Производство стали

Рассмотрение классификации химических производств по их размещению, изучение основных примеров. Выявление значения использования циклической схемы в производстве аммиака. Перечисление основных способов производства стали, их характеристика и применение.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 06.01.2015
Размер файла 53,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Приведите классификацию химических производств по их размещению. Подтвердите это примерами

Химический комплекс относится к числу базовых отраслей тяжелой промышленности России и включает химическую и нефтехимическую промышленность, подразделяющиеся на многие отрасли и производства, а также микробиологическую промышленность. Он обеспечивает производство кислот, щелочей, минеральных удобрений, разнообразных полимерных материалов, красителей, бытовой химии, лаков и красок, резино-асбестовой, фотохимической и химико-фармацевтической продукции.

Химической и нефтехимической промышленности свойственны черты, сочетание которых делает эти отрасли уникальными по широте хозяйственного использования их продукции. С одной стороны, продукция комплекса находит применение в качестве сырья и материалов во всех отраслях промышленности (медицинской, микробиологической, радиотехнической, космической, деревообрабатывающей, легкой), в сельском хозяйстве и на транспорте. С другой стороны, процесс переработки химического и нефтехимического сырья в конечный продукт включает большое число технологических стадий передела, что определяет большую долю внутриотраслевого потребления.

Объем отгруженных товаров по виду экономической деятельности “Химическое производство” в 2007 г. составил 67% в выпуске обрабатывающих производств. В отрасли работают 7,6 тыс. предприятий, где занято более 500 тыс. человек.

Объем инвестиций в основной капитал химического комплекса за счет всех источников финансирования с 2000 г. возрос в 6,7 раза. Внешние инвестиции за этот период превысили 3,7 млрд. долл., хотя окупаемость крупного химического проекта составляет 13-26 лет.

Сложившееся размещение химического комплекса имеет ряд особенностей:

высокую концентрацию предприятий в европейской части России;

сосредоточение центров химической промышленности в районах, дефицитных по водным и энергетическим ресурсам, но концентрирующих основную часть населения и производственного потенциала;

территориальное несовпадение районов производства и потребления прдукции химической промышленности;

сырьевую базу отрасли, котрая дифференцируется в зависимости от природной и экономической специфики отдельных районов страны.

Наиболее важную роль химическая промышленность играет в хозяйстве Поволжья, Волго-Вятского района, Центрального Черноземья, Урала и Центра. Еще большую значимость отрасль имеет в хозяйстве отдельных регионов, где она выступает основой формирования экономики этих территорий -- в Новгородской, Тульской, Пермской областях и Татарии.

Продукция химического комплекса России пользуется большим спросом за рубежом. В 2007 г. объем экспорта химической и нефтехимической продукции составил 20,8 млрд. долл. или 5,9% всего экспорта РФ.

Развитие и размещение химического комплекса обусловлено влиянием ряда факторов химический циклический аммиак сталь

Сырьевой фактор оказывает огромное воздействие на размещение всех отраслей химического комплекса, а для горно-химической промышленности и производства калийных удобрений является определяющим. В себестоимости готовой продукции доля сырья по отдельным производствам составляет от 40 до 90%, что обусловлено или высокими нормами расхода, или его ценностью.

Энергетический фактор особенно важен для промышленности полимерных материалов и отдельных отраслей основной химии. Химический комплекс потребляет около 1/5 энергоресурсов, используемых в промышленности. Повышенной электроемкостью отличается производство синтетического каучука, фосфора путем электровозгонки и азотных удобрений методом электролиза воды, а значительными расходами топлива отличается содовая промышленность.

Водный фактор играет особую роль при размещении предприятий химического комплекса, так как вода используется и для вспомогательных целей и в качестве сырья. Расход воды в отраслях химического комплекса варьируется от 50 м3 при производстве хлора до 6000 м3 при производстве химических волокон.

Потребительский фактор учитывают при размещении прежде всего отраслей основной химии -- производстве азотных и фосфатных удобрений, серной кислоты, а также узкоспециализированных предприятий, выпускающих лаки, краски, фармацевтические товары.

Трудовой фактор влияет на размещение трудоемких отраслей химического комплекса, к которым относится производство химических волокон, пластмасс.

