значениям кинематической вязкости при 40 и 100°С или находят по таблицам. Вязкостно-температурные свойства масел оценивают также по кинематической вязкости при низкой температуре (0 и -18°С).

Кинематическая вязкость моторных масел, используемых в смазочных системах автомобильных двигателей, равна 4 … 14 мм2/с при 100°С. С понижением температуры она быстро увеличивается, достигая при -18°С значения 10000 мм2/с и более. Масла с кинематической вязкостью 4 … 8 мм2/с используют в зимнее время, с вязкостью 10 … 14 мм2/с - летом.

Температура застывания - это предельная температура, при которой масло теряет подвижность. Масла, имеющие температуру застывания -15°С и выше, относятся к летним. Если же температура застывания -20°С и ниже, то масла относятся к зимним. Температура застывания в какой-то мере характеризует предельную температуру, при которой возможен запуск охлажденного двигателя. Однако, температура запуска двигателя на холоде зависят не столько от температуры застывания масла, сколько от величины его вязкости при данной температуре.

Противоизносные свойства характеризуют способность масла уменьшать интенсивность изнашивания трущихся деталей, снижать затраты энергии на преодоление трения. Эти свойства зависят от вязкости и вязкостно-температурной характеристики, смазывающей способности и чистоты масла. Моюще-диспергирующие свойства подразделяются на моющие и диспергирующие свойства. Моющие свойства характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя и противостоять лакообразованию на горячих поверхностях, а также препятствовать прилипанию углеродистых соединений. Диспергирующие свойства характеризуют способность масла препятствовать слипанию углеродистых частиц, удерживать их в состоянии устойчивой суспензии и разрушать крупные частицы продуктов окисления при их появлении.

Противоокислительные свойства определяют стабильность масла, от которой зависит срок работы масел в двигателях, характеризуют их способность сохранять первоначальные свойства и противостоять внешнему воздействию при нормальных температурах. Стойкость моторных масел к окислению повышается при введении антиокислительных присадок.

Антикоррозионные свойства. Коррозионная активность моторных масел зависит, прежде всего, от содержания в них сернистых соединений, органических и неорганических кислот и других продуктов окисления. В лабораторных условиях антикоррозионные свойства моторных масел оценивают по потере массы свинцовых пластин (в расчете на 1 м2 их поверхности) за время испытания при температуре 140°С.

Коррозионный износ деталей определяется также исходным значением щелочности и скоростью ее изменения. Чем больше проработало масло, тем ниже становится показатель щелочности. Поэтому показатель щелочности вводится в число показателей качества масла. Зольность масла позволяет судить о количестве несгораемых примесей в маслах без присадки, а в маслах с присадками - о количестве введенных зольных присадок. Зольность определяют в лабораторных условиях и выражают процентным отношением образовавшейся золы к массе пробы масла, взятой для анализа. Зольность масел, не содержащих присадок, не превышает 0,02 … 0,025% по массе. У масел с присадками зольность не должна быть менее 0,4%, а у высококачественных марок масел не менее 1,15 … 1,65% по массе.

Содержание механических примесей и воды. Механических примесей в маслах без присадок не должно быть, а в маслах с присадками их значение не должно превышать 0,015% по массе, причем механические примеси не должны оказывать абразивного действия на трущиеся поверхности. Вода в моторных маслах должна отсутствовать. Даже небольшое количество воды вызывает деструкцию присадок, происходит процесс шламообразования.

Присадки применяются для придания моторным маслам новых свойств или изменения существующих. Присадки подразделяют: на антиокислительные - повышают антиокислительную устойчивость масел; противокоррозионные - защищают металлические поверхности от коррозионного воздействия кислото- и серосодержащих продуктов; моюще-диспергирующие - способствуют снижению отложений продуктов окисления на металлических поверхностях; противоизносные, противозадирные и антифрикционные - улучшают смазочные свойства масел; депрессорные - понижают температуру застывания масел; антипенные - предотвращают вспенивание масел. й основе отличаются пониженной испаряемостью. Плотность, цвет и загрязнение масел

Плотность (density) - это масса вещества, заключенная в единице объема (кг/м3, г/см3). Численное значение плотности выражается отношением массы какого-либо объема вещества к массе такого же объема воды, имеющей температуру 4°С (масса 1 л воды при 4°С равна 1 кг). Плотность жидкостей просто и достаточно точно измеряется ареометром (ГОСТ 3900-85). Обычно рядом со значением плотности указывается и температура измерения (температура может не указываться, если плотность определена при 20°С).

