Проектировка и расчет термического отделения для высокотемпературного отжига анизотропной электротехнической стали

Получение необходимой кристаллографической текстуры в электротехнической анизотропной стали. Процесс образования ребровой рекристаллизационной текстуры в электротехнических сталях. Процесс выплавки анизотропной стали в кислородно-конверторных печах.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 19.02.2011
Размер файла 166,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Общая часть

1.1 Введение

Электротехнические стали являются основным классом магнитомягких материалов, используемых в машиностроении и трансформаторостроении. Широкое применение электротехнических сталей в этой области техники обусловлено высоким уровнем магнитных свойств и относительно низкой стоимостью по сравнению с другими магнитомягкими материалами.

При непрерывном развитии техники, быстром увеличении производства электроэнергии, значительно расширяется область применения электротехнической стали. Сама технология производства электротехнической стали значительно изменилась. Рулонная холоднокатаная текстурованная и нетекстурованная доминирует над листовой горячекатаной сталью. Созданы и проектируются новые марки стали с улучшенными магнитными свойствами.

Высокие магнитные свойства готовой электротехнической анизотропной стали обеспечиваются наличием в стали совершенной кристаллографической текстуры (110) [001] (ребровая текстура, текстура Госса), которая формируется в процессе вторичной рекристаллизации при высокотемпературном отжиге. Для протекания вторичной рекристаллизации необходимо, во-первых, создание уже при горячей прокатке стали определённой структурной и текстурной неоднородности и, во-вторых, наличие в металле дисперсных частиц ингибиторной фазы.

Получение необходимой кристаллографической текстуры в электротехнической анизотропной стали, достигается посредством реализации механизма структурной наследственности. Ингибиторная фаза задерживает нормальный рост зёрен, позволяя реализоваться процессу вторичной рекристаллизации.

В настоящее время существует три основных варианта производства электротехнической анизотропной стали: сульфидный, нитридный, сульфанитридный. Эти варианты отличаются химическими составами и режимами обработки.

Сульфидный вариант самый распространённый. Ингибиторной фазой в данной стали, является сульфид марганца. Основными технологическими операциями при производстве стали по сульфидному варианту являются ограничение концентрации марганца, высокотемпературный нагрев перед горячей прокаткой, горячая прокатка, две холодные прокатки, разделённые рекристаллизационным отжигом. Конечная десульфурация металла до содержания серы 0,002% производится при высокотемпературном отжиге. Готовая сталь имеет магнитную индукцию в поле 800 А/м - 1,81-1,84 Тл.

Сталь нитридного варианта имеет повышенное содержание углерода, азота и меди. Ингибиторной фазой является нитрид алюминия. Основные операции после горячей прокатке - первая холодная прокатка, вторая холодная прокатка и высокотемпературный отжиг. Магнитная индукция в поле 800 А/м - 1,85-1,89 Тл. При этом способе содержание азота в стали колеблется в пределах 0,006-0,010%, алюминия 0,010-0,020%, а содержание серы, кислорода и других примесей должно быть минимальным (около 0,002-0,003%). Существенным отличием стали нитридного варианта от сульфидного является более низкий нагрев металла перед горячей прокаткой: (1250°С, против 1400°С).

Сталь сульфонитридного варианта имеет повышенное содержание (по сравнению с сульфидными) углерода и алюминия. Основные операции после горячей прокатки - нормализация, однократная холодная прокатка, обезуглероживающий отжиг и высокотемпературный отжиг. Магнитные индукции в поле 800 А/м - 1,89-1,94 Тл - являются самыми высокими для готовой стали, что обеспечивается за счёт формирования сверхплотной дисперсной ингибиторной фазы в процессе термообработок (а не при горячей прокатке) и мощного силового воздействия на текстуру стали, каковой является однократная прокатка. Принципиально важным в данной технологии является наличие высокотемпературного нормализирующего отжига (1120-1150°С) с жёстко регламентированным режимом охлаждения.

Производство холоднокатаной электротехнической анизотропной стали, получает все большее распространение за рубежом. В больших количествах холоднокатаная сталь производится в США, Великобритании, ФРГ, Франции, Японии и Швеции.

