Способы защиты судов от коррозии

Рассмотрение химической коррозии в различных химических производствах. Определение основных способов защиты металлов от коррозии. Электрохимическая протекторная защита металлов от коррозии. Область применения магниевых, цинковых, алюминиевых протекторов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 27.06.2015
Размер файла 19,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

По предмету: Основы материаловедения и общеслесарных работ

На тему: Способы защиты судов от коррозии

2014

1. Понятие коррозии

При обычных условиях металлы могут вступать в химические реакции с веществами, содержащимися в окружающей среде, - кислородом и водой. На поверхности металлов появляются пятна, металл становится хрупким и не выдерживает нагрузок. Это приводит к разрушению металлических изделий, на изготовление которых было затрачено большое количество сырья, энергию и количество человеческих усилий.

Коррозией называют самопроизвольное разрушение металлов и сплавов под воздействием окружающей среды.

Яркий пример коррозии - ржавчина на поверхности стальных и чугунных изделий. Ежегодно из-за коррозии теряют около четверти всего производимого в мире железа. Затраты на ремонт или замену судов, автомобилей, приборов и коммуникаций, водопроводных труб во много раз превышают стоимость металла, из которого они изготовлены. Продукты коррозии загрязняют окружающую среду и негативно влияют на жизнь и здоровье людей.

Химическая коррозия происходит в различных химических производствах. В атмосфере активных газов (водорода, сероводорода, хлора), в среде кислот, щелочей, солей, а также в расплавах солей и других веществ происходят специфические реакции с привлечением металлических материалов, из которых сделаны аппараты, в которых осуществляется химический процесс. Газовая коррозия происходит при повышенных температурах. Под ее влияние попадают арматура печей, детали двигателей внутреннего сгорания. Электрохимическая коррозия происходит, если металл содержится в любом водном растворе.

Наиболее активными компонентами окружающей среды, которые действуют на металлы, является кислород О2, водяной пар Н2О, карбон (IV) оксид СО2, серы (IV) оксид SО2, азота (IV) оксид NО2. Очень сильно ускоряется процесс коррозии при контакте металлов с соленой водой. По этой причине корабли ржавеют в морской воде быстрее, чем в пресной.

Суть коррозии заключается в окислении металлов. Продуктами коррозии могут быть оксиды, гидроксиды, соли и т.д. Например, коррозии железа можно схематично описать следующим уравнением:

4Fe + 6H2O + 3O2 > 4Fe (OH) 3.

Остановить коррозию невозможно, но ее можно замедлить. Существует много способов защиты металлов от коррозии, но основным приемом является предотвращение контакта железа с воздухом. Для этого металлические изделия красят, покрывают лаком или покрывают слоем смазки. В большинстве случаев этого достаточно, чтобы металл не разрушался в течение нескольких десятков или даже сотен лет. Другой способ защиты металлов от коррозии электрохимическое покрытие поверхности металла или сплава другими металлами, устойчивых к коррозии (никелирование, хромирование, оцинковка, серебрение и золочение). В технике очень часто используют специальные коррозионностойкие сплавы.

2. Принцип действия протекторной защиты

Метод электрохимической защиты был изобретен и впервые применен в Англии в 1824 году для защиты обшивки кораблей от коррозии.

Электрохимическая протекторная защита металлов от коррозии основана на прекращении коррозии металлов под действием постоянного электрического тока. Поверхность любого металла гальванически неоднородна, что и является основной причиной его коррозии в растворах электролитов, к которым относятся морская вода, все пластовые и все подтоварные воды. При этом в первую очередь разрушаются участки поверхности металла с наиболее отрицательным потенциалом (аноды), с которых ток стекает во внешнюю среду, а участки металлов с более положительным потенциалом (катоды), в которые ток втекает из внешней среды, не разрушаются. Механизм действия протекторной защиты заключается в превращении всей поверхности защищаемой металлической конструкции в один общий неразрушающийся катод. Анодами при этом будут являться подключенные к защищаемой конструкции электроды из более электроотрицательного металла -- протекторы. Электрический защитный ток получается вследствие работы гальванической пары протектор-защищаемая конструкция. При своей работе протекторы постепенно изнашиваются (анодно растворяются), защищая при этом основной металл, поэтому за рубежом протекторы называют «жертвенными анодами». Электрохимическая защита одинаково эффективна как для строящихся, так и для находящихся в эксплуатации судов, резервуаров и другого оборудования.

