Антикоррозийная защита резервуаров нефтепроводов

Виды коррозий и коррозионных разрушений резервуаров. Конструкционный, активный и пассивный способы защиты резервуаров. Механизмы химической и электрохимической коррозии. Охрана окружающей среды при эксплуатации резервуаров магистральных нефтепроводов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 13.11.2014
Размер файла 148,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Коррозия металлов наносит огромный ущерб, который в промышленно развитых странах, сравнивается с ассигнованиями на развитие крупных отраслей промышленности. Так, по оценке специалистов потери от коррозии выражаются суммой 8 млрд. долл. ежегодно; до 10% производимого за год металла идет на восполнение коррозионных потерь.

Становится все более очевидным, что создание промышленных объектов из металла может оказаться недостаточно эффективным, если одновременно не принимать действенных мер к продлению сроков службы сооружений и изделий из стали, которая была и остается основным конструкционным материалом в промышленности, на транспорте и в строительстве.

В нефтяной и нефтеперерабатывающей промышленности важнейшую часть производственных фондов составляют стальные резервуары для хранения нефти и нефтепродуктов, по отношению к которым выдвинутая ныне задача повышения качества решается в форме поддержания их в состоянии нормального (безаварийного) функционирования в течение возможно более длительного периода при существенном снижений эксплуатационных расходов. Одним из определяющих факторов решения поставленной задачи является проблема защиты резервуаров от коррозионного воздействия нефтяных сред.

Коррозионный износ ответственных элементов стальных резервуаров вызывает большой дополнительный расход металла на их ремонты. Средний межремонтный срок службы незащищенных резервуаров составляет 6 лет, а отдельные коррозионные воздействия -- особенно кровель -- появляются уже через 1,5 года. На восполнение ущерба от коррозии расходуется до 25% металла, требуемого для постройки нового резервуара.

Коррозионные повреждения резко снижают степень эксплуатационной надежности резервуаров. Имевшие место в нашей стране аварии были вызваны именно коррозионными поражениями, приведшими к разрушению ответственных элементов конструкций резервуаров.

коррозия защита резервуар нефтепровод

1. Способы защиты резервуаров от коррозии

Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа-лов и способом их нанесения. Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка.

Обычно выделяют три направления методов защиты от коррозии:

1. Конструкционный

2. Активный

3. Пассивный

Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла.

Активная защита от коррозии

Активный метод - изменение электрических параметров системы, частью которой является защищаемый элемент, с помощью источника тока. При этом система подвергается наложению электрического поля с постоянными характеристиками. Смысл этих манипуляций - повысить электродный потенциал защищаемого металла. Другой активный метод - использование в системе специального анода, процесс разрушения которого гарантирует целостность защищаемым элементам.

Пассивная защита от коррозии.

Пассивный метод - это тот самый «классический» вариант, использующийся с давних времён. В качестве покрытия используют другие металлы (цинк, олово, никель, хром), эмали, краски или полимеры. Примечательно, что если повреждение эмалированного слоя или краски вызывает коррозию основного металла под ним со «стандартной» скоростью, то поврежденный защитный слой из металла может как ускорять процесс, так и мешать ему (в этом случае начинают работать принципы активной защиты, которые описывались выше).

Так, повреждённое цинковое покрытие всё равно защищает основной металл, т.к. цинк обладает большим отрицательным потенциалом, чем сталь и цинк выступает в качестве «жертвенного анода». В тоже время, повреждённое покрытие их олова значительно усугубляет ситуацию, т.к. олово имеет положительный потенциал по отношению к железу. Каким материалом защитить поверхность, зависит от предполагаемой эксплуатации изделия. Например, оловянное покрытие допустимо при контакте с пищевыми продуктами, несмотря на его «предательские» свойств в случае повреждения, тогда как ионы цинка, образующиеся при повреждении цинкового слоя и начале защитного процесса, токсичны для живых организмов. [3]

Электрохимическая защита

Скорость электрохимической коррозии можно значительно уменьшить, если металлическую конструкцию подвергнуть поляризации. Этот метод получил название электрохимической защиты, В зависимости от вида поляризации различают катодную и анодную защиту. Электрохимическую защиту применяют в том случае, если потенциал свободной коррозии конструкционного материала располагается в области активного растворения ц1 или перепассивации, то есть материал растворяется с высокой скоростью.