По выпуску электротехнической анизотропной стали Россия занимает одно из ведущих мест в мире. Из нее делают сердечники для трансформаторов. Сердечники подвергаются перемагничиванию переменными токами. Изготовление сердечников из хорошо текстурованных сталей позволяет сократить габариты и вес трансформаторов, повысить их коэффициент полезного действия.

На первом месте в России по выпуску электротехнической анизотропной стали, находится Новолипецкий металлургический комбинат. Качество стали, выпускаемой НЛМК, удовлетворяет требованиям мировых стандартов. НЛМК экспортирует электротехническую анизотропную сталь во многие страны мира.

Повышение качества стали, связано, прежде всего, с уменьшением общих удельных потерь. Чтобы уменьшить эти потери детали машин и трансформаторов изготавливают из тонких листов толщиной от 0,15 до 0,35 мм. Эти листы имеют электроизоляционную оболочку. Применяют различные типы изоляций на поверхности анизотропных электротехнических сталей [1].

Электроизоляционное покрытие наносится с целью улучшения магнитных характеристик стали, уменьшения общих удельных потерь в стали, снижения шума в сердечниках трансформаторов большой мощности и размеров [1].

В целях более рационального использования электротехнической анизотропной стали, механизации, и автоматизации технологических процессов изготовления трансформаторов требуется, чтобы сталь готовилась в виде ленты. Ввиду этого электротехническая промышленность требует поставлять сталь в виде ленты. [1].

Ввод нового, более современного оборудования, а также совершенствование технологии выплавки стали, и других мероприятий способствует, значительному улучшению качества анизотропной электротехнической стали.

1.2 Требования, предъявляемые к электротехническим анизотропным сталям согласно ГОСТ 21427.1-83

Изделия из электротехнической стали, работают в переменных магнитных полях, следовательно, генерируются вихревые токи. Они подвергаются быстрому перемагничиванию.

Одним из основных требований, предъявляемых к электротехническим сталям, является минимальная величина потерь мощности на возбуждение вихревых токов и подмагничивание, отнесённая к единице массы стали - это ваттные потери или удельные потери.

Свойства стали, определяются величиной и формой зёрен, текстурой, которые зависят от химического состава металла, от величины обжатий при холодной и горячей прокатке и термообработки. У электротехнической анизотропной стали большая величина магнитной проницаемости.

Электротехническую анизотропную сталь подразделяют:

по точности изготовления по толщине:

нормальной точности - Н,

повышенной точности - П

по точности изготовления по ширине:

нормальной точности,

повышенной точности - Ш;

по неплоскостности: на классы 1 и 2;

по серповидности (для рулонной стали и ленты):

нормальной точности,

повышенной точности - С;

по виду покрытия:

без покрытия (с металлической поверхностью),

без электроизоляционного покрытия (без дополнительного нанесения изоляции, но с грунтовым слоем) - БП,

с электроизоляционным термостойким покрытием - ЭТ,

с изоляционным покрытием, не ухудшающим штампуемость - М (мягкое), с электроизоляционным термостойким покрытием, улучшающим штампуемость - ТШ, электроизоляционным нетермостойким покрытием, улучшающим штампуемость - НШ;

по коэффициенту заполнения стали с покрытием на группы: А и Б;

по уровню остаточных напряжений:

с нормированными напряжениями - ОН,

без нормирования напряжений.

Рулонную сталь изготовляют толщиной 0,15, 0,27; 0,30; 0,35; 0,50; 0,70 и 0,80 мм и шириной 650, 700, 750, 800, 865 и 1000 мм.

Размеры листов должны соответствовать указанным в таблице 1.

Таблица 1. Размеры листов

Толщина, мм

Длина листов при ширине, мм

650

700

750

800

865

1000

0,15

1500

1500

1500

1500

1500

-

0,27

1500

1500

1500

1500

1500

-

0,30

1500

1500

1500

1500

1500

2000

0,35

1500

1500

1500

1500

1500

2000

Резаную ленту изготовляют толщиной 0,15, 0,27; 0,30; 0,35 и 0,50 мм, шириной 90; 170; 180; 190; 200; 240; 250; 300; 325; 360; 400; 465 и 500 мм.

