Методы повышения антидетонационных свойств моторных топлив

Принципы получения и перспективы применения синтетических топлив и смазочных материалов. Особенности изменения антидетонационных свойств горючего. Характеристика защитных смазок. Влияние свойств бензинов на образование отложений и коррозию деталей.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 28.05.2014
Размер файла 342,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

2

Министерство образования и науки РФ

Уральский Государственный Лесотехнический Университет

Кафедра: Автомобильного транспорта

Контрольная работа

По предмету: Эксплуатационные материалы

Выполнил студент ЗФО 190600(3,5)

Храмцов.Е.И

Шифр:10561

Проверил

Бубнов.Э.А

Екатеринбург 2014.

Содержание

топливо бензин антидетонационный горючее

1. Принципы получения и перспективы применения синтетических топлив и смазочных материалов

2. Методы повышения антидетонационных свойств моторных топлив

3. Защитные смазки

4. Влияние свойств бензинов на образование отложений и коррозию деталей в двигателях

Список литературы

1. Принципы получения и перспективы применения синтетических топлив и смазочных материалов

Без нефтяного моторного топлива - бензина, керосина, дизельного топлива - современную цивилизацию представить себе просто невозможно. На нем работают двигатели автомобилей, самолетов, ракет. Однако запасы нефти в недрах земли ограничены, и совсем скоро человечество столкнется со всеобщей нехваткой бензина. Но впадать в отчаяние рано: закат нефтяной эры вовсе не означает гибель современной цивилизации. Альтернатива нефтяным моторным топливам есть: ученые разработали методы получения высококачественного моторного топлива из природного газа, угля и другого ненефтяного сырья.

Об этом шла речь в докладе вице-президента РАН, директора Института нефтехимического синтеза им. А. В. Топчиева РАН академика Николая Альфредовича Платэ "Некоторые аспекты создания экологически чистых топлив XXI века", с которым он выступил в июле текущего года на Первом московском международном химическом саммите. Саммит организован Российским союзом химиков, компанией "RCC Group" и Российским союзом промышленников и предпринимателей и был посвящен проблемам и перспективам развития химической и нефтехимической промышленности.

Промышленная добыча нефти началась более 150 лет назад. За прошедшие с тех пор полтора века человечество уже израсходовало более половины нефтяных запасов. Вначале нефть использовалась в качестве источника тепловой энергии, теперь это стало экономически невыгодно. С наступлением автомобильной эры продукты фракционирования нефти в основном применяются в качестве моторного топлива. К 2010 году запасы нефтяных месторождений в значительной степени истощатся, соответственно возрастет стоимость добычи нефти и мир вплотную столкнется с проблемой использования альтернативных (ненефтяных) источников получения бензина и других видов топлива.

По своему химическому составу нефть - смесь углеводородов (алканов и циклоалканов). Кроме того, она содержит метан и некоторые сернистые и азотистые примеси. Бензин - легкокипящая фракция нефти, содержащая короткоцепочечные углеводороды с 5-9 атомами. Это основной вид моторного топлива для легковых автомобилей и небольших самолетов. Керосины более вязкие и тяжелые, чем бензин: они состоят из углеводородов с 10-16 атомами углерода. Керосин стал основным видом топлива для реактивных самолетов и ракетных двигателей. Газойль - более тяжелая фракция, чем керосин. Дизельное топливо для двигателей, установленных на тепловозах, грузовиках, тракторах, содержит смесь фракций керосина и газойля. Истощение природных нефтяных месторождений вовсе не грозит человечеству тотальным дефицитом моторного топлива. Вещества, по химическому составу похожие на бензин, керосин или дизельное топливо, вполне можно получить из углеродного сырья ненефтяного происхождения. Химики решили эту задачу еще в 1926 году, когда немецкие ученые Ф. Фишер и Г. Тропш открыли реакцию восстановления монооксида углерода (СО) при атмосферном давлении. Оказалось, что в присутствии катализаторов можно синтезировать в зависимости от соотношения водорода и монооксида углерода в газовой смеси жидкие и даже твердые углеводороды, по химическому составу близкие к продуктам фракционирования нефти. Смесь монооксида углерода и водорода, получившую название "синтез-газ", довольно легко получить из природного сырья: пропусканием водяного пара над углем (газификация угля) или конверсией природного газа (состоящего в основном из метана) водяным паром в присутствии металлических катализаторов. Синтез-газ образуется не только из угля и метана. Очень перспективны биотехнологические методы: термохимическая или ферментативная переработка отходов растительного сырья (биомассы) и конверсия газа, полученного путем разложения органических отходов, так называемого биогаза.

Интересно, что во время Второй мировой войны синтетическое топливо, полученное из угля, практически полностью покрывало потребности немецкой авиации. Работы по получению бензина из бурого угля до войны велись и в Советском Союзе, но до промышленного производства дело не дошло. В послевоенные годы цены на нефть упали, и потребность в синтетическом бензине и других топливных углеводородах на какое-то время отпала. Теперь же в связи с уменьшением нефтяных запасов планеты исследования в этой области химии переживают свое "второе рождение".

