Основные способы получения лимонной кислоты
Лимонная кислота - главный промежуточный продукт метаболического цикла трикарбоновых кислотных веществ. Особенности приготовления питательной среды при поверхностном способе культивирования. Характеристика процесса кислотообразования в ферментаторе.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.11.2015 |
Размер файла | 13,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
Лимонная кислота является важным соединением, как в метаболизме живых организмов, так и в промышленности. Сама кислота, как и ее соли, широко используется как вкусовая добавка, регулятор кислотности и консервант в пищевой промышленности, для производства напитков, сухих шипучих напитков. Она содержится, по крайней мере, в половине всех пищевых продуктов. Применяется в медицине, в том числе в составе средств, улучшающих энергетический обмен. В косметике используется, как регулятор кислотности, буфер, хелатирующий агент, для шипучих композиций.
Лимонная кислота, являясь главным промежуточным продуктом метаболического цикла трикарбоновых кислот, играет важную роль в системе биохимических реакций клеточного дыхания множества организмов.
По объему производства лимонная кислота является одним из главных продуктов микробного синтеза, и мировой объем ее производства достигает 400 тыс. тонн в год, что в денежном выражении составляет около 325 млн. евро.
1. Общая информация
Лимонная кислота (2-гидрокси-1,2,3-пропантрикарбоновая кислота, 3-гидрокси-3-карбоксипентандиовая) (C6H8O7) - кристаллическое вещество белого цвета, температура плавления 153 °C, хорошо растворима в воде, растворима в этиловом спирте, малорастворима в диэтиловом эфире. Слабая трёхосновная кислота. Соли и эфиры лимонной кислоты называются цитратами. Вещество чрезвычайно распространено в природе: содержится в ягодах, плодах цитрусовых, хвое, стеблях махорки, особенно много её в китайском лимоннике и недозрелых лимонах.
Впервые лимонная кислота была выделена в 1784 году из сока недозрелых лимонов шведским аптекарем Карлом Шееле и до 30-х годов ХХ века вырабатывалась из цитрусовых, в основном в Италии. В 1933 году в Чехословакии, а в 1935 году в Советском Союзе было создано производство лимонной кислоты методом биохимического синтеза с помощью плесневых грибов Aspergillus niger из сахара. В настоящее время сырьём для получения лимонной кислоты является меласса свекловичная.
2. Основное сырье
Меласса, пригодная для производства лимонной кислоты, должна удовлетворять следующим требованиям: содержать сухих веществ не менее 75%; сахара по прямой поляризации не менее 46%; инвертного сахара не более 1%; окиси кальция не более 0,7%; диоксида серы не более 0,03%; Р2О5 не более 0,05%; жироподобных веществ не более 0,5%. Величина рН должна быть на ниже 6,5. Перечисленные показатели технологического качества мелассы, однако, еще не могут служить надежным критерием ее пригодности для производства лимонной кислоты, и окончательное заключение об этом может быть сделано только по результатам биохимического испытания. Мелассу заготавливают на сахарных заводах на основании предварительных испытаний по ферментации, в конце сентября - ноябре. Меласса, заготовленная в более поздние сроки, обычно характеризуется пониженным выходом лимонной кислоты. Заготавливают мелассу исходя из 15-месячного запаса.
Меласса считается пригодной для производства лимонной кислоты, если в оптимальных условиях подготовки и ферментации в поверхностных условиях (в стаканах с площадью дна 0,42 дм2, концентрации сахара 15%, высоте слоя 9 см, продолжительности ферментации 7 сут. и соответствующем штамме - поверхностном или глубинном) будет получен съем: на мелассе для глубинной ферментации не менее 1800 г/(м2, сут), для подливов - не менее 1500; на мелассе для поверхностной ферментации - не менее 1400 г/(м2, сут).
3. Продуцент лимонной кислоты
В настоящее время для ферментации сахарсодержащих сред используют специальные штаммы Aspergillus niger.
При использовании любого вида сырья наряду с оптимальными составом питательной среды и режимом ферментации эффективность производства определяется применяемым штаммом A. niger. Штаммы для производства лимонной кислоты должны отвечать следующим основным требованиям:
1) давать возможно больший выход лимонной кислоты к массе введенного в производство сахара и быстро его ферментировать;
2) быть генетически однородными;
3) обладать устойчивостью к внешним воздействиям.
Выход лимонной кислоты зависит от относительных затрат сахара на образование лимонной кислоты, побочных кислот, синтез биомассы гриба и дыхание, а также от полноты ассимиляции сахара. Очевидно, чем меньше остается сахара в культуральной жидкости в конце процесса ферментации и чем больше его идет на образование лимонной кислоты, при уменьшении других затрат, тем выше продуктивность штамма. Немаловажное значение имеет и повышение скорости ферментации. Жизнедеятельность A. niger проявляется в процессах питания, дыхания, роста и в реакциях на внешние раздражения. Питание и дыхание, необходимые организму для синтеза клеточного вещества и получения энергии, являются основой метаболизма.