К основным требованиям относится также фиксированное содержание химических элементов, включений. Сталь должна содержать как можно меньшее количество вредных примесей.

В настоящее время во всех странах принят следующий химический состав электротехнической анизотропной стали в слитках (слябах):

Таблица 2. Содержание элементов в стали

Элемент

Содержание, % (масс.)

C

0,02-0,08

Mn

<0,20

P

<0,020

S

0,004?0,025

Cr

<0,10

Ni

<0,20

Cu

<0,30

Si

2,5-4,3

Таблица 3. Влияние величины зерна на магнитные свойства электротехнической анизотропной стали

Число зерен, см2

Макс. магн. прониц. , Гн/м

Коэрцитивная сила Э, А/м

0,5

17000

0,23

1

16150

0,24

5

12000

0,33

10

9000

0,43

20

6050

0,65

Листы, рулонную сталь и ленты изготавливают с обрезными кромками. Предельные отклонения рулонной стали и листов не должны превышать по ширине: нормальной точности +0,5%; повышенной точности +1,0 мм. Предельные отклонения листов по длине не должны превышать 0,5%. Предельные отклонения по ширине ленты должны соответствовать указанным в таблице 4.

Таблица 4. Предельные отклонения по ширине ленты

Ширина ленты, мм

Предельные отклонения при точности изготовления, мм

Нормальной

повышенной

До 250

+0,5

+0,5

Свыше 250 до 500

+1,2

+0,5

Масса одного отрезка в рулоне ленты должна быть не менее массы, вычисленной из расчёта 0,5 кг на 1 мм ширины ленты. Предельные отклонения по толщине стали должны соответствовать указанным в таблице 5.

Таблица 5. Предельные отклонения по толщине стали

Толщина, мм

Предельные отклонения по толщине стали при точности прокатки, мм

Нормальной

повышенной

0,15; 0,27; 0,30

±0,02

±0,01

0,35

±0,03

±0,02

Телескопичность рулонов не должна превышать:

5 мм - при ширине стали до 500 мм;

7 мм - при ширине стали 500 мм и более.

Отдельные витки не должны выступать более чем на пятикратную толщину стали. Один - два внутренних или наружных витка могут выступать над поверхностью торца рулона. Внутренний диаметр рулона должен быть (500 ± 10) мм. Наружный диаметр рулонов лент должен быть не более 1200 мм, рулонной стали - не более 1300 мм. Серповидность рулонной стали и ленты на 1 метр длины должна соответствовать таблице 6.

Таблица 6. Серповидность рулонной стали и ленты на 1 метр длины

Ширина, мм

Точность прокатки по толщине, мм

Нормальная

повышенная

170 до 250 включительно

3

2

Свыше 250

2

1

Сталь изготовляют:

толщиной 0,15, 0,27; 0,30 и 0,35 мм - с покрытиями ЭТ и БП;

толщиной 0,50 мм - с покрытиями М, ТШ и НШ;

толщиной 0,70 мм - без покрытия и с покрытиями ТШ и НШ;

толщиной 0,80 мм - без покрытия.

Поверхность стали должна быть без ржавчины, отслаивающейся плёнки и окалины. Не допускается, на поверхности стали, изготовляемой без электроизоляционного покрытия, наличие налёта порошкообразных веществ, препятствующих нанесению изоляции. На поверхности стали, допускаются цвета побежалости и отпечатки глубиной или высотой, не превышающей 0,5 суммы предельных отклонений по толщине.

Основные требования по магнитным свойствам, предъявляемые к электротехнической анизотропной стали приведены в таблице 7.

В сталях с кубической текстурой анизотропия магнитных свойств минимальна. В настоящее время расширяется производство холоднокатаного листа с ребровой текстурой, а также с кубической.

Коэффициент старения по удельным магнитным потерям не должен превышать для стали марок 3311, 3411, 3412, 3413, 3414 и 3415-4%; для стали марок 3404, 3405, 3406, 3407, 3408 и 3409 - 2%. В случае превышения норм коэффициента старения сталь допускается аттестовывать маркой, соответствующей уровню потерь, измеренных на образцах после старения.