Качественного природного угля на планете осталось не так уж много. Внимание ученых привлек природный и попутный газ, огромное количество которого при нефтедобыче просто уходит в атмосферу. Производство синтетического жидкого топлива из природного газа очень выгодно экономически, поскольку газ трудно транспортировать: на его перевозку обычно затрачивается от 30 до 50% стоимости готового продукта. Превращение газа прямо на месторождении в жидкие компоненты значительно снизит объем капиталовложений, затрачиваемых на его переработку.

Существующие технологии позволяют перерабатывать природный газ в высококачественные бензин и дизельное топливо через стадию образования метанола. Производство по такой схеме довольно удобно, поскольку все реакции протекают в одном реакторе. Но эта цепочка химических превращений требует больших затрат энергии. В результате полученный синтетический бензин в 1,8-2,0 раза дороже "нефтяного".

Российские ученые из московского Института нефтехимического синтеза РАН разработали более рентабельную схему. Они предлагают получать синтетический бензин не через стадию образования метанола, а из другого промежуточного вещества - диметилового эфира (ДМЭ). Это нетрудно сделать, увеличив долю окиси углерода в синтез-газе. Важно то, что ДМЭ можно использовать как экологически чистое топливо для двигателей внутреннего сгорания. Он хорош тем, что полностью укладывается в рамки самых жестких европейских требований по содержанию твердых частиц в автомобильных выхлопах. По теплотворной способности ДМЭ уступает традиционному дизельному топливу - пропану и бутану, но его цетановое число гораздо выше: для обычного дизельного топлива оно 40-55, а для ДМЭ - 55-60. Так что преимущество ДМЭ перед дизельным топливом при запуске холодного двигателя очевидно. Кроме того, для горения ДМЭ необходимо меньше кислорода, чем для горения дизельного топлива.

В присутствии специально разработанных катализаторов ДМЭ превращается в очень неплохой бензин с октановым числом 92. Вредных примесей в нем меньше, чем в нефтяном топливе. Такой синтетический бензин вполне конкурентоспособен даже на европейском рынке. Новый способ получения синтетического топлива намного экономичнее и эффективнее классического "метанольного". В Институте высоких температур совместно с Институтом нефтехимического синтеза РАН создан генератор синтез-газа, представля ющий собой немного модифицированный дизельный двигатель. На входе - природный газ метан, который в генераторе превращается в синтез-газ. Далее синтез-газ в присутствии специально разработанных катализаторов преобразуется в топливные углеводороды. Поворотом крана можно запустить производство необходимого конечного продукта и по желанию получить на выходе метанол, ДМЭ, смесь углеводородов, аналогичных дизельному топливу, синтетический бензин. Экономическую выгоду от промышленного внедрения такого процесса трудно переоценить.

Чем выше температура реакции превращения метана в синтез-газ, тем выше производительность реактора. Обычные технологии не могут справиться с задачей проведения реакции при высоких температурах. Тут на помощь приходят ракетные технологии. Наиболее перспективной разработкой последних лет можно назвать новый высокотемпературный генератор синтез-газа, созданный при участии Института нефтехимического синтеза РАН в Приморске на опытном полигоне ракетно-космической корпорации "Энергия". Генератор создан по образу и подобию ракетного двигателя, поэтому его оболочка устойчива к воздействию высоких температур. Полученный в реакторе синтез-газ последовательно преобразовывается по новой эффективной схеме, описанной выше, в ДМЭ и бензин.

Моторные топлива, полученные из природного газа, не дороже продуктов переработки нефти, а по качеству даже их превосходят. Так что после окончательного истощения нефтяных месторождений "пробки" на дорогах не уменьшатся.

Рис.1. Генератор получения синтез-газа из природного газа, построенный в Институте высоких температур РАН совместно с Институтом нефтехимического синтеза РАН.

Рис.2. Генератор синтез-газа для окисления природного газа при высоких температурах, построенный на опытном полигоне ракетно-космической корпорации "Энергия"

Вице-президент РАН, директор Института нефтехимического синтеза им. А. В. Топчиева РАН академик Николай Альфредович Платэ в дни работы Первого московского международного химического саммита.

Смесь окиси углерода и водорода (синтез-газ), из которого в промышленности синтезируют топливные углеводороды, можно получить пропусканием водяного пара через раскаленный кокс (газификация угля) и конверсией природного газа - метана.

Получение моторного топлива из ненефтяного углеводородного сырья: угля, биомассы, биогаза и природного газа. Схемы переработки сырья близки: на первой стадии происходит превращение в синтез-газ (смесь монооксида углерода и водорода), затем синтез-газ перерабатывают в метанол (традиционная схема) или в диметиловый эфир (ДМЭ) (схема, разработанная в Институте нефтехимического синтеза РАН), которые превращаются в моторное топливо (бензин, дизельное топливо).

Синтетический бензин, полученный по традиционной схеме промышлен ной переработки природного газа в топливные углеводороды через стадию образования метанола, в два раза дороже "нефтяного". Процесс синтеза топливных углеводородов через диметиловый эфир (ДМЭ), разработанный в Институте нефтехимического синтеза РАН, намного эффективнее и экономичнее традиционной "метанольной" схемы производства синтетических моторных топлив.

Схема химического реактора для получения синтез-газа при горении смеси метана и воздуха при высоких температурах. Подобные реакторы конструируются по принципу ракетного двигателя.