Протекторная защита обычно применяется совместно с лакокрасочными покрытиями. Такое сочетание пассивной, какой является окраска, и активной защиты, к которой относится протекторная, позволяет уменьшить расход протекторов и тем самым увеличить срок их службы, обеспечить более равномерное распределение защитного тока по поверхности защищаемых конструкций и, наконец, компенсировать все дефекты покрытия, связанные с неизбежным его разрушением при монтаже, транспортировке и процессе эксплуатации, в том числе вследствие естественного старения (набухания, вспучивания, растрескивания, отслаивания).

При этом следует отметить, что на оголенной поверхности металла при его катодной поляризации в морской, пластовой и подтоварной водах выпадает катодный солевой осадок, состоящий из нерастворимых солей кальция и магния и играющий роль дополнительного покрытия. Вместе с тем, протекторная защита в состоянии обеспечить полную защиту от коррозии стальных сварных сооружений и без их окраски. В этом случае должна быть обеспечена более высокая плотность защитного тока на неокрашенной стальной поверхности, что потребует увеличения количества протекторов и усилит их расход. Однако, принимая во внимание высокую трудоемкость нанесения лакокрасочных покрытий, особенно на судах и резервуарах, уже находящихся в эксплуатации, такой способ противокоррозионной защиты с помощью установки только одних протекторов представляется для них весьма перспективным.

Поскольку основная масса металлических конструкций делается, как правило, из стали, в качестве протектора могут использоваться металлы с более отрицательным, чем у стали электродным потенциалом. Среди основных их три -- цинк, алюминий и магний. Использовать чистые металл в качестве протекторов не всегда целесообразно. Так, например, чистый цинк растворяется неравномерно из-за крупнозернистой дендритной структуры, поверхность чистого алюминия покрывается плотной оксидной пленкой, магний имеет высокую скорость собственной коррозии. Для придания протекторам требуемых эксплуатационных свойств в их состав вводят легирующие элементы.

3. Магниевые протекторы

Из-за высокого рабочего потенциала магниевого протекторного сплава (минус 1,45 В по хлорсеребряному электроду сравнения) происходит быстрый износ протекторов и поэтому не представляется возможным с помощью этих протекторов осуществить защиту на приемлемый для практики длительный срок. Следует отметить также что у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи.

Область применения

Нежелательно применение магниевых протекторов для защиты внутренней поверхности танков, резервуаров других емкостей для хранения, отстоя или перевозки нефти и нефтепереработки, так как магниевые протекторы являются крайне взрывопожароопасными (при соударении магния со сталью образуются искры), а при работе магниевых протекторов выделяется газообразный водород, который сам способен создавать взрывопожароопасную среду.

Наиболее выгодно применение магниевых протекторов для защиты трубопроводов, днищ резервуаров снаружи, металлоконструкций, работающих в среде пресной воды, атмосферных условиях, зонах переменного смачивания и грунтах с высоким удельным сопротивлением.

4. Цинковые протекторы

Протекторы из цинкового сплава полностью взрывопожаробезопасны, что позволяет их применять на объектах, к которым предъявляются жесткие требования по взрывопожаробезопасности. Кроме того, при их анодном растворении не образуются продукты, загрязняющие рабочую среду.

Область применения

Опыт показывает, что в песчано-парафинистых отложениях на днищах резервуаров из-за их невысокой электропроводности анодной активности алюминиевого сплава недостаточно. Поэтому, учитывая, что протекторы из цинкового сплава имеют более высокий рабочий потенциал, чем протекторы из алюминиевого сплава, для защиты от коррозии внутренней поверхности нефтяных резервуаров, в первую очередь, днищ и нижних поясов, наиболее рационально применять протекторы из цинкового сплава.

5. Алюминиевые протекторы

Короткозамкнутые протекторы из сплава с повышенной анодной активностью предназначены для защиты днищ резервуаров, подверженных накоплению песчано-парафиновых отложений, удельная электропроводность которых значительно ниже, чем у пластовых вод. Такой материал характеризуется величиной рабочего и стационарного отрицательного потенциала по водородному электроду сравнения соответственно 850-900 мВ. Применение таких сплавов позволяет также обеспечить защиту конструкции при наличии в агрессивной среде сульфатвосстанавливающих бактерий, присутствующих в нефти практически всегда. Браслетные алюминиевые протекторы позволяют защитить сварные стыковые соединения промысловых трубопроводов, которые наиболее уязвимы для коррозии.

6. Методика расчета протекторной защиты

коррозия металл защита протектор

6.1 Расчет протекторной защиты днища стальных резервуаров от грунтовой коррозии

При противокоррозионной защите днищ РВС протекторными установками, заглубленными в грунт, основной задачей является определение числа протекторов и срока их службы. сопротивления изоляции днища и удельного электрического сопротивления грунтов.