Таблица 7. Основные требования, предъявляемые к электротехнической анизотропной стали по ГОСТ 21427.1-83

Толщина, мм

Марка стали

Уд. потери, Вт/кг

Магн. инд., Тл при напр. магн. поля

Р 1,5/50

Р 1,7/50

100 А/м

2500 А/м

0,35

3411

3412

3413

3414

3415

3404

3405

3406

3407

3408

1,75

1,50

1,30

1,10

1,03

-

-

-

-

-

-

-

-

-

-

1,60

1,50

1,43

1,36

1,30

-

-

-

-

-

1,60

1,61

1,62

1,68-1,72

1,71-1,74

1,75

1,80

1,85

1,88

1,90

-

-

-

-

-

0,30

3413

3414

3415

3404

3405

3406

3407

3408

1,19

1,03

0,97

-

-

-

-

-

-

-

-

1,50

1,40

1,33

1,26

1,20

-

-

-

1,60

1,61

1,62

1,68-1,72

1,71-1,74

1,85

1,88

1,90

-

-

-

-

-

Электроизоляционное термостойкое покрытие стали (ЭТ), нейтральное к трансформаторному маслу при 100°С и маслостойкое при 150°С, должно удовлетворять следующим требованиям:

толщина на одной стороне - не более 5 мкм;

коэффициент сопротивления - не менее 10 ОмЧсм2;

сохранять электроизоляционные свойства после нагрева до 800°С в течение трёх часов в нейтральной атмосфере или после выдержки при температуре (820 ± 10)° С в течение трёх минут на воздухе;

не отслаиваться при изгибе образца.

Электроизоляционное термостойкое покрытие, улучшающее штампуемость (ТШ), должно удовлетворять требованиям:

не отслаиваться при изгибе образца;

иметь коэффициент сопротивления не менее 1,0 ОмЧсм2 (ТШ1);

сохранять указанное значение коэффициента сопротивления после нагрева до 700° С в течение полутора часов в нейтральной атмосфере или 2 минуты на воздухе. Электроизоляционное нетермостойкое покрытие, улучшающее штампуемость (НШ), должно удовлетворять требованиям:

не отслаиваться при изгибе образца;

иметь коэффициент сопротивления не менее 20 ОмЧсм2 (НШ20);

сохранять указанное значение коэффициента сопротивления после нагрева до 200°С в течение 24 часов.

Листы, рулонную сталь и ленты принимают партиями. Партия должна состоять из одного рулона, пачки листов или бунтов ленты из стали одной марки, одного размера и сопровождаться документом о качестве в соответствии с ГОСТ 7566-81. Контроль размеров, разнотолщинности, неплоскостности, серповидности, состояния поверхности и кромок, испытаний на перегиб, магнитных свойств, остаточных напряжений, качества покрытия проводят на каждом рулоне и пачке. Ленту и листы, полученные при разрезке одного рулона на заданную ширину и длину, испытывают как один рулон. Рулон, состоящий из стали двух партий, потребитель контролирует как один рулон. Определение коэффициента старения, коэффициента заполнения и сохранности электроизоляционных свойств покрытия изготовитель проводит периодически не реже одного раза в квартал на десяти рулонах или пачках. При получении неудовлетворительных результатов периодических испытаний, испытания переводят в приёмосдаточные до получения положительного результата на трёх партиях подряд. При изменении основных составов или технологии нанесения электроизоляционного термостойкого покрытия проводят типовые испытания нейтральности к трансформаторному маслу и маслостойкости на одном рулоне или пачке. При получении неудовлетворительных результатов проверки хотя бы по одному из показателей повторную проверку по нему проводят по ГОСТ 7566-81.

Для проведения испытаний от начала и конца каждого рулона отрезают длиной 1500-2000 мм, от пачки отбирают равномерно по высоте два листа. Размеры стали, проверяют измерительным инструментом, обеспечивающим необходимую точность измерения: толщину - микрометром (ГОСТ - 6507 90 или ГОСТ 4381-87), ширину - металлической линейкой (ГОСТ 427-75) или другими средствами измерения соответствующей точности.