Важнейшая характеристика качественного бензина - его способность гореть без взрыва. Взрыв топлива называют детонацией. Для того чтобы оценить "склонность" к детонации количественно, было принято, что "плохо" взрывающийся углеводород изооктан имеет антидетонационную способность, равную 100. Для легко взрывающегося н-гептана она принята равной нулю. Этот параметр назвали октановым числом. Например, если у моторного топлива октановое число 80, то оно по своим детонационным свойствам эквивалентно смеси 80% изооктана и 20% н-гептана. Чем выше октановое число, тем качественнее моторное топливо.

Качество дизельного топлива оценивается по его способности к воспламенению под действием давления и температуры. Идеальное легко воспламеняющееся топливо для дизелей - гексадекан или цетан с 16 атомами углерода. Ему присвоено максимальное число 100, называемое цетановым. За нуль принимается цетановое число a-метилнафталина, который не возгорается вообще. Цетановое число характеризует период задержки воспламенения топлива в двигателе - промежуток времени от впрыскивания топлива в цилиндр до момента начала его горения. Чем выше цетановое число, тем короче этот период и тем более спокойно и плавно горит дизельное топливо.

2. Методы повышения антидетонационных свойств моторных топлив

Антидетонационные свойства

Детонация - это процесс очень быстрого завершения процесса сгорания в результате самовоспламенения части рабочей смеси и образования ударных волн, распространяющихся со сверхзвуковой скоростью (1500 - 2000 м/с), в то время как при нормальном сгорании смеси средняя скорость распространения пламени составляет 10 - 40 м/с.

К признакам детонационного сгорания бензина относятся: характерный резкий металлический стук в цилиндрах, вибрация и неустойчивая работа двигателя, периодически появляющийся черный дым отработавших газов. При длительной эксплуатации двигателя с детонацией могут возникнуть механические повреждения его деталей: прогар поршней и клапанов, пригорание поршневых колец, разрушение изоляции свечей, растрескивание вкладышей шатунных подшипников.

Детонационная стойкость бензина зависит от его углеводородного состава. Наибольшей детонационной стойкостью обладают ароматические углеводороды, меньшей - изопарафиновые углеводороды.

Детонационную стойкость бензинов оценивают октановым числом (ОЧ). У топлив с более высоким ОЧ при прочих равных условиях менее вероятно возникновение детонации. Октановое число автомобильных бензинов определяют двумя методами моторным (на установке ИТ9-2М) и исследовательским (на установке ИТ9-6). Установка ИТ9-6 позволяет определить октановые числа по обоим методам.

Моторным методом ОЧ определяют на одноцилиндровой установке ИТ9-2М, позволяющей проводить испытания с переменной степенью сжатия (от 4 до 10 единиц). На ней сравнивают детонационную стойкость исследуемого бензина с эталонным топливом, в состав которого входят углеводорода: изооктан и нормальный гептан. Разное строение при близких физических свойствах этих углеводородов обуславливает резкое отличие их детонационной стойкости. ОЧ изооктана - углеводорода парафинового ряда изомерного строения, отличающегося высокой детонационной стойкостью (начинает детонировать только в двигателях с очень высокой степенью сжатия), принято за 100 единиц. ОЧ сильно детонирующего гептана - углеводорода парафинового ряда, нормального цепочного строения - принятого за 0 единиц. Смесь изооктана и нормального гептана имеет ОЧ, равное процентному содержанию в ней (по объему) изооктана.

Октановое число - условную единицу измерения детонационной стойкости бензинов - указывают во всех его марках. Например, детонационная стойкость бензина марки АИ-76 должна быть такой же, как у эталонной смеси, состоящей из 76-77% изооктана и 23-24% гептана.

Исследовательским методом детонационную стойкость бензина определяют на установке ИТ9-6 в режиме работы легкового автомобиля при его движении в условиях города В этом случае в марку бензина включают букву "И", например, АИ-95 - автомобильный бензин с октановым числом по исследовательскому методу не менее 95.

Разница в ОЧ, определенных по исследовательскому и моторному методам, составляет 7-10 единиц (при исследовательском методе величина ОЧ выше).

Октановое число, приближенно соответствующее ОЧ по исследовательскому методу, может быть определено по формуле:

3. Защитные смазки

Виды смазочных материалов и требования, предъявляемые к ним

По происхождению масла различают:

- минеральные, или нефтяные, являются основной группой выпускаемых смазочных масел (более 90%). В зависимости от способа получения они классифицируются на дистилятные, остаточные, компаундированные или смешанные;

- растительные и животные, имеющие органическое происхождение.

Растительные масла получают путем переработки семян определенных растений, вырабатываются касторовое, горчичное и сурепные масла. Животные масла вырабатывают из животных жиров (баранье и говяжье сало, технический рыбий жир, костное масло и др.). Органические масла по сравнению с нефтяными обладают более высокими смазывающими свойствами и более низкой термической устойчивостью. Поэтому их чаще используют в смеси с нефтяным;

- синтетические, получаемые из различного исходного сырья различными методами (каталитическая полимеризация жидких или газообразных углеводородов нефтяного и ненефтяного сырья; синтез кремнийорганических соединений - полисил океанов; получение фторуглеродных масел и т.д. Синтетические масла обладают всеми необходимыми свойствами, однако из-за высокой стоимости применяются только в самых ответственных узлах трения.