Экологический фактор до последнего времени недостаточно учитывался при размещении предприятий химического комплекса. Однако именно эта отрасль является одним из основных загрязнителей окружающей среды среди отраслей промышленности (почти 30% объема загрязненных сточных вод промышленности). Поэтому главным и определяющим для дальнейшего развития и размещения отрасли является трансформация традиционных технологий в малоотходные и ресурсосберегающие, создание замкнутых технологических циклов с полным использованием сырья и не вырабатывающих отходов, выходящих за их рамки.

Инфраструктурный фактор, предполагающий подготовку и обустройство территории к промышленному освоению, особенно важен при размещении промышленных предприятий, главным образом в районах нового освоения.

Состав химического комплекса

В составе химического комплекса можно выделить горно-химическую промышленность, связанную с добычей первичного химического сырья, основную химию, обеспечивающую производство минеральных удобрений, серной кислоты и соды, и промышленность полимерных материалов (включая органический синтез).

Горно-химическая промышленность по объему выпускаемой продукции занимает третье место и включает добычу апатитов, фосфоритов, калийной и поваренной соли, самородной серы, бора, мела и др. Запасы химического сырья в России, являющегося сырьем для производства минеральных удобрений, значительны -- по ресурсам калийных солей и фосфатного сырья (апатитов и фосфоритов) страна занимает первое место в мире. Основные запасы химического сырья сосредоточены в европейской части страны. В Восточной зоне крупных и рентабельных месторождений пока не выявлено.

В структуре запасов фосфатного сырья преобладают апатитовые руды, где главную роль играет Хибинская группа в Мурманской области. Почти 90% разведанных запасов калийных солей страны сосредоточено в Верхнекамском месторождении в Пермском крае, где полностью осуществляется добыча этого сырья в России. Поваренные соли представлены на территории Поволжья, Урала, Западной и Восточной Сибири, Дальнего Востока, месторождения серы и серного колчедана -- на Урале.

Производство удобрений

Основная химия занимает ведущее место в химическом комплексе по объему выпускаемой продукции. Ее главной отраслью является промышленность минеральных удобрений, которая включает производство азотных, фосфатных и калийных удобрений. В структуре выпуска минеральных удобрений примерно одинаковая доля (более 2/5) приходится на калийные и азотные, 1/6 -- на фосфатные. В себестоимости производства минеральных удобрений затраты на исходное сырье, природный газ, электроэнергию и транспорт занимают примерно 70-80%.

Территориальная организация производства минеральных удобрений за последнее десятилетие не претерпела каких-либо изменений. По-прежнему более 95% выпуска минеральных удобрений сосредоточено в Западной зоне страны, где еще более усилилось значение Урала (2/5 общероссийского производства) на фоне сокращения роли Центра, Северо-Запада, Поволжья, Волго-Вятского района.

Современная азотная промышленность основывается на синтезе и последующей переработке аммиака, в себестоимости которого почти 50% затрат приходится на природный газ (как сырье и топливо). При этом определяющим в размещении является либо наличие в районе газовых ресурсов (Невинномысск на Северном Кавказе), либо потребителей готовой продукции -- сельского хозяйства -- и предприятия размещаются вдоль трасс магистральных газопроводов (Новомосковск в Центральном, Новгород в Северо-Западном, Дзержинск в Волго-Вятском районах). При использовании в качестве сырья коксового газа, который образуется при коксовании угля, предприятия по производству азотных удобрений сооружаются либо в угольных бассейнах (Кемерово, Ангарск), либо вблизи металлургических комбинатов полного цикла (Магнитогорск, Нижний Тагил, Липецк, Череповец).

Калийные удобрения производятся на предприятиях горно-химической промышленности, они объединяют добычу и обогащение калийных руд. На базе Верхнекамского месторождения осуществляется выпуск калийных удобрений на двух крупных предприятиях в Соликамске и Березниках в Пермском крае.

Производство фосфатных удобрений основано на кислотной переработке фосфатного сырья (фосфоритов и апатитов) и осуществляется на 19 предприятиях, расположенных почти во всех европейских районах страны, включая Урал. Определяющим в размещении является наличие потребителя, поэтому предприятия построены в основном в сельскохозяйственных районах: Кингисепп (Северо-Запад), Воскресенск, Новомосковск (Центр), Уварово (Центральное Черноземье), Балаково (Поволжье), Красноуральск (Урал).