Толщину каждого из отобранных для контроля отрезков или листов измеряют в четырёх точках, расположенных посередине каждой стороны отрезка или листа на расстоянии не менее 20 мм от кромок. Толщина в каждой измеряемой точке должна соответствовать установленным нормам. Разнотолщинность проверяют по результатам измерения толщины. Серповидность измеряют метровой линейкой в местах наибольшего отклонения боковой кромки отрезка ленты от прямой линии. Отклонение от плоскостности (неплоскостность), серповидность и разнотолщинность определяют по ГОСТ 26877-86.

Коэффициент заполнения стали должен соответствовать нормам, указанным в таблице 8.

Таблица 8. Коэффициент заполнения стали

Толщина, мм

Коэффициент заполнения, не менее, для стали

с покрытием БП

с покрытием ТШ, НШ

с покрытием ЭТ и М для групп

А

Б

0,30

0,96

-

0,96

0,95

0,35

0,97

-

0,97

0,96

Таблица 9. Влияние содержания неметаллических включений на магнитные свойства электротехнической анизотропной стали

Содержание неметаллических вкл., %

Коэрцитивная сила Н, А/м

Мин. прониц., Гн/м

Мах. прониц., Гн/м

Потери на гистерезис, эрг/см3

0,004

0,22

4200

15000

900

0,006

0,29

1500

12500

1200

0,036

0,48

650

7500

2400

0,050

0,52

600

6500

2800

Магнитные свойства стали марок 3405, 3406, 3407, 3408 и 3409 определяют на двух образцах, изготовленных отдельно из каждого отобранного отрезка. Марку стали, устанавливают по образцу, имеющему худшие магнитные свойства.

Полосы, составляющие образец, перед определением магнитных свойств должны быть подвергнуты отжигу. Рекомендуемый режим отжига: нагрев до температуры (800-820)°С с пребыванием до 10 минут в атмосфере, предохраняющей от окисления, или 3 минуты на воздухе, или отжиг в муфельной печи в нейтральной атмосфере при 780-800°С, выдержка 1 час, охлаждение с печью до 300°С.

При возникновении разногласий нагрев до температуры 800-820°С с пребыванием в нейтральной защитной атмосфере от 1,5 до 3 минут для стали с электроизоляционным покрытием, не ухудшающим штампуемость, и стали без электроизоляционного покрытия и от 1,5 до 3 минут на воздухе для стали с электроизоляционным термостойким покрытием. Магнитные свойства определяет в аппарате Эпштейна по ГОСТ 12119-80. Для определения остаточных напряжений от любого отрезка отрезают образец испытаний магнитных потерь в листовых аппаратах по ГОСТ 12119-80. Остаточные напряжения по разности магнитных потерь до и после отжига образца, отнесённой к магнитным потерям отожжённого образца.

Для определения коэффициента старения образец после определения магнитных свойств подвергают старению по режиму: нагрев до 120° С, выдержка 120 часов и вновь определяют удельные магнитные потери.

Коэффициент старения (Кст), %, вычисляют по формуле

Кст = (Р21)/Р1Ч100, (1)

где Р1 и Р2 - удельные магнитные потери до и после старения.

Для определения прочности сцепления покрытия с металлом образец плотно прижимают к стержню диаметром 20 мм и плавно изгибают на 90° вокруг стержня. Образец считается выдержавшим испытания, если с его наружной стороны нет трещин и отслоений покрытия. Отслоения и трещины определяются визуально. Коэффициент заполнения определяют на образце, составленном не менее чем из 100 взятых для определения магнитных свойств полос, с которых перед испытанием снимают заусенцы. Образец спрессовывают равномерно по всей поверхности под давлением 0,35 Н/мм2. Высоту спрессованного образца измеряют с погрешностью не более 0,1 мм в четырёх противоположных местах. За высоту принимают среднее арифметическое результатов четырёх измерений.