Алгоритм расчета протекторной защиты днища стальных резервуаров от грунтовой коррозии выглядит следующим образом:

1. оценивается переходное сопротивление изоляции днища резервуара исходя из переходного сопротивления системы резервуар-грунт, определяемого по показаниям прибора и площади днища резервуара;

2. защитная плотность тока принимается в зависимости от удельного электрического сопротивления грунта и находится сила тока, необходимая для защиты днища резервуара от коррозии;

3. проверяется возможность полной защиты резервуара от коррозии с помощью протекторов;

4. определяется ориентировочное число протекторов исходя из сопротивления растеканию тока с протектора, сопротивления соединительного провода, силы тока и абсолютных значений потенциалов резервуара и протектора до подключения;

5. после корректировки числа протекторов с помощью коэффициента экранирования, принимается их окончательное количество;

6. на заключительном этапе оценивается срок службы протектора с учетом его КПД, массы, силы тока, коэффициента использования и теоретического эквивалента материала протектора.

6.2 Расчет протекторной защиты внутренней поверхности днища и первого пояса стальных резервуаров

Как и в предыдущем случае, основной задачей расчета является определение количества протекторов, располагаемых на днище резервуара, и срок их службы.

Число протекторов можно определить исходя из радиуса резервуара, зоны действия одного протектора и уровня подтоварной воды в резервуаре.

Срок службы оценивается с учетом технологического коэффициента, характеризующего условия работы резервуара, массы протектора и силы его тока, которая, в свою очередь, зависит от диаметров протектора и электролита (резервуара), поляризационного сопротивления протектора, разности потенциалов протектор-днище при разомкнутой цепи и поправочного коэффициента, зависящего от уровня подтоварной воды.

Список литературы

1. Ковалевская Ж.Г., Безбородов В.П. Основы материаловедения. Конструкционные материалы: учебное пособие. Томск: Изд-во Томского политехнического университета, 2009.

2. Адаскин А.М., Зуев В.М. Материаловедение и технология материалов. М., 2009.

3. http://sznro.ru/assets/files/publications/21.systmy_protektornoy_zashity_ot_korrozii.pdf.

Размещено на Allbest.ru


Подобные документы

  • Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.

    контрольная работа [422,9 K], добавлен 21.04.2015

  • Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.

    презентация [734,6 K], добавлен 09.04.2015

  • Рассмотрение механизма протекторной защиты от коррозии, ее преимуществ и недостатков. Построение схемы протекторной защиты. Определение параметров катодной защиты трубопровода, покрытого асфальтобитумной изоляцией с армированием из стекловолокна.

    контрольная работа [235,4 K], добавлен 11.02.2016

  • Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.

    реферат [50,7 K], добавлен 19.12.2012

  • Физическая, химическая, электрохимическая и биологическая коррозии. Коррозия выщелачивания, магнезиальная, углекислотная, сульфатная, сероводородная. Эксплуатационно-профилактическая, конструктивная, строительно-технологическая защита бетона от коррозии.

    реферат [16,2 K], добавлен 26.10.2009

  • Классификация, особенности и механизм возникновения влажной атмосферной коррозии. Конденсация влаги на поверхности корродирующего металла. Влажность воздуха как один из главных факторов образования коррозии. Методы защиты от влажной атмосферной коррозии.

    реферат [1,1 M], добавлен 21.02.2013

  • Химический состав чугуна, характеристика его элементов. Влияние значения марганцевого эквивалента на эксплуатационную стойкость чугунных изделий. Процесс кристаллизации металлов и сплавов. Способы защиты металлов от коррозии. Область применения прокатки.

    контрольная работа [30,5 K], добавлен 12.08.2009

  • Качественные и количественные методы исследования коррозии металлов и ее оценки. Определение характера и интенсивности коррозионного процесса с помощью качественного метода с применением индикаторов. Измерение скорости коррозии металла весовым методом.

    лабораторная работа [18,1 K], добавлен 12.01.2010

  • Катодные включения в атмосфере. Влажность воздуха при атмосферной коррозии. Примеси в атмосфере (газы). Особенности процесса морской коррозии. Защита металлов и сплавов от атмосферной коррозии. Применение контактных и летучих (парофазных) ингибиторов.

    реферат [40,2 K], добавлен 01.12.2014

  • Понятия химической коррозии, жаростойкости и жаропрочности. Теории легирования для повышения жаростойкости. Уменьшение дефектности образующегося оксида, образование защитного оксида легирующего элемента, образование высокозащитных двойных оксидов.

    реферат [27,1 K], добавлен 22.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.