По агрегатному состоянию смазочные материалы делятся на:

- жидкие смазочные масла, которые в обычных условиях являются жидкостями, обладающими определенной текучестью (нефтяные и растительные масла);

- пластичные, или консистентные, смазки, которые в обычных условиях находятся в мазеобразном состоянии (технический вазелин, солидолы, консталины, жиры и др.) Они подразделяются на антифрикционные, консервационные, уплотнительные и др;

- твердые -смазочные материалы, которые не изменяют своего состояния под действием температуры, давления (графит, слюда, тальк и др.). Их обычно применяют в смеси с жидкими или пластичными смазочными материалами.

По назначению смазочные материалы делятся на масла:

- моторные, предназначенные для двигателей внутреннего сгорания;

трансмиссионные, применяемые в трансмиссиях тракторов, автомобилей, комбайнов, самоходных и других машин;

- гидравлические - для гидросистем различных машин. По температуре применения различают;

- низкотемпературные, для температуры не более 60°С;

- среднетемпературные, применяемые при температурах 150 - 200°С;

- высокотемпературные, используемые в узлах, которые подвергаются воздействию температур до 300°С и выше (моторные масла).

Смазочные масла должны обладать соответствующими вязкостью и индексом вязкости; высокой термоокислительной устойчивостью и хорошими противокоррозионными свойствами; противоизносными качествами и хорошей прокачиваемостью при различных температурах окружающей среды. Масла должны обеспечивать максимально возможный срок службы и не образовывать на поверхностях деталей различные отложения.

Чтобы удовлетворить весь комплекс требований, предъявляемых к смазочным маслам широко используют специальные добавки (присадки).

Виды и назначение смазок

Пластичные смазки представляют собой мазеобразные продукты. Вещество пластичной смазки состоит из структурною каркаса, образованного твердыми частицами загустителя (дисперсная среда), и жидкого масла, включенного в ячейки этого твердого каркаса (дисперсионная среда).

Пластичные смазки состоят из смеси минерального масла и других жидкостей (80 - 90%) и загустителя (10 - 20%); в небольшом количестве вводятся наполнители; стабилизаторы и присадки, Основное свойство смазке придает загуститель.

Загустители бывают мыльные и немыльные. К мыльным относятся соли натуральных и синтетических жирных кислот, из которых наиболее широко применяются кальциевые, литиевые, натриевые, бариевые, алюминиевые, цинковые, свинцовые соли др. Смазки с этими загустителями могут быть средне- и высокотемпературными.

К немыльным загустителям относятся твердые углеводороды- парафины, церезины, воски, озокериты и подобные им продукты. Смазки с такими загустителями являются влагостойкими и низко температурными. Они применяются в основном как консервационные защитные смазки.

Нефтяные масла используют прежде всего для производства смазок общего назначения, работоспособных в интервале температур от -60 до 150°С. Для узлов трения, работающих за указанным диапазоном температур, применяют смазки, приготовленные на синтетических маслах. На них можно приготовить смазки, работоспособные от -100 до 350°С и выше.

Из кремнийорганических жидкостей наиболее часто в качестве дисперсионных сред используют полиметилсилоксаны и полиэтилсилоксаны.

Назначение смазок весьма обширно: смазывание открытых и негерметичных узлов трения и механизмов, труднодоступных узлов трения, где следует обеспечить длительный срок службы смазки; длительная консервация машин и рабочих поверхностей; герметизация подвижных уплотнений, наполнение герметизированных подшипников; смазывание механизмов, в которых недопустимо разбрызгивание смазочного масла и т.п.

В соответствии с ГОСТ 23258 - 78 пластичные смазки по применению делятся на: антифрикционные - общего назначения для обычных и повышенных температур, многоцелевые, низкотемпературные и высокотемпературные; защитные - общего назначения и канатные; уплотнительные арматурные, резьбовые и вакуумные.

Показатели качества для всех видов смазок следующие: внешний вид, содержание воды и механических примесей, коррозионная активность. Показатели качества для отдельных видов смазок - предел прочности; температура каплепадения; эффективная вязкость; содержание свободных щелочей и органических кислот; коллоидная и механическая стабильность; термоупрочнение; испаряемость; содержание водорастворимых кислот и щелочи; показатели защитных, противозадирных и противоизносных свойств; растворимость в воде.

Наименование и обозначения смазок

Наименование смазки обычно состоит из одного слова, а для модификации дополнительно используют буквенные или цифровые индексы. Обозначения пластичной смазки характеризует ее назначение, состав и свойства. Обозначение состоит из 5 буквенных и цифровых индексов, которые располагаются в следующем порядке и указывают: группу (подгруппу) в соответствии с назначением смазки; загуститель; рекомендованный (условный) температурный интервал применения; дисперсионную среду; консистенцию смазки.

Группу или подгруппу смазки обозначают индексами - прописными буквами русского алфавита: С - общего назначения для обычных температур (солидолы); О -общего назначения для повышенных температур; М -многоцелевые; Ж - термостойкие; Н - морозостойкие; И - противозадирные и противоизносные; X - химически стойкие; П. -приборные и т.д.