По типу питания аспергиллы относятся к гетеротрофным организмам, усваивающим углерод из органических соединений. В среде могут содержатся витамины (мкг/г): тиамин 150; рибофлавин 70-85; пантотеновая кислота 244-727; никотинамид 120-840; фолиевая кислота 210; цианкобаламин 178. Биотин необходим для нормального функционирования всех организмов. Добавление небольших количеств биотина в питательную среду стимулирует рост A. niger. Аналогичное действие оказывает добавление пантотеновой кислоты. Образование лимонной кислоты стимулируется тиамином.
4. Поверхностный способ ферментации
Приготовление питательной среды при поверхностном способе культивирования осуществляют в варочном котле. Мелассу разбавляют кипящей водой в соотношении 1:1 и, добавляя серную кислоту, доводят рН раствора до значения 6,7 - 7,2. Для осаждения солей железа и тяжелых металлов водят при кипячении определенное количество раствора желтой кровяной соли. В раствор мелассы при температуре 60 - 70 С последовательно добавляют источники азота, фосфора, макро- и микроэлементов. Содержание сахаров в среде должно составлять 12 - 16%.
Основная ферментация осуществляется в специальных камерах, представляющих собой закрытые помещения, в которых на стеллажах расположены кюветы. Кюветы прямоугольной формы изготавливают из алюминия или нержавеющей стали. Заполнение кювет питательной средой и слив из них культуральной жидкости осуществляется через штуцеры в дне кювет. Камеры оборудованы системой для подачи нагретого стерильного воздуха.
Перед началом нового цикла ферментации камеры и кюветы тщательно моют и стерилизуют параформалиновой смесью с последующей дегазацией пароаммиачной смесью. После стерилизации и охлаждения камер в кюветы наливают питательную среду слоем от 12 до 18 см. с помощью специального устройства для распыления в питательную среду вносят посевной материал - конидии гриба A.niger.
Через сутки после засева образуется тонкая серовато-белая пленка мицелия, которая по истечении трех суток сильно утолщается и приобретает складчатую структуру. Температуру в период активного роста мицелия гриба поддерживают в предела 34 - 36 С при умеренной аэрации. В период активного кислотообразования температуру снижают до 32 - 34 С, а подачу воздуха увеличивают в 3 - 4 раза. По мере снижения интенсивности кислотообразования и уменьшения количества выделяемой теплоты подачу воздуха в камеру постепенно уменьшают. Процесс ферментации прекращают, когда в растворе остается 1 - 2% сахаров, а содержание кислот в культуральной жидкости достигает 12 - 20%.
Культуральную жидкость сливают из кювет в сборник, откуда ее подают в химический цех для выделения лимонной кислоты. Содержание лимонной кислоты в культуральной жидкости составляет 12 - 20%.
Мицелий отмывают от кислоты горячей водой и используют как корм для скота.
Способ называется бессменным. По сменному способу после сливания культуральной жидкости под пленку A.niger вводят немного воды температурой 30-32С, выдерживают 0,5 часов, промывную жидкость сливают, вводят свежую мелассную среду и ферментируют. По доливному способу ферментации на 4-5 сутки под пленку A.niger доливают свежую питательную среду в количестве, компенсирующем уменьшения объема вследствие испарения влаги. При работе этими способами экономится расход конидий, реже перезаряжаются камеры и появляется возможность ферментировать низкокачественные мелассы, не пригодные для выращивания грибной пленки.
Периодические способы имеют ряд недостатков: ферментация происходит с небольшой скоростью; мицелий по окончании цикла выбрасывают, хотя он еще активен, а получение нового мицелия связано с затратой конидий, мелассы и времени на его выращивание; во всех кюветах трудно поддерживать заданную температуру, поэтому ферментация происходит неравномерно.
Предложенные непрерывные способы предусматривают протекание мелассной среды по каскаду кювет под предварительно выращенной пленкой мицелия A.niger или под секциями его, движущимися на транспортере в одном направлении со средой в плоском ферментаторе туннельного типа.
Наряду с поверхностным способом ферментации на жидких средах за рубежом известны способы ферментации на твердых средах. Твердофазная ферментация предусматривает использование импрегнированного средой пористого твердого материала, как багасса, картофель, пульпа сахарной свеклы др. в определенных пропорциях. Материал стерилизуют и инокулируют суспензией спор. Инкубируют в лотках при 25 - 30 0С в течение 6 - 7 дней. После инкубирования содержимое экстрагируют водой, концентрируют, цитрат осаждают и очищают.