Коэффициент заполнения (К) вычисляют по формуле

К=m/VЧq, (2)

где m - масса образца, кг, определённая с погрешностью не более 0,005 кг;

V - объём образца после опрессовывания, определённый по результатам измерения пачки, м3;

q - плотность стали, кг/м3.

1.2 Маркировка, упаковка, транспортирование и хранение

Маркировка, упаковка, транспортирование и хранение - по ГОСТ - 7566-81 с дополнениями. Отдельные отрезки в рулоне должны быть соединены стыковой сваркой. Витки рулона в месте сварки не должны выступать более чем на пятикратную толщину стали и должны быть отмечены. Толщина сварки в месте сварки не должна увеличиваться более чем на ? номинальной толщины. Резаную ленту, смотанную на одну моталку, допускается упаковывать без прокладок между рулонами. Допускается упаковывание в одну пачку листов и смотка в рулон двух полос разных партий одной марки и одного размера при условии надёжного разделения партий. На внутренний и наружный виток рулона и ленты наклеивают этикетки с указанием товарного знака предприятия - изготовителя, марки стали. Рулоны и пачки листов упаковывают в тару, обеспечивающую сохранность продукции, в соответствии с нормативно - технической документацией. Прокат транспортируется транспортом всех видов в соответствии с правилами перевозки грузов, действующими на транспорте данного вида. Транспортирование стали, железнодорожным транспортом, производят в крытых вагонах, на платформах или полувагонах всеми видами отправок.

Методика испытаний электроизоляционных покрытий электротехнической стали на нейтральность к трансформаторному маслу

Испытания проводят путём выдержки пакета пластин стали с исследуемым покрытием в сосуде с трансформаторным маслом при температуре (100 ± 1)° С течение 1000 часов. Масса пакетов полос размером 280Ч30 мм составляет 0,5 кг, масса масла - 0,3 кг. Одновременно проводится при тех же условиях старения проб чистого масла. Покрытие считается нейтральным к трансформаторному маслу, если тангенс угла диэлектрических потерь, кислотное число и содержание водорастворимых кислот и щелочей для масла, в котором находилась сталь с покрытием, не увеличились более чем на 15% по сравнению с характеристиками состаренного чистого масла.

Методика испытаний электроизоляционных покрытий электротехнической стали на маслостойкость

Маслостойкость электроизоляционного покрытия электротехнической стали, оценивается после выдержки в течение 168 часов пакета пластилин стали массой 0,5 кг и размером 280Ч30 мм в сосуде, содержащем 0,4 кг трансформаторного масла при температуре (150 ±2)° С. После выдержки пластины образца обезжириваются, и проверяется прочность сцепления покрытия со сталью при изгибе и коэффициент сопротивления изоляционного покрытия.

1.3 Патентный поиск

Сведения по патентному поиску патентов по теме проекта за последние 8 лет, т.е. за 1999-2006 года, представлены в таблице 10.

Таблица 10. Патентная проработка

Автор

Страна

Год опубликования, класс, номер патента

Название. Краткое описание патента

1. Фритц Беллинг, Андреас Беттхер, Манфред Эспенхан, Кристоф Хольцапфель

Германия

№2126452 С;

20.02.99 г.

Бюл. №5

Способ изготовления листовой электротехнической стали (толщина полосы от 0,1 до 0,5 мм).

Изобретение отличается тем, что плоские заготовки наряду с марганцем и медью имеют повышенное содержание серы и пониженное содержание алюминия, плоские заготовки перед горячей прокат-кой нагреваются до пониженной температуры и выдерживаются при этой температуре достаточно длительное время, которое ниже температуры растворения сульфидов марганца и выше температуры растворения сульфидов меди, вслед за этим плоские заготовки при необходимости вначале прокатываются в горячем состоянии начерно и затем с пониженной конечной температурой прокатки, предпочтительно в диапазоне от 900° С

2. Настич В.П., Казаджан Л.Б., Барятинский В.П., Поляков Н.Ю., Савенков А.В., Долматов А.П., Рындин В.А., Тищенко А.Д., Говоров С.М., Шляхов Н.А.