Тип загустителя (мыло, углеводороды твердые, органические, неорганические) в смазке обозначают также буквами русского алфавита. Индексы загустителей смазок: Мыла (М): алюминиевое (Ал), бариевое (Ба), кальциевое (Ка), литиевое (Ли), натриевое (На), свинцовое (Св), цинковое (Ци), комплексное (кМ), смесь мыл (Mi-M2);

Углеводороды твердые (Т);

Органические (О): пигменты (Пг), полимеры (Пм), уреаты (Ур), фторо-углероды (Фу);

Неорганические (Н): глины (бетонитовые и др.) (Бн), сажа (Сж), силика-гель (Си).

Индексы М. О, Н применяют только в тех случаях, когда загуститель входящий в одну из трех групп, не предусмотрен выше приведенным перечнем.

Рекомендуемый температурный интервал применения смазки обозначают дробью. В числителе указывают (без знака минус) уменьшенную в 10 раз максимальную температуру (например, индекс 3/12 соответствует температурному интервалу от -30 до 120°С).

Тип дисперсионной среды и присутствие твердых добавок обозначают строчными буквами.

Индексы для составляющих смазки.

Дисперсионная среда: нефтяное масло (н), синтетические углеводороды (у), кремнийорганические жидкости (ж), фторсилоксаны (ф), перфторалкил-полиэфиры (а), прочие масла и жидкости (п);

Твердые добавки: графит (г), дисульфид молибдена (д), порошки свинца (с), меди (м), цинка (ц), прочие твердые добавки (т).

Смесь двух и более масел обозначают составным индексом нк, уэ и т.д. На первом месте ставят индекс масла, входящего в состав дисперсионной среды в большей концентрации. Индекс (п.) применяют в тех случаях, когда входящее в состав дисперсионной среды той или иное масло не предусмотрено указанным перечнем.

Индекс класса консистенции смазки обозначают арабскими цифрами.

Примеры обозначения пластичных смазок.

Смазка СКа 2/8 - 2: буква С -смазка общего назначения для обычных температур (солидол); Ка -загущенная кальциевым мылом; 2/8 - предназначена для применения при температурах -20 ... 80°С; отсутствие дисперсионной среды - приготовлено на нефтяном масле; 2 - пенетрация 265-296 при 25°С.

Смазка УНа 3/12 эЗ: буква У -узкоспециализированная; На -загущена натриевым мылом; э -приготовлено на сложном эфире.

Краткая характеристика пластичных смазок

Наиболее распространенными водостойкими смазками являются кальциевые смазки- солидолы. Основную часть вырабатываемых солидолов составляют синтетические.Синтетические солидолы СКа 2/7 - 2 (ГОСТ 4636-76) готовят загущением масел средней вязкости гидратированными кальциевыми мылами синтетических жирных кислот, полученых окислением парафинов.Пресс солидол С используют для смазывания узлов трения шасси автомобилей; солидол С- в качестве летней и зимней смазки для различных узлов трения.Жировые солидолы (ГОСТ 1033-79) загущаются кальциевыми мылами жирных кислот, входящих в состав естественных жиров. Марки: пресс -солидол Ж и солидол Ж.Графитная смазки СКа 2/8-гЗ (ГОСТ 3333-80) приготовляется из высоковязкого цилиндрового масла с введением кальциевого мыла и графита. Применяется для смазывания рессор. Автомобильная смазка ОНаКа 3/10-2 (ГОСТ 9432-60) предназначена для смазывания подшипников ступиц колес и др. узлов автомобилей. Хорошо смазывает подшипники качения. Смазка МЛи 4/12-3 (Литол-24) (ГОСТ 21150-75) - антифрикционная многоцелевая водостойкая. Предназначена для применения в узлах трения колесных и гусеничных транспортных средств, работающих при температуре -40 ... 120°С. В нее добавлена антиокислительная присадка. Смазка УЛи 4/13-эЗ (ЛЗ-31) (ГОСТ 24300-80)- представляет собой синтетическое масло, загущенное стеаратом лития и содержащее вязкостную, антиокислительную и антикоррозионную присадки. Применяется для смазывания закрытых подшипников качения, работающих в интервале температур от - 40 до 130°С.Смазки ЦИАТИМ -201 (ГОСТ 6267-74) и ЦИАТИМ 203- предназначены для смазывания механизмов, работающих с малым усилием сдвига при температуре -60 ... 90°С.Карданная смазка УНа 2/10-2 (AM) (TOCT5730-51) применяется при смазывании поворотных цапф переднего ведущего моста автомобилей. Высокотемпературная смазка ЦИАТИМ-221 (ГОСТ 9433-80)-предназначена для узлов трения; работающих при температуре 150 ... 250°С.

Консервационная смазка ПВК- предназначена для защиты от коррозии металлических изделий. Работоспособна при температуре от -50 до 50°С.

Требования и основные виды смазки

Смазки для автомобилей. В автомобилях смазыванию подлежат подшипники качения ступиц колес, шарниры рулевого управления, подшипники водяного насоса выжимные подшипники муфты сцепления и т.д. Условия работы смазки в этих узлах трения различны

Широко распространенными смазками для автомобилей являются: автомобильная, синтетический солидол и жировой пресс- солидол Ж, Литол-24,. ЛЗ-31, ЦИАТИМ-201, карданная AM, ПВК, графитная и др.