Иногда плотность масла, как и сырой нефти, выражается в градусах плотности API (APIdensitygrade). Соотношение градусов АРI с относительной плотностью d (отношение плотностей масла и воды), измеряется при температуре 15,6°С и определяется по формуле:

АРI = (141,5/d) - 131,5

Плотность необходима при перерасчете объема масла в массу и наоборот. При повышении температуры, плотность нефтепродуктов снижается и, тем сильнее, чем меньше плотность. Плотность не является определяющим показателем смазочных масел. Однако по плотности можно примерно судить об углеводородном составе масла, так как наименьшей плотностью отличаются парафины, а наибольшей - нафтеновые соединения. По плотности работающего масла определяют попадание в него топлива. Плотность может помочь идентифицировать конкретное масло при сравнении нескольких сортов или марок.

Цвет (color) и прозрачность (transparency). Качество и товарный вид масла иногда оценивается по его цвету и прозрачности. В большинстве случаев, за исключением применения твердых противозадирных присадок (дисульфид молибдена и т.п.), прозрачность масла должна быть полной, без видимых механических включений. Цвет масла зависит от присутствия темных смолистых веществ и от свойств нефти, из которой изготовлено масло. Нет прямой зависимости между цветом масла и содержанием смолистых веществ, особенно если масло выработано из нефти разных месторождений. По цвету масла можно лишь приблизительно судить о качестве его очистки. Иногда цвет является показателем товарного вида масла, так как покупатель склонен оценивать качество масла по его цвету. Готовое товарное масло в большинстве случаев не окрашивается и бывает от светло-желтого до темно-коричневого цвета. Такой натуральный цвет масла определяется и выражается численно по стандартам ISO 2049, ASTM D 1500, ГОСТ 20284-74 и др. при сравнении цвета масла с набором цветных эталонов, которые нумеруются от 0,0 (белый) до 8,0 (очень темный коричневый) через 0,5 единицы (всего 16 номеров). На практике, некоторые потребители пытаются по цвету работающего моторного масла определять необходимость его замены. Однако, потемнение масла в двигателе является естественным и показывает, что масло выполняет свои моющие и диспергирующие функции. Таким образом, потемнение масла не может быть принято за основу показателя снижения ресурса работоспособности и необходимости замены. При некотором опыте и при наличии градуировочной таблицы этот метод оценки ресурса все же может быть применен.

Некоторые масла окрашиваются в яркие цвета. В красный цвет окрашиваются жидкости автоматической коробки передач (ATF), чтобы отличить их от других масел и облегчить обнаружение утечки. Масла для двухтактных двигателей окрашиваются в зеленый, синий или красный цвет для отличия топливномасляной смеси от чистого топлива. По старой традиции бытует мнение, особенно в США, что масло очень высокого качества, выработанное из парафиновой нефти, должно иметь слабый флуоресцирующий зеленый оттенок. По этой причине некоторые производители специально вводят в масло флуоресцирующие красители. При необходимости, масла подкрашивают маслорастворимыми органическими красителями.

Механические загрязнения в масле (contamination) состоят из твердых частиц, которые вызывают износ деталей и участвуют в образовании отложений и шлама. Механические примеси удерживаются фильтром, однако, частицы размером менее 25 - 40 мкм накапливаются в масле и участвуют в процессе износа. Механические загрязнения в масле определяются, чаще всего, путем фильтрования бензинового раствора (ГОСТ 12275-66) или фотометрически (ГОСТ 24943-81). Для предварительной оценки удобно определение на просвете или на фильтровальной бумаге. Для этого масло нагревают до 50 - 60°С и наносят две-три капли масла на фильтровальную бумагу, на которой хорошо видны загрязнения. Чистое масло дает равномерно окрашенное пятно. Капли можно наносить также и на чистое стекло.

Качественная точная оценка чистоты масла определяется микроскопическим подсчетом частиц по ISO 4407 и кодированием их числа по ISO 4406. Метод предназначен для определения загрязненности гидравлической жидкости. Код числа частиц загрязнений имеет вид соотношения х/у, где х - число частиц в 1 мл размером выше 5 мкм; у - число частиц в 1 мл размером выше 15 мкм, например 15/12. Частицы размером до 5 мкм составляют шлам, проходят через фильтр и не оказывают влияние на износ. Частицы выше 15 мкм уже участвуют в процессе изнашивания.