Сернокислотная промышленность выпускает продукцию, отличающуюся массовым использованием, особенно в производстве фосфатных удобрений. Сернокислотное производство сосредоточено в европейской части страны, главными районами остаются Европейский Север, Урал и Центр, которые обеспечивают почти 2/3 общероссийского выпуска, несколько меньше -- 1/5 -- дают Поволжье и Северо-Запад.

Отличительной особенностью содовой промышленности является тяготение к сырьевым базам -- месторождениям поваренной соли. Производство каустической и кальцинированной соды относится к материалоемким (на выпуск 1 т готовой продукции расходуется до 5 м3 соляного рассола), здесь широко используют вспомогательные материалы (около 1,5 т известняка на 1 т готовой продукции) и топливно-энергетические ресурсы. Ведущими районами сосредоточения содовой промышленности являются Поволжье, Урал, Восточная Сибирь и Волго-Вятский район, на долю которых приходится свыше 9/10 общероссийского производства каустической и кальцинированной соды.

Промышленность полимерных материалов занимает второе место в химическом комплексе по объему выпускаемой продукции и включает органический синтез (производство углеводородного сырья на базе нефте-, газо- и коксохимии), развивающуюся на его основе полимерную химию (производство синтетического каучука, синтетических смол и пластмасс, химических волокон), а также переработку полимерных изделий (производство резинотехнических изделий, шин, изделий из пластических масс).

Развитие и размещение органического синтеза обусловлено значительной и широко распространенной сырьевой базой, снимающей территориальные ограничения для отрасли. Изначально органический синтез опирался на сырье древесного и сельскохозяйственного происхождения, уголь и был представлен в Кузбассе, Подмосковье, на Урале, а также в европейских районах- потребителях готовой продукции. Сейчас определяющим является наличие нефтегазового сырья.

Среди отраслей полимерной химии наибольшими масштабами выделяется промышленность синтетических смол и пластических масс, которая меньше других пострадала в период рыночных преобразований экономики, объем выпуска ее продукции сократился на 1/5. Наличие углеводородного нефтехимического сырья определяет размещение отрасли и производство приближается к нефтехимическим комбинатам, расположенным в районах добычи нефти или по трассам нефтегазотрубопроводов.

Ожидаемых сдвигов в размещении отрасли в Восточную зону не произошло. За последние 15 лет доля восточных районов в общероссийском выпуске синтетических смол и пластмасс сократилась с 31 до 26% и возросла роль Поволжья (Новокуйбышевск, Волгоград, Волжский, Казань) и Урала (Уфа, Салават, Екатеринбург, Нижний Тагил), которые в 2007 г. обеспечивали производство более 2/5 готовой продукции отрасли. Стабильной остается ситуация в крупнейшем районе потребления -- Центральном, где действуют крупные предприятия в Москве, Рязани, Ярославле.

Промышленность химических волокон и нитей по объему выпускаемой продукции полимерной химии занимает второе место и включает производство искусственных (из целлюлозы) и синтетических волокон (из продуктов нефтепереработки).

Промышленность химических волокон и нитей характеризуется высокими нормами расхода сырья, воды, топлива и энергии и ориентируется на районы текстильной промышленности -- Центральный (Тверь, Шуя, Клин, Серпухов), Поволжский (Балаково, Саратов, Энгельс). На востоке крупные предприятия действуют в Красноярске, Барнауле, Кемерово.

Промышленность синтетического каучука занимает особое место, так как первые в мире предприятия на базе пищевого сырья были построены еще в начале 1930-х г. ХХ в. в Центральной России. Переход на углеводородное сырье обусловил строительство новых заводов в Поволжье, на Урале, в Западной Сибири.

Помимо высокой материалоемкости отрасль отличается значительной электроемкостью ( почти 3 тыс. кВт/ч на 1 т синтетического каучука) и характеризуется известной территориальной рассредоточенностью. Почти 2/3 производства синтетического каучука приходится на европейскую часть, где ведущим районом остается Поволжье (Казань, Тольятти, Нижнекамск). Значительны объемы производства в Центральном (Москва, Ярославль), Центрально-Черноземном (Воронеж) и Уральском (Уфа, Стерлитамак, Пермь) районах. На востоке крупными производителями синтетического каучука остаются Омск (Западная Сибирь) и Красноярск (Восточная Сибирь). Учитывая ресурсную обеспеченность отдельных территорий и возможности перерабатывающей промышленности крупными комплексами химической промышленности отличаются следующие экономические районы России:

Центр, где преобладает полимерная химия (выпуск синтетического каучука, пластмасс, химических волокон), выделяется производство азотных и фосфорных удобрений, серной кислоты, красителей и лаков;

Урал, где выпускают все виды минеральных удобрений, соду, серную кислоту, а также синтетический спирт, синтетический каучук, пластмассы из нефти и попутных газов;

Северо-Запад поставляет на общероссийский рынок фосфорные удобрения, серную кислоту, продукты полимерной химии (синтетические смолы, пластмассы, химические волокна);

Поволжье обеспечивает выпуск разнообразной полимерной продукции на основе органического синтеза (синтетический каучук, химические волокна);

Северный Кавказ развивает производство азотных удобрений, органического синтеза, синтетических смол и пластмасс;

Сибирь (Западная и Восточная) характеризуется развитием химии органического синтеза и полимерной химии, выпуском азотных удобрений.

2. Почему в производстве аммиака используется циклическая схема

Принципиальные и технологические схемы можно разделить на два типа: с открытой цепью и циклические. В промышленности встречаются разнообразные комбинации этих схем.

Схемы с открытой цепью представляют собой ряд аппаратов, через которые все реагирующие вещества проходят лишь один раз (проточная схема). По открытой схеме оформляют производства, в основе которых лежат необратимые и обратимые процессы, идущие с большим выходом продукта. Примером схемы с открытой цепью могут служить схемы производства ацетилена, серной, азотной кислоты и других продуктов.

Циклическая схема предусматривает многократное возвращение в один и тот же аппарат всех реагирующих масс или одной из фаз. Эту схему называют также циркуляционной. Типичными примерами циклической схемы могут служить современный синтез аммиака, синтезы спиртов, моторного топлива и др.

Схема производства аммиака состоит из трех основных операций.

Циклическая (циркуляционная) схема синтеза аммиака:

1 - сжатие газовой смеси; 2 - химическая реакция; 3 - выделение аммиака

Смесь газообразных азота и водорода сжимается компрессором 1 и направляется в реактор - колонну синтеза 2, где в присутствии катализатора протекает основная реакция

N2 + 3H2 2NH3.

Затем образующуюся газовую смесь направляют в холодильник 3, где аммиак конденсируется и выводится из цикла в качестве целевого продукта, а непрореагировавшая часть реакционной смеси (газообразных N2 и Н2) возвращается в цикл.

Одни и те же процессы могут быть реализованы как открытые или циркуляционные (очистка воздуха от газообразных примесей СО2, SО2, H2S и др.).

В схеме с открытой цепью воздух, содержащий сероводород проходит аппараты 1 и 2 противотоком поглотительному раствору, который абсорбирует сероводород и выводит его из системы.

В циклической схеме воздух (так же как и в первой схеме) последовательно проходит аппараты 1 и 2. Поглотительный раствор участвует в процессе по циклической схеме: вытекая из аппарата 1, он возвращается в аппарат 2. По мере насыщения поглотительного раствора сероводородом часть eго выводится из цикла и направляется в регенератор 3, где происходит разделение продуктов: сероводород далее используется как побочный продукт, а поглотительный раствор либо возвращается в цикл, либо выводится из него.

1, 2 - абсорбция H2S поглотительным раствором; 3 - десорбция H2S из поглотительного раствора

3. Способы производства стали

С момента изобретения стали, менялись и совершенствовались способы ее производства. В настоящее время существует несколько приоритетных способов производства стали. К ним относятся кислородно-конвертерный, мартеновский и электросталеплавильный способы производства (или плавления) стали. В основе всех этих способов лежит окислительный процесс, направленный на снижение в чугуне некоторых веществ. Давайте остановимся на каждом способе более подробно и рассмотрим их отличия.

Кислородно-конвертерный способ

Первое использование кислородно-конвертерного способа приходится на пятидесятые годы двадцатого столетия. В процессе производства стали, чугун продувают в конвертере чистым кислородом. При этом, процесс происходит без затраты топлива. Для того, чтобы переработать 1 тонну чугуна в сталь требуется около 350 кубометров воздуха. Стоит отметить, что кислородно-конвертерный способ получения стали является наиболее актуальным на сегодняшний день. При этом, процесс не ограничивается на одном способе вдувания кислорода. Различают кислородно-конвертерный процесс с комбинированной, верхней и нижней поддувкой. Конвертерный способ производства стали с комбинированной поддувкой является наиболее универсальным.