Россия

№2152278

С1;

10.07.00 г.

Бюл. №19

Способ горячей прокатки анизотропной электротехнической стали. Технический эффект при использовании предлагаемого изобретения заключается в повышении плотности мелкодисперсных включений фазы - ингибитора в кремнистой стали конечной толщины перед высокотемпературным отжигом путём предотвращения процессов выделения включений нитридов AIN в интервале температур 980° С-850° С при горячей деформации в последних пропусках в чистовой группе клетей стана.

3. Настич В.П., Казаджан Л.Б., Барятинский В.П., Поляков М.Ю., Тищенко А.Д., Говоров С.М., Долматов А.П., Рындин В.А.

Россия

№2166386

С2;

10.05.01 г.

Бюл. №13

Способ горячей прокатки анизотропной электротехнической стали. Техническим эффектом достигают сохранением температуры раската на выходе из черновой группы клетей непрерывного стана, который производят так: в первой клети черновой группы сляб подвергают обжатию не более 5%, достаточному для взрыхления печной окалины; прокатку во второй клети черновой группы осуществляют с обжатием не более 35%; обжатия в клетях 3 и 4 черновых групп увеличивают на 5-10% в каждой последующей клети по отношению к предыдущей, а обжатие в 5-ой в клети выбирают исходя из толщины раската, определяемой в зависимости от массовой доли кремния в стали. Изобретение обеспечивает возможность увеличения температуры конца горячей прокатки полос.

1.4 Обоснование строительства отделения

Важнейшими характеристиками, определяющими качество анизотропной электротехнической стали, являются: высокая магнитная проницаемость и магнитная индукция, низкие удельные магнитные потери [2].

Резкое снижение ваттных потерь достигается путем повышения чистоты металла и получения совершенной текстуры в процессе передела литого металла на лист; в текстурированной стали ваттные потери более чем в два раза ниже, чем в нетекстурированных листах. Высокие электромагнитные свойства, низкие удельные ваттные потери и высокая магнитная индукция обусловливаются совершенной ребровой (110) [001] или кубической (100) [001] текстурой.

Наиболее распространенные анизотропные стали с ребровой текстурой (110) [001], в которых преимущественное направление намагничивания совпадает с направлением прокатки. Основным процессом, обуславливающим получение указанной текстуры, является вторичная рекристаллизация. В холоднокатаной анизотропной стали, вторичная рекристаллизация протекает при соответствующей термообработке - высокотемпературном отжиге (ВТО). В результате ВТО получают кристаллографическую магнитную текстуру высокой степени совершенства и оптимальный размер зерна. Кроме того, ВТО обеспечивает рафинирование металла от примесей и исключение возможности образования дисперсных частиц, снижающих магнитные свойства [2].

Таким образом, наличие отделения ВТО в прокатных цехах по производству анизотропной электротехнической стали, обосновывается необходимостью получения требуемых магнитных характеристик в стали.

2. Технологическая часть

2.1 Выбор марки стали

Анизотропная электротехническая сталь, как и другие электротехнические стали, относится к классу ферромагнитных магнитомягких сплавов, которые характеризуются узкой петлей гистерезиса, малой коэрцитивной силой, высокой магнитной индукцией и проницаемостью, низкими потерями на гистерезис и вихревые токи. Она применяется в различных машинах и приборах, которые работают в переменных магнитных полях. Это говорит о том, что работа, затрачиваемая на перемагничивание, должна быть минимальной, так как она обуславливает потерю мощности и снижает коэффициент полезного действия машины [3].

Развитие электротехнической промышленности и радиотехники обусловило весьма широкое, и разнообразное использование анизотропной электротехнической стали, в связи, с чем в каждом отдельном случае к металлу предъявляют различные дополнительные требования [3].

Свойства анизотропной электротехнической стали, в значительной степени определяются чистотой по неметаллическим включениям, величиной и формой зерен, кристаллографической текстурой листа, которые, в свою очередь зависят, от особенностей химического состава стали и термообработки.