В Японии в процессе Коджи получают пятую часть выпускаемой в стране лимонной кислоты. Это твердофазное культивирование специальных штаммов A.niger на пшеничных отрубях. Перед стерилизацией значение рН отрубей доводят до 5,5, увлажняют отруби горячим паром так, чтобы их влажность составляла 70 - 80%. Далее субстрат охлаждают до 30 - 36 С и инокулируют спорами штамма, малочувствительного к присутствию Fe3+. Температура не должна быть выше 28 С. Крахмал отрубей осахаривается ферментами гриба, но добавление готовых амилаз к субстрату увеличивает выход продукта. Инокулированные отруби размещают в лотках на глубину 3 - 5 см. через 5 - 8 дней Коджи собирают и переносят в инокулятор для экстракции лимонной кислоты водой. Загрязнение субстрата следовыми металлами является проблемой в процессе Коджи, так как их труднее удалять, чем в других вариантах процесса. Поэтому проводят селекцию и используют штаммы, устойчивые к следовым металлам. К субстрату также добавляют HCF или Сu+2.
5. Глубинный способ ферментации
На современных заводах принято глубинное культивирование гриба, характеризующее более высокой продуктивностью, чем первый процесс. При этом инокулированная среда наливается хорошо аэрируемые ферментеры с перемешиванием и контролем аэрации. Глубинная ферментация возможна в разных вариантах: периодическом с подпиткой и непрерывном.
Процесс получения лимонной кислоты при глубинном культивировании гриба A.niger проводят в ферментаторах объемом 100 м3. В качестве посевного материала используют подросший мицелий, полученный в посевных аппаратах объемом 10 м3.
Раствор мелассы и для посевного, и для производственного ферментаторов готовят также, как и при поверхностном культивировании, только исходный раствор мелассы для глубиной ферментации должен содержать не более 4% сахаров. По ходу ферментации, когда концентрация сахара резко снижается, проводят дробное добавление стерильного мелассного раствора, содержащего 25 - 28% сахаров. Добавляют этот раствор в таком количестве, чтобы концентрация сахаров в ферментаторе составляла 12 - 15%.
В посевной аппарат, заполненный питательной средой, засевают суспензию конидий, которую предварительно выдерживают 5 - 6 часов в термостате при 32 С. Культуру выращивают при 34 - 35 С при постоянном перемешивании и аэрации. В процессе культивирования строго контролируют режим подачи воздуха в ферментатор, расход которого увеличивают к концу ферментации почти в 10 раз. О2 должен находиться как минимум в концентрации 20 - 25% от насыщения. В период интенсивного вспенивания среды небольшими порциями вводят химический пеногаситель (олеиновую кислоту). Процесс подращивания мицелия заканчивают через 30-36 ч, когда содержание кислот в культуральной жидкости достигает 1-2%. Подросший мицелий передают для засева питательной среды в производственный ферментатор.
Процесс кислотообразования в ферментаторе продолжается 5-7 сут при непрерывной аэрации и температуре 31-32 С. Расход воздуха постепенно увеличивают с 400 м3/ч в начале процесса до 2200 м3/ч к концу ферментации. Дробную добавку подливного раствора проводят 2-3 раза, поддерживая концентрацию Сахаров, в растворе в пределах 12-15%. Конец процесса определяют по общей кислотности и концентрации сахаров.
После окончания процесса ферментации культуральную жидкость нагревают острым паром до 60-65 0С и сливают в сборник, а оттуда подают на вакуум-фильтр для отделения и промывки биомассы мицелия. Промытый мицелий используется как корм для скота. Основной раствор лимонной кислоты вместе с промывными водами передается в химический цех для выделения лимонной кислоты.
Отъемно-долевной способ ферментации заключается в том, что при активно протекающем процессе продолжают подливать мелассную среду с соответствующими предварительными отъемами жидкости. В начале ферментацию ведут по режиму, обычно для периодического способа, затем в 3 - 4 приема или непрерывно подливают дополнительное количество среды. Подлив прекращают за 36 часов до конца процесса ферментации, продолжающийся 12 суток. Суммарное количество сахара за цикл составляет около 30% в пересчете на исходный объем (при начальной 3%-ной концентрации). В период дополнительных подливов поддерживают 1,2 - 1,5%-ную концентрацию сахара. Перед каждым подливом добавляют столько воды, сколько ее увлечено отработавшим сжатым воздухом, и небольшого количества азота.
При ферментации отъемно-долевным способом увеличивается среднесуточный съем лимонной кислоты с 1 м3 ферментатора за счет уменьшения частоты его зарядок при том же выходе кислоты по массе сахара.