Для осуществления этого метода необходим конвертер. Подача кислорода осуществляется через водоохлаждаемую фурму под давлением. В данном случае, процесс окисления является наиболее значимым. Окисление чугуна происходит под воздействием дутья. В результате окисления выделяется тепло, что способствует снижению примесей и повышению температуры металла. далее происходит так называемое раскисление металла.

Мартеновский способ

В процессе производства стали мартеновским способом, участвует специальная отражательная печь. Для того чтобы нагреть сталь до нужной температуры (2000 градусов), в печь вводят дополнительное тепло с помощью регенераторов. Это тепло получают за счет сжигания топлива в струе нагретого воздуха. Обязательное условие - топливо должно полностью сгорать в рабочем пространстве. Особенностью мартеновского способа производства стали является то, что количество кислорода, подаваемого в печь, превышает необходимый уровень. Это позволяет создать воздействие на металл окислительной атмосферы. Сырье (чугун, железный и стальной лом) погружается в печь, где подвергается плавлению в течение 4 - 6 часов. В процессе плавления есть возможность проверять качество металла, путем взятия пробы. В мартеновской печи возможно получать специальные сорта стали. Для этого в сырье вводят необходимые примеси.

Электросталеплавильный способ

В результате электросталеплавильного способа, получают сталь высокого качества. Процесс этот происходит в специальных электрических печах. Основной принцип электросталеплавильного способа производства стали - использование электроэнергии для нагрева металла. Механизм производства следующий: в результате горения нагревательного элемента, выделяется тепло, за счет преобразования электроэнергии в тепловую энергию. Важно отметить, что процесс выплавки связан с выработкой шлаков. Качество получаемой стали во многом зависит от количества и состава шлаков. Основной причиной образования шлаков, в процессе производства стали, является окисление шихты из оксидов.

Благодаря шлакам, происходит связь оксидов, которые образуются в процессе окисления чугуна, а так же удаление ненужных примесей. Кроме этого, шлаки являются передатчиками тепла и кислорода. Присутствие шлаков в процессе производства стали оказывает благотворное влияние на качество стали. Определенное соотношение количества шлаков выводит из стали ненужные вредоносные вещества, например, фосфор. Кроме вышеперечисленных способов производства стали, известны и такие способы, как производство стали в вакуумных индукционных печах, плазменно-дуговая сварка.

Давайте подробнее остановимся на способе производства особо чистой стали, а так же жаропрочных сплавов. Суть способа состоит в выплавке в вакуумных печах. После такой выплавки, сталь дополнительно переплавляют вакуумным дуговым переплавом. Что дает возможность получения качественной однородной стали. Такая сталь применяется, в основном, в авиакосмической промышленности, атомной энергетике и других важных отраслях. Мы рассмотрели основные способы производства стали. Выбор способа всегда зависит от поставленных задач, удобства применения оборудования, необходимого качества полученной стали и от других факторов. Естественно, что каждый способ имеет свои преимущества и свои недостатки.

Размещено на Allbest.ru


Подобные документы

  • Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа [1,5 M], добавлен 02.01.2005

  • Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.

    курсовая работа [2,1 M], добавлен 11.08.2012

  • Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.

    контрольная работа [37,5 K], добавлен 24.05.2008

  • Характеристика рельсовой стали - углеродистой легированной стали, которая легируется кремнием и марганцем. Химический состав и требования к качеству рельсовой стали. Технология производства. Анализ производства рельсовой стали с применением модификаторов.

    реферат [1022,5 K], добавлен 12.10.2016

  • Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.

    лекция [605,2 K], добавлен 06.12.2008

  • Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.

    реферат [22,8 K], добавлен 24.12.2007

  • Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.

    реферат [2,7 M], добавлен 22.02.2009

  • Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.

    реферат [121,3 K], добавлен 22.05.2008

  • Добыча бариевой руды. Применение бария в производстве. Воздействие бария и его соединений на организм. Применение бария и кальция в качестве раскислителя при выплавке стали. Анализ соединений бария, образующихся при его применении в производстве стали.

    курсовая работа [333,4 K], добавлен 13.05.2017

  • Характеристика основных элементарных процессов (диссоциация, абсорбция, диффузия) химико-термической обработки стали. Рассмотрение процессов цементации (твердая, газовая), азотирования, цианирования, диффузионной металлизации поверхностных слоев стали.

    лабораторная работа [18,2 K], добавлен 15.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.