Катодная защита

Катодная защита -- наиболее распространенный вид электрохимической защиты. Она применяется в тех случаях, когда металл не склонен к пассивации, то есть имеет протяжненную область активного растворения, узкую пассивную область, высокие значения тока пассивации и потенциала пассивации.

Катодную поляризацию можно осуществлять путем присоединения защищаемой конструкции к отрицательному полюсу внешнего источника тока или к металлу, имеющему более электроотрицательный электродный потенциал. В последнем случае нет надобности во внешнем источнике тока, так как образуется гальванический элемент с тем же направлением тока, т. е. защищаемая деталь становится катодом, а более электроотрицательный металл, называемый протектором, -- анодом.

Катодная защита внешним током. Катодную защиту с использованием поляризации от внешнего источника тока применяют для защиты оборудования из углеродистых, низко- и высоколегированных и высокохромистых сталей, олова, цинка, медных и медно-никелевых сплавов, алюминия и его сплавов, свинца, титана и его сплавов. Как правило, это подземные сооружения (трубопроводы и кабели различных назначений, фундаменты, буровое оборудование), оборудование, эксплуатируемое в контакте с морской водой (корпуса судов, металлические части береговых сооружений, морских буровых платформ), внутренние поверхности аппаратов и резервуаров химической промышленности. Часто катодную защиту применяют одновременно с нанесением защитных покрытий. Уменьшение скорости саморастворения металла при его внешней поляризации называют защитным эффектом.

Основным критерием катодной защиты является защитный потенциал. Защитным потенциалом называется потенциал, при котором скорость растворения металла принимает предельно низкое значение, допустимое для данных условий эксплуатации.

2. Технологическая часть

2.1 Виды коррозий и коррозионных разрушений резервуаров

Коррозия - это самопроизвольное разрушение металлов, в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструктивных материалов к воздействию веществ, находящихся в контактирующей с ними среде.

В повседневной жизни для сплавов железа чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Классификация видов коррозии.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых они протекают. Поэтому пока нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

-газовая коррозия;

-атмосферная коррозия;

-коррозия в не электролитах;

-коррозия в электролитах;

-подземная коррозия;

-коррозия под воздействием блуждающих токов.

По условиям протекания коррозионного процесса различаются следующие виды:

-контактная коррозия;

-щелевая коррозия;

-коррозия при неполном погружении;

-коррозия при полном погружении;

-коррозия при переменном погружении;

-коррозия при трении;

-межкристаллическая коррозия;

-коррозия под напряжением.

По характеру разрушения:

1-равномерная, 2-неравномерная,3-избыточная,4-пятнами,5-язвенная, 6- точечная,7-межкристалическая,8-коррозионное растрескивание, 9-подповерхностная

Главная классификация производится по механизму протекания процесса. Различают два вида:

-химическую коррозию;

-электрохимическую коррозию.

Коррозия металлов.

Коррозия металлов -- разрушение металлов вследствие химического или электрохимического взаимодействия их с коррозионной средой. Для процесса коррозии следует применять термин «коррозионный процесс», а для результата процесса -- «коррозионное разрушение». Образование гальванических пар с пользой применяют для создания батарей и аккумуляторов. С другой стороны, образование такой пары приводит к неблагоприятному процессу, жертвой которого становится целый ряд металлов, -- коррозии. Под коррозией понимают происходящее на поверхности электрохимическое или химическое разрушение металлического материала. Наиболее часто при коррозии металл окисляется с образованием ионов металла, которые при дальнейших превращениях дают различные продукты коррозии. Коррозия может быть вызвана как химическим, так и электрохимическим процессом. Соответственно, различают химическую и электрохимическую коррозию металлов.

Типы коррозии.

Электрохимическая коррозия.

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией.

При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды -- либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не коррозирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

Если растворяющийся электрод коррозионно-стоек ,процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки -- цинк имеет более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

Химическая коррозия.

Химическая коррозия -- взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисления металла и восстановление окислительного компонента коррозионной среды протекают в одном акте.

Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

3. Охрана окружающей среды

В соответствии с Законом Российской Федерации “Об охране окружающей природной среды” от 19 декабря 1991 года вопросы охраны окружающей среды при эксплуатации резервуаров магистральных нефтепроводов и нефтебаз решаются как комплексная задача, обеспечивающая сочетание экологических и экономических интересов.

Охрана окружающей среды при эксплуатации резервуаров магистральных нефтепроводов состоит в:

-соблюдении действующих стандартов, норм и правил в области охраны окружающей среды;

- контроле степени загрязнения атмосферы, воды и почвы нефтью;

- контроле за утилизацией и своевременным удалением с территории твердых отходов;

- своевременной ликвидации последствий загрязнения окружающей среды;

- осуществлении мероприятий по сокращению загрязнения окружающей среды.

Основными источниками выбросов в атмосферу являются резервуары для хранения нефти. В качестве загрязнителей в данном случае выступают сложные смеси большого количества индивидуальных углеводородных компонентов. При этом в начальной стадии испаряются наиболее лёгкие фракции. Для уменьшения выбросов применяют понтоны, системы улавливания легких фракций.

Работы по охране окружающей среды при эксплуатации резервуаров магистральных нефтепроводов должны проводиться в рамках единой для всей страны системы правовых, нормативных, инструктивных и методических документов с учетом региональной специфики.

Плата за загрязнение окружающей природной среды взимается в соответствии с Законом РФ “Об охране окружающей природной среды” от 19 декабря 1991 года или законодательными актами субъектов Федерации, входящих в состав Российской Федерации.

Внесение платы за загрязнение окружающей природной среды не освобождает природопользователей от выполнения мероприятий по охране окружающей среды и рациональному использованию природных ресурсов, а также от возмещения в полном объеме вреда, причиненного окружающей природной среде, здоровью и имуществу граждан, народному хозяйству, в соответствии с действующим законодательством.

К числу основных загрязняющих веществ, выбрасываемых из резервуаров, относятся углеводороды, образующиеся вследствие испарения нефти из резервуаров.

В соответствии с Законом РФ “Об охране окружающей природной среды” выбросы загрязняющих веществ в атмосферу допускаются на основе разрешения на выброс, выдаваемого региональными органами по охране природы, на основании утвержденных норм предельно допустимых выбросов (ПДВ) загрязняющих веществ в атмосферу.

Мероприятия по охране окружающей среды при ликвидации аварии заключатся в сборе разлитой нефти с поверхности почвы и проведении рекультивации нарушенных территорий.

Откачка нефти осуществляется с помощью передвижных насосных агрегатов(ПНА).После того, как всасывание оставшейся нефти передвижными насосными установками становится невозможно, применяют следующие средства сбора нефти:

нефтесборщики вакуумные универсальные;

поглотители;

биопрепараты.

Применяют также подручные средства: сухой торф, солома, опилки, резиновая крошка, шелуха.

В целях уменьшения вредного воздействия производства на водную среду необходимо, во-первых, стремиться к сокращению водопотребления и максимальному использованию оборотного водоснабжения и, во-вторых, к наиболее полному сбору, отведению и очистке нефтесодержащих сточных вод. Производственно-дождевые сточные воды перед сбросом направляются на очистные сооружения.

3.1 Выбор способа защиты резервуара от коррозии

Антикоррозионная защита - комплекс работ, включающий подготовку стальной поверхности резервуара, нанесение защитного антикоррозионного покрытия, контроль качества.

Лакокрасочные материалы (далее ЛКМ) - материалы на основе синтетических пленкообразующих смол, содержащие пигменты, наполнители, пластификаторы, и предназначенные для антикоррозионной защиты стальных поверхностей.

Система лакокрасочного покрытия - система последовательно нанесенных и адгезионно связанных слоев ЛКМ.

Схема технологического процесса - последовательность технологических операций по созданию защитного покрытия.

Пооперационный контроль - контроль технологических параметров при проведении каждой технологической операции.

Подготовка металлической поверхности перед окраской - удаление с поверхности, подлежащей окраске, загрязнений и окислов для обеспечения сцепления ЛКМ с металлической поверхностью.