В процессе непрерывной ферментации A.niger изменяет морфологию и проявляет большую кислотообразующую способность, чем в периодическом. Недостатком непрерывной ферментации в одном аппарате является проскок неферментированного сахара и невозможность осуществления профилактической стерилизации без прерывания процесса. Проведение ферментации в нескольких последовательно соединенных аппаратах не имеет этих недостатков и более перспективно, о чем свидетельствует опыт непрерывного спиртового брожения.
Заключение
лимонный кислотообразование ферментатор трикарбоновый
Наиболее экономически выгодно производить лимонную кислоту поверхностным способом, так как себестоимость лимонной кислоты несколько ниже. Этот способ имеет и другие преимущества: выше концентрация лимонной кислоты в культуральной жидкости, значительно меньше образуется побочных кислот, вследствие чего затрачивается меньше мелассы при ферментации и меньше потери при химической переработке культуральных жидкостей. При поверхностном способе гриб менее чувствителен к перерывам в аэрации. Обслуживание и контроль процесса ферментации просты, проблемы возникают только при необходимости поддержания требующейся температуры воздуха в камере при высокой температуре наружного воздуха.
Глубинный способ позволяет перерабатывать широкий набор углеродсодержащего сырья, он не так требователен к качеству мелассы, что на общем фоне его ухудшения является важным достоинством. Скорость ферментации по этому способу выше, в одном аппарате сразу получается большое количество культуральной жидкости и она не собирается по многочисленным кюветам, что упрощает технологию. Ферментация ведется в стерильных условиях, являющихся необходимой предпосылкой для перехода на непрерывный, полностью механизированный процесс, устраняющий ручной труд.
Если поверхностный способ исчерпал свои потенциальные возможности, устарел, то глубинный отвечает всем требованиям современной биотехнологии и находится в стадии развития. В будущем освоение непрерывной ферментации повысит производительность и экономичность процесса.
Размещено на Allbest.ru
Подобные документы
Процесс получения лимонной кислоты при ферментации сахара, стадии процесса. Технология получения молочной кислоты путем ферментации углеводсодержащего сырья молочнокислыми бактериями. Получение уксуса при окислении этанола уксуснокислыми бактериями.
реферат [504,8 K], добавлен 15.05.2014Отличия гомоферментативного и гетероферментативного молочнокислого брожения. Процесс подготовки питательной среды и стадии получения посевного материала при производстве молочной кислоты. Примеры способов получения молочной кислоты и их эффективность.
презентация [1,1 M], добавлен 06.10.2016Полимолочная кислота - полиэфир на основе молочной кислоты, способный к биоразложению в условиях окружающей среды в течение короткого времени. Конкурентоспособность производства полилактида. Биоразлагаемые полимеры на основе полимолочной кислоты.
курсовая работа [157,6 K], добавлен 18.02.2011Методы получения соляной кислоты. Характеристика основного и вспомогательного сырья. Физико-химические характеристики стадий процесса. Характеристика абсорберов хлороводорода. Расчет материального баланса производства синтетической соляной кислоты.
курсовая работа [835,1 K], добавлен 17.11.2012Обоснование места размещения производства предприятия. Характеристика продукции (соляная кислота), требования к сырью, материалам производства. Описание технологической схемы получения синтетической соляной кислоты. Характеристика процесса ингибирования.
дипломная работа [1,8 M], добавлен 27.11.2017Технологический процесс получения полифосфорной кислоты. Методы и аппараты для обеспечения экологической безопасности. Контроль производства и управления абсорбцией отходящих газов. Расчет абсорбера санитарного. Приборы измерения загрязняющих веществ.
дипломная работа [1,3 M], добавлен 06.11.2012Основные стадии производственного процесса получения серной кислоты методом двойного контактирования с промежуточной абсорбцией. Автоматизация системы управления производством серной кислоты. Надежность подсистем процесса автоматического управления.
дипломная работа [261,2 K], добавлен 13.11.2011Производство соляной кислоты. Характеристика основного и вспомогательного сырья. Автоматизация процесса получения соляной кислоты. Технологическая схема процесса и система автоматического регулирования. Анализ статических характеристик печи синтеза.
контрольная работа [96,6 K], добавлен 08.06.2016Характеристика уксусной кислоты, технологическая схема ее производства окислением ацетальдегида. Материальный баланс процесса ее получения. Расчет технологических и технико-экономических показателей. Составление рекламы для продажи уксусной кислоты.
курсовая работа [787,2 K], добавлен 19.08.2010Кислота серная техническая и реактивная, способы ее хранения. Контактный и нитрозный способы производства серной кислоты. Организация работы участка фасовки и комплектации готовой продукции. Построение профиля производственной мощности и его анализ.
курсовая работа [2,2 M], добавлен 26.05.2015