Вода в масле (watercontaminant, moisture) является наиболее нежелательным загрязнением. Вода в масло попадает при загрязнении извне: с грязью, при конденсации в картере атмосферной влаги, при конденсации пара из продуктов сгорания топлива. Вода может быть в масле в растворенном и в свободном виде. Растворенная в масле вода является незначительным фактором и существенного влияния на свойства не оказывает. Растворенная вода в немоторных маслах определяется путем ее взаимодействия с гидридом кальция (карбидом) (ГОСТ 7822-75). Свободная вода может образовать эмульсию и этим существенно изменить вязкость. Она также взаимодействует с присадками, например с дитио-фосфатом цинка и нарушает баланс работоспособности масла. Именно поэтому содержание свободной воды строго регламентируется. Наличие свободной воды определяется несколькими способами: способом отстаивания в пробирке - вода оседает в нижнем слое (ISO 3733, ГОСТ 2477-65); нагреванием его в пробирке до 105-120°С (ГОСТ 1547-84) или диэлектрическим методом путем измерения диэлектрической проницаемости (ГОСТ 14203-69). При нагревании масла в пробирке, в случае наличия воды, образуется пена, масло потрескивает и пробирка вибрирует.

Температурные характеристики масел

Температурные характеристики показывают критические точки эксплуатации масла - высокотемпературные и низкотемпературные:

высокотемпературные характеристики:

- температура вспышки

- температура воспламенения

низкотемпературные характеристики:

- температура застывания,

- равновесная (стабильная) температура застывания,

- температура помутнения.

Предельные температуры работоспособности моторного и трансмиссионного масла в холодном состоянии определяются по изменению вязкости, на приборах, имитирующих реальные условия эксплуатации.

Температура вспышки (flashpoint) - это самая низкая температура, при которой пары нагреваемого нефтепродукта образуют с окружающим воздухом такую смесь, которая вспыхивает от открытого огня, но быстро гаснет из-за недостаточно интенсивного испарения. При дальнейшем нагревании достигается температура воспламенения (firepoint), при достижении которой масло горит не менее 5 с (ГОСТ 4333-48).

Температура вспышки масла почти всегда указывается в списке типовых характеристик. Она связана с фракционным составом масла и структурой молекул базовых компонентов и является важной по нескольким причинам. Во-первых, это показатель пожароопасности масла, поэтому предпочтительнее более высокое значение температуры вспышки. Во-вторых, она показывает присутствие летучих фракций в масле, которые быстрее испаряются в работающем двигателе (расход масла на угар). В-третьих, при анализе работающего масла, по понижению температуры вспышки легко определяется разбавление масла топливом. В сочетании со снижением вязкости масла, понижение температуры вспышки служит сигналом для поиска неисправностей системы зажигания или системы подачи топлива.

Температура вспышки масла определяется двумя методами - в открытом и в закрытом тигле. Метод открытого тигля (openflash) называется методом Кливленда СОС (ClevelandOpenCup - СОС) (ISO 2592, ASTM D 92, ГОСТ 4333-48), метод закрытого тигля (closed сир) - методом Пенски-Мартенса PMC (Pensky-MartensCup) (ISO 2719, ASTM D 93, ГОСТ 6356-75). Обычно численные значения, найденные этими двумя методами, различаются примерно на 20°С. Для масел чаще всего применяется метод открытого тигля по Кливленду (СОС), а для топлива - закрытого тигля по Пенски-Мартенсу. На практике температуру вспышки масла иногда определяют и по методу закрытого тигля.

Температура застывания (pourpoint) или температура потери текучести - это самая низкая температура, при которой масло еще обладает способностью течь. По зарубежным стандартам температурой застывания называется температура, которая на 3°С выше действительной температуры затвердевания (solidificationtemperature) - при которой в течение 5 с масло находится в неподвижном состоянии (стандарты ISO 3, ASTM D 97, ГОСТ 20287-74).

Температура застывания указывает только на возможность переливания масла (например, из тары), не прибегая к предварительному подогреву. Однозначной взаимосвязи температуры застывания масла с его пусковыми свойствами на холоде не существует. Температура застывания обязательно должна быть ниже той температуры, при которой определяют прокачиваемость согласно классификации SAE J 300.

Минеральное масло - это многокомпонентная система, застывание которой является сложным и многостадийным процессом, зависящим от взаимодействия отдельных компонентов, их взаимного растворения и др. В минеральном масле при понижении температуры в первую очередь зарождаются и растут кристаллы парафина. С появлением кристаллов масло мутнеет, и эта температура называется температурой помутнения(cloudpoint). В дальнейшем кристаллы парафина растут, соединяются, слипаются и конечном итоге образуют кристаллический каркас, масло становится неподвижным; желеобразным. Таким образом, температура застывания фактически является темперой желеобразования. Между кристаллическим каркасом масло еще остается жидким и при встряхивании или перемешивании текучесть всей массы масла может частично восстановиться. Такой процесс затвердевания, как специфический процесс кристаллизации, зависит от скорости охлаждения и от термической и механической предыстории масла (от температурного режима, интенсивности и продолжительности принудительного течения в интервале времени до измерения температуры застывания). Поэтому при определении этой температуры требуется строгое соблюдение предписанной процедуры охлажу и выдержки жидкости.