Для шарниров поперечной и рулевой тяг, шкворней поворотных кулаков, скользящих вилок и шлицев карданных валов, ступиц передних и задних колес, подшипников водяных насосов и других сборочных единиц рекомендуются солидол С, Литол-24; для выжимного подшипника муфты сцепления ЛЗ-31, подшипников генератора- ЦИАТИМ-201; для смазывания рессорграфитная смазка; шарниров полуосей и переднего ведущего моста- карданная AM, Литол-24; для консервации- солидол С, ПВК, и т.д.

Срок замены смазки большинстве случаев составляет 2-3 тыс. ч.; для шарниров рулевых тяг 1500ч.; для ступиц колес- 6-8тыс.ч.

Расход смазки ОД-0,2кг на 100л израсходованного топлива.

Смазки для тракторов. В тракторах смазывают узлы трения подвески, ходовой части, управления. В основном используют солидол С. Для подшипника водяного насоса, главной передачи, муфты сцепления применяют смазку 1-13, для генераторов - смазку ЦИАТИМ-201.

Для консервации рекомендуются солидол С или смазка ПВК. Срок замены смазки тракторов в зависимости от вида узла трения составляет от 8 до 240 и 500 ч работы. Расход пластичных смазок в большинстве тракторов составляет 0,5-0,8% от расхода топлива.

Смазки для сельскохозяйственных машин. Для смазывания узлов трения и подшипников применяют солидолы. Расход смазок для простых машин составляет 10-15г/га, для комбайнов-100- 140г/га.

Методы оценки основных показателей и свойств смазок

Показателями качества смазки являются ее упругопластические и прочностные характеристики.

Предел прочности. Критическая нагрузка, превышение которой нарушает пропорциональность между нагрузкой и деформацией, после чего смазка начинает вести себя как жидкость. Такая критическая нагрузка, или напряжение сдвига, называется пределом прочности, который выражается в Па (г/см). При температуре 20-120°С он равен 50-2000 Па. (0,5-20г/см2).

Предел прочности смазок на сдвиг определяют с помощью пластомера К-2 (ГОСТ 7143-73). Метод основан на определении давления, под действием которого при заданной температуре (20°С) происходит сдвиг смазки в капилляре пластомера.

Важным свойством смазок является их способность восстанавливать прочность после снятия деформации.

Пенетрация характеризует густоту смазки. Значение пенетрации, выражаемое целым числом десятых долей мм по школе пенетрометра, представляет собой глубину погружения в смазку стандартного конуса под действием собственной массы (150г) в течение 5с. Если конус за 5с опустился в смазку с температурой 25°С на глубину 25мм, то ее пенетрация равна 250.Чем выше значение пенетрации, тем меньше густота (консистенция) данной смазки. Пенетрацию смазок определяют по ГОСТ 5346-78. Для смазок значение пенетрации ровно 200-400. Температура каплепадения характеризует температуру плавления смазки и определяется по ГОСТ 6793-74.

Практически установлено, что смазка сохраняет работоспособность до такой температуры смазываемого узла, которая на 15-20°С ниже температуры ее каплепадения. Для современных смазок, загущенных тугоплавкими загустителями (литиевыми или бариевыми мылами), этот показатель не характеризует отмеченных свойств. Так, разность между температурой капле падения смазок и температурой узла должна быть не менее 70-80°С.

Вязкость пластичных смазок является одним из важных эксплуатационных показателей. Эффективная вязкость пластичных смазок определяют с помощью автоматического капиллярного вискозиметра АКБ (ГОСТ 7163-63).

Стабильность характеризует устранение смазкой первоначальных свойств в условиях хранения и применения. Для смазки важны физическая стабильность; устойчивость к радиации, характеризуемая химической стабильностью; инертность к воде, агрессивным средам, окислению кислородом воздуха и т.д.

Испаряемость оценивают потерей массы смазки в условиях определенных температур и времени (ГОСТ 7934.1-74).

Различают стабильность коллоидную, механическую и химическую (против окисления). Их определяют соответственно по ГОСТ 7142-74, ГОСТ 19295-73 и ГОСТ 5734-76.

Водостойкость определяет устойчивость смазки к растворению ее в воде, а также неизменяемость ее свойств при попадании влаги. Здесь же учитываются гигроскопичность и проницаемость смазок по отношению к воде и пару.

Противозадирные и противоизносные свойства важнейшие-характеристики смазок, и оценивают их с помощью различных машин трения.

Коррозионную активность смазок определяют по ГОСТ 7934.5-74 следующим образом. Металлические пластины погружают в смазку, выдерживают и затем осматривают. Браковочными признаками являются изменения цвета пластины, появление на ней коррозионных точек и пятен.

Защитные свойства пластичных смазок определяют по ГОСТ 0,054-75. При этом на металлическую пластинку наносят слой смазки, выдерживают ее в условиях повышенной относительной влажности воздуха и температуры без конденсации, с периодической или постоянной конденсацией влаги на образце. Затем сравнивают цвет и блеск поверхностей испытуемой пластинки и образца.

4. Влияние свойств бензинов на образование отложений и коррозию деталей в двигателях

Склонность к образованию отложений и нагарообразованию

Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания. Наиболее интенсивное образование отложений происходит на деталях карбюратора. Образование отложений на указанных деталях приводит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсичности отработавших газов. Образование отложений в топливной системе частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют моющие свойства бензина. Установлено, что повышенному нагарообразованию способствует высокое содержание в бензинах олефиновых и ароматических углеводородов, особенно высококипящих. Содержание ароматических и олефиновых углеводородов в товарных бензинах ограничивается соответственно 55 и 25 % (об.). Однако в большей степени этот процесс определяется конструктивными особенностями двигателя.