Струйно-абразивная очистка - способ очистки поверхности с помощью струи воздуха с абразивным материалом.

Гидроабразивная очистка - способ очистки поверхности с помощью струи воды с абразивным материалом.

Механическая очистка - способ очистки поверхности с применением ручного или механического инструмента.

Жизнеспособность ЛКМ - время, в течение которого необходимо использовать двухкомпонентный ЛКМ после приготовления рабочего состава.

Толщина покрытия - номинальная толщина отвержденного покрытия в соответствии с нормативной документацией на систему покрытия.

Адгезия лакокрасочного покрытия - прочность сцепления между пленкой ЛКМ и окрашиваемой поверхностью.

Отверждение лакокрасочного покрытия - формирование пленки из ЛКМ за счет физического и (или) химического процессов.

Срок службы, или долговечность, лакокрасочного покрытия - промежуток времени до первого капитального ремонта покрытия.

Гарантийный срок службы лакокрасочного покрытия - срок, в течение которого Подрядчик дает банковские гарантии качества покрытия. Является юридическим понятием и определяется условиями договора.

Размещено на Allbest.ru


Подобные документы

  • Причины нарушения прочности резервуаров. Очистка резервуаров от парафина и механических осадков. Организация планово-предупредительного ремонта резервуаров. Осмотровой, текущий и капитальный ремонты резервуаров. Расчёт системы размыва отложений.

    курсовая работа [309,4 K], добавлен 19.05.2012

  • Подготовительные работы к ремонту. Способы очистки резервуаров. Ремонт оснований и фундаментов. Удаление дефектных мест без применения сварочных работ. Контроль качества ремонтных работ и испытание резервуаров. Приемка резервуаров после ремонта.

    контрольная работа [37,4 K], добавлен 12.12.2010

  • Способы защиты резервуаров от коррозии, виды покрытий, применяемых в них. Типы распыляющих устройств. Расчет исследуемого устройства, его главные параметры и оценка практической эффективности. Выбор и обоснование необходимых средств автоматизации.

    дипломная работа [1,1 M], добавлен 12.05.2014

  • Технические средства для механизированной зачистки резервуаров. Организация работ по зачистке. Зачистка горизонтальных резервуаров механизированным способом моечной установкой УМ-1, техническое обслуживание ее установки, транспортировки и хранения.

    реферат [152,6 K], добавлен 17.09.2016

  • Классификация и оборудование резервуаров. Элементы и технологическая характеристика вертикального стального резервуара. Принцип работы технологического и товарного резервуаров, уровнемера Ерошкина, радарного уровнемера. Средства пожаротушения резервуара.

    курсовая работа [2,2 M], добавлен 26.05.2015

  • Основные принципы организации работ по монтажу металлических конструкций. Безопасная работа на высоте. Монтаж резервуаров для хранения нефтепродуктов, воды и других жидкостей. Техника безопасности при монтаже технологических металлоконструкций.

    реферат [14,8 K], добавлен 19.09.2008

  • Классификация и общая характеристика резервуаров для хранения нефти. Выбор конструктивного решения для крыши, зависящий от условий хранения нефтепродуктов, климатических условий размещения резервуара и его ёмкости. Принципы работы насосных станций.

    презентация [113,2 K], добавлен 16.05.2019

  • Объемно-планировочные и конструктивные решения вертикальных цилиндрических резервуаров как нагруженных металлоконструкций. Требования к днищу, основанию, корпусу, крыше и понтону резервуара. Технология монтажа методом рулонирования и полистовым способом.

    курсовая работа [2,9 M], добавлен 13.12.2011

  • Оборудование наземных резервуаров. Расчет потерь нефтепродукта из резервуара от "больших" и "малых дыханий". Сокращение потерь нефтепродукта от испарения. Применение дисков-отражателей, газоуравнительных систем, систем улавливания легких фракций.

    курсовая работа [4,5 M], добавлен 06.08.2013

  • Описание технологических процессов водоснабжения, водоотведения и очистки сточных вод города Кронштадта. Стадии процесса водоподготовки. Виды резервуаров для воды, дренажная система, сооружения биологической очистки. Охрана труда и окружающей среды.

    отчет по практике [1,0 M], добавлен 20.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.