Военное ведомство США, для масел военного транспорта, потребовало определения так называемой равновесной (стабильной) температуры застывания (stablpoint), при определении которой проводится многочасовая (пятидневная) низкотемпературная обработка масла по заданной программе между 0°С и - 40°С. Методика при исключить влияние предыстории масла на текучесть при низкой температуре (FTM St (No.791C, Method 203.1; SAE J300 APR55, Appendix В). Эта процедура становится основной при разработке новых масел и для точной характеристики базовых, моторных масел. Недооценка важности этой процедуры со стороны производителей масел приводила к серьезным рекламациям на конечном рынке и выходу из строя агрегатов.

Низкая температура застывания важна для зимних и всесезонных масел. При запуске холодного двигателя или в начале движения с непрогретым двигателем, масло в первый же момент своей работы должно поступать в самые узкие и отдаленные узлы трения. Поэтому температура застывания должна быть ниже минимальной предполагаемой температуры окружающей среды.

Температура застывания часто служит показателем предельной минимальной температуры заливки, переливки и, частично, эксплуатации масла. Поэтому она включается в список типовых характеристик масел и гидравлических жидкостей для автотранспорта.

Размещено на Allbest.ru


Подобные документы

  • Физико-химические, эксплуатационные свойства нефти. Абсолютная плотность газов при нормальных условиях. Методы определения плотности и молекулярной массы. Важный показатель вязкости. Предельная температура фильтруемости, застывания и плавления нефти.

    презентация [1,1 M], добавлен 21.01.2015

  • Назначение, область применения и классификация дизельного топлива. Основные этапы промышленного производства ДТ. Выбор номенклатуры показателей качества дизельного топлива. Зависимость вязкости топлива от температуры, степень чистоты, температура вспышки.

    курсовая работа [760,9 K], добавлен 12.10.2011

  • Методика приготовления механического копра и шаблонов для установки образца. Определение ударной вязкости с использованием таблиц. Искривление образцов в зависимости от вязкости стали при испытании на удар. Проведение испытания на ударную вязкость.

    лабораторная работа [2,1 M], добавлен 12.01.2010

  • Основные параметры воздуха, характеризующие его состояние: температура, давление, влажность, плотность, теплоёмкость и энтальпия. Графическое и аналитическое определение параметров влажного воздуха. Определение расхода и параметров приточного воздуха.

    дипломная работа [49,2 K], добавлен 26.12.2011

  • Применяемость различных смазочных материалов в основных узлах, червячных передачах, металлургических машинах и узлах. Особенности смазки узлов трения оборудования для металлургических предприятий, работающих в условиях низких и высоких температур.

    реферат [3,3 M], добавлен 24.01.2009

  • Методика сокращения потерь горюче-смазочных материалов, специальных жидкостей сверх установленных норм при их хранении, транспортировании и выдаче. Расчет и принятие к учету естественной убыли горюче-смазочных материалов. Потери при зачистке резервуаров.

    реферат [132,0 K], добавлен 10.02.2013

  • Применение эпоксидных смол в различных отраслях промышленности. Приготовление герметизирующих, пропиточных и заливочных изоляционных материалов. Конструкции быстроходных мешалок. Состав и плотность реакционной массы. Динамический коэффициент вязкости.

    курсовая работа [755,3 K], добавлен 18.06.2013

  • Определение физических характеристик нефтепродуктов: плотность, вязкость, температура. Расчёт резервуарных парков нефтепродуктов, их размещение, полезный суммарный объем. Расчёт параметров и выбор типа насоса для перекачки нефти. Расчёт трубопровода.

    курсовая работа [1,5 M], добавлен 06.05.2014

  • Определение динамических перемещений и напряжений в балке и пружине; сравнение расчетных и экспериментальных значений определяемых величин. Изучение методики испытаний материалов на ударный изгиб; определение ударной вязкости углеродистой стали и чугуна.

    лабораторная работа [4,7 M], добавлен 06.10.2010

  • Применение формул при определении таких показателей как: коэффициент теплопередачи для плоской стенки без накипи, плотность теплового потока от газов к воде, температура стенки со стороны газов, температура стенки со стороны воды и между накипью и сталью.

    задача [104,7 K], добавлен 04.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.