Наиболее эффективным способом борьбы с образованием отложений во впускной системе двигателя является применение специальных моющих или многофункциональных присадок. Такие присадки широко применяют за рубежом. В России также разработаны и допущены к применению присадки аналогичного назначения.

Коррозионные свойства бензинов

Коррозия деталей двигателя и системы его питания, емкостей для хранения и транспортировки вызывается содержанием в топливе таких веществ, как водорастворимые кислоты и щелочи, органические кислоты, сера и сернистые соединения и вода.

Ввиду сильного коррозионного воздействия водорастворимых кислот и щелочей на металлы наличие их в топливе не допускается, и они определяются по ГОСТ 6307-75.

Органические кислоты, преимущественно нафтеновые, по своей коррозионной активности слабее водорастворимых. Наличие их в топливе допускается с ограничением. Содержание органических кислот оценивают по показателю кислотности, под которым понимают количество щелочи КОН (мг), необходимое для нейтрализации органических кислот в 100мл топлива. Кислотность определяют по ГОСТ 5985 - 79. Допустимая кислотность неэтилированных бензинов АИ -93 и А - 76 составляет соответственно 0,8 и 1,0мл/100мл; бензина АИ - 95 - 2,0; остальных марок- 3,0.

Наличие в топливе активных сернистых соединений(сероводород, низшие меркаптаны) и элементной серы, вызывающих сильную коррозию деталей двигателя и системы питания не допускается. Активность сернистых соединений в топливе проверяют на медной пластинке по ГОСТ 6321 -69.

Неактивные сернистые соединения- сульфиды, теофены и т.п. -практически не действуют на металлы в обычных условиях. Однако при их сгорании получаются сернистые SO2 и серные SO3 ангидриды, которые образуют сернистую и серную кислоты, вызывающие сильную коррозию деталей. Содержание серы в топливе по техническим требованиям не должно превышать 0,1% и определяется по ГОСТ 19121-73.

Коррозионная активность топлива повышается с увеличением содержания в нем воды. Кроме того, наличие воды в бензине при отрицательных температурах может вызвать закупорку в топливопроводах из-за образования в них кристаллов льда. В результате чего нарушаются подача топлива и, следовательно, работа двигателя.

Весьма нежелательно наличие в топливе механических примесей, которые забивают жиклеры карбюратора и способствуют повышению износов деталей двигателя.

где - средняя температура разгонки топлива, С; - плотность топлива при температуре +20С.

Среднюю температуру разгонки топлива определяют по формуле:

где - температура начала разгонки топлива, С; - температура конца разгонки топлива С.

Полученное значение ОЧ сравнивают с нормами ГОСТ на бензины и дают заключение, соответствует ли данный бензин по октановому числу, определенному конкретным методом испытаний, нормам ГОСТ на данную марку бензина.

В топлива, антидетонационные свойства которых не соответствует эксплуатационным требованиям, добавляют высокооктановые компоненты (бензол, этиловый спирт) или антидетонаторы. Самый дешевый из них - тетраэтилсвинец (ТЭС) и тетраметилсвинец (ТМС).

Но в наше время эти присадки уже не используют, так как этилированные бензины являются источником свинцовых загрязнений окружающей среды и препятствием к использованию каталитических систем нейтрализации отработавших газов на автомобилях, так как их каталитическая основа быстро разрушает оксидами свинца. Поэтому, несмотря на высокие антидетонационные свойства ТЭС, поиск и разработка новых, в частности, менее токсичных антидетонаторов продолжается.

Антидетонационная присадка на основе метилтретбутилового эфира (МТБЭ) не ядовита, отличается более высокой теплотой сгорания, хорошо смешивается с бензином в любых соотношениях, не агрессивна к конструкционным материалам. При добавке 10% МТБЭ октановое число повышается на 2,1-5,8 единиц (по исследовательскому методу), при добавке 20% - на 4,6-12,6 единиц. Кроме того, при введении МТБЭ в бензин в количестве 11 процентов минимальная температура холодного пуска двигателя снижается на 10-12 С. Максимальное допустимое содержание МТБЭ (ТУ 38.103704-90) или его смеси "Фетерол" (ТУ 301-03-130-93) в отечественных бензинах составляет 15%.

В качестве антидетонационных присадок применяют также составы, содержащие марганец и железо. Они имеют высокие антидетонационные свойства и менее токсичны по сравнению с ТЭС. Однако бензины с марганцевыми антидетонаторами (ЦТМ, МЦТМ) образуют повышенные отложения на поверхностях свечей зажигания и катализаторах дожигателя, снижая эффективность их работы. Кроме того, соединения марганца при вдыхании обладают нейротоксичным действием и при массовом применении в местах скопления автомобилей на закрытых стоянках или в ремонтных зонах могут превысить предельно допустимую концентрацию. Поэтому их применение ограничено Межведомственной комиссией (МВК) при Госстандарте РФ по времени и не должно носить массового характера. Стандартом на автомобильные бензины ГОСТ Р 51105-97 предусмотрена выработка бензина "Нормаль-80" и "Регуляр-91" с содержанием марганца соответственно 50 и 18 .

Железосодержащие присадки (ферроцены) не токсичны, сравнительно дешевы и эффектны, но вызывают повышенный износ деталей двигателей, интенсивное нагарообразование и отложение лаковых пленок. При концентрациях ферроценов до 40 мг/кг интенсивность изнашивания деталей снижается, но остается выше, чем при использовании бензинов без присадки. К применению допущены антидетонаторы на основе ферроцена при содержании железа в бензинах всех марок не более 37 .

Таблица 3. Антидетонационные присадки к бензину

Наименование присадки

Количество присадки на 1т топлива для повышения ОЧ бензина на 1 единицу,кг

Максимальное увеличение ОЧ бензина при допустимой концентрации присадки в топливе, ед.

Этиловая жидкость

0,07

8

МТБЭ или "Фетерол"

30

4,5

Присадка МЦТМ

0,1

5

Присадка АДА

2,5

6

Добавка АвтоВЭМ

1,25

8

Добавка Феррада

1,33

7,5

В таблице 3 приведены наиболее распространенные антидетонационные присадки к топливам.

Исходя из постоянно возрастающих требований к надежности и экологическим характеристикам двигателей, этилированный бензин признан не соответствующим по техническому уровню стандарту EN 228, и его производство в России и других странах прекращено. Применение бензинов с металлосодержащими присадками рассматривается как альтернатива этилированным бензинам. Производство высокооктановых неэтилированных бензинов позволит отечественной промышленности освоить выпуск и оборудовать все выпускаемые автомобили с бензиновыми двигателями каталитическими нейтрализаторами отработавших газов, что значительно снизит концентрацию в них токсичных компонентов

Список литературы

1. Пичугин А.П. Переработка нефти. М., Гостоопттехиздат, 1960.

2. Смидович Е.В. Технология переработки нефти и газа. Часть вторая. М., «Химия», 1968.

3. Суханов В.П. Каталитические процессы в нефтепереработке. М., «Химия», 1973.

4. Орочко Д.И., Сулимов А.Д., Осипов Л.Н. Гидрогенизационные процессы в нефтепереработке. М., «Химия», 1971.

Размещено на Allbest.ru


Подобные документы

  • Цель изомеризационных процессов в нефтепереработке - улучшение антидетонационных свойств авиационных и автомобильных бензинов. Сырье для процесса изомеризации. Механизм изомеризации, катализаторы и основные параметры. Технологический расчет аппарата.

    курсовая работа [638,8 K], добавлен 26.09.2013

  • Общая характеристика реактивных топлив, их назначение и физико-химические свойства. Технология получения и перспективы производства реактивных топлив, их марки и классификация сырья. Особенности топлив, применяемых жидкостных ракетных двигателей.

    контрольная работа [26,4 K], добавлен 11.06.2013

  • Проблемы лабораторной проверки качества горюче-смазочных материалов. Рабочие свойства топлив, масел, смазок и специальных жидкостей. Применение растворимых примесей. Сведения о производстве и свойствах минеральных, нефтяных и синтетических масел.

    курсовая работа [334,6 K], добавлен 03.04.2018

  • Анализ прибора, определяющего фракционный состав топлива. Особенности загустителей пластичных смазок, рассмотрение видов. Характеристика свойств сжиженных газообразных топлив. Пластические массы как полимерные высокомолекулярные синтетические материалы.

    контрольная работа [884,5 K], добавлен 13.01.2013

  • Основы процесса каталитического крекинга. Совершенствование катализаторов процесса каталитического крекинга. Соответствие качества отечественных и зарубежных моторных топлив требованиям европейских стандартов. Автомобильные бензины, дизельные топлива.

    курсовая работа [1,6 M], добавлен 11.12.2014

  • Обмен веществам между сервовитной пленкой и смазочным материалом. Эксплуатационные свойства смазочных масел. Окисление масла кислородом воздуха. Основные причины обводнения масла в смазочных системах. Антифрикционные свойства подшипников скольжения.

    реферат [310,4 K], добавлен 03.11.2017

  • Отбор образцов, проб и выборок для исследования свойств текстильных материалов, методы оценки неровности текстильных материалов. Однофакторный эксперимент. Определение линейного уравнения регрессии первого порядка. Исследование качества швейных изделий.

    лабораторная работа [128,0 K], добавлен 03.05.2009

  • Группы лесных товаров как строительных материалов. Сортность лесоматериалов и стойкость пород древесины к поражению и растрескиванию. Виды жидких и газообразных топлив, их характеристика и области применения. Физико-химические свойства природных газов.

    контрольная работа [167,8 K], добавлен 17.09.2009

  • Анализ методов оценки упругопластических свойств материалов для верха обуви при растяжении. Обоснование выбора методов испытаний и исследуемых материалов. Разработка автоматизированного комплекса для оценки свойств при одноосном и двухосном растяжении.

    дипломная работа [4,8 M], добавлен 26.10.2011

  • Разновидности и основные характеристики жидких котельных топлив. Способы промышленного производства пищевого этилового спирта. Отходы производства этилового спирта и способы их утилизация. Виды котельных топлив. Технический анализ модифицированных топлив.

    дипломная работа [1,9 M], добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.