С увеличением размеров зерен удельные потери снижаются. Границы зерен всегда имеют искаженную структуру (кристаллографическую решетку) и в промежутках между зернами распределяется магнитотвердая прослойка цементита и неметаллических включений, поэтому границы являются препятствием для прохождения магнитного поля [3].

Химический состав анизотропной электротехнической стали (заводской) после выплавки и после проведения высокотемпературного отжига приведен в таблице 11.

Таблица 11. Химический состав стали после выплавки и после проведения ВТО

Марки

сталей

Массовая доля элементов, %

C

Si

N2

P

S

Cr

Ni

Mn

Cu

Al

3311

0,042

1,8-2,8

0,010

0,020

0,012

0,10

0,05

0,20

0,15

0,010

готового проката

3404 -

3414

0,006

2,8-3,8

не более

0,15 -

0,10

0,10

0,010

0,010

0,012

0,005

0,005

0,05

Удельное электрическое сопротивление марок готового проката 3404-3414 составляет: 0,45-0,50 ОмЧмм2/м; для марки 3311 составляет: 0,40 ОмЧмм2/м.

Удельные ваттные потери Р1,5/50 для марок 3411-3414 составляет: 1,30-1,03 Вт/кг.

Магнитная индукция при намагничивании в магнитном поле для марок 3413-3415 В2500 составляет: 1,85-1,90 А/м.

Коэффициент старения по удельным магнитным потерям для марок 3404-3414 не более 6. Коэффициент заполнения в пакете составляет: 94-97%.

Плотность стали, марки 3311 составляет: 7650 кг/м3, а для марок 3404-3414 составляет: 7750 кг/м3.

2.2 Магнитные свойства

Электротехнические железокремнистые стали относятся к классу ферромагнитных магнитомягких сплавов, которые характеризуются узкой петлей гистерезиса, малой коэрцитивной силой, высокой магнитной индукцией и проницаемостью, низкими потерями на гистерезис и вихревые токи, а также минимальными общими удельными потерями. Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий - магнитного поля, деформации, изменения температуры.

Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами: внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

Большой вклад в экспериментальное изучение свойств ферромагнетиков внес А.Г. Столетов. В своей докторской диссертации он исследовал зависимость намагниченности мягкого железа от напряженности магнитного поля. Предложенный им способ заключался в измерении магнитного потока в ферромагнитных кольцах при помощи баллистического гальванометра.

Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри. При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

Точка Кюри для различных материалов различна:

- для железа +770 С;

- для никеля +365 С;

- для кобальта +1130 С.

При намагничивании ферромагнетиков происходит небольшое изменение их линейных размеров, т.е. увеличение или уменьшение их длины с одновременным уменьшением или увеличением поперечного сечения. Это явление называется магнитострикцией, оно зависит от строения кристаллической решетки ферромагнетика.

2.3 Формирование структуры и текстуры анизотропной электротехнической стали

Свойства анизотропной электротехнической стали, в значительной степени определяются величиной и формой зерен, кристаллографической текстурой листа, которые в свою очередь зависят, от особенностей химического состава стали и термообработки.

С увеличение размера зерен оптимальные удельные потери снижаются. Границы зерен всегда имеют, искаженную кристаллическую решетку и в промежутках между зернами распределяется магнитотвердой прослойкой цементита и неметаллических включений, поэтому границы зерен являются препятствием для прохождения магнитного поля. Наряду с уменьшением магнитных и общих удельных потерь при увеличении размера зерен несколько возрастают электрические потери [3].

2.3.1 Текстура анизотропной электротехнической стали

У поликристаллических материалов, кристаллы которых ориентированы случайно, магнитные свойства в различных направлениях практически одинаковы. В процессе производства листовой холоднокатаной трансформаторной стали в ней создается преимущественная ориентировка кристаллов - текстура стали, вызывающая анизотропию магнитных свойств. Текстура характеризуется совмещением диагональной плоскости куба с плоскостью прокатки и ориентацией ребра куба вдоль направления прокатки. Благодаря тому, что в решетке железа ребро куба является направлением легкого намагничивания вдоль направления прокатки, при такой текстуре магнитные свойства будут тем лучше, чем резче выражена текстура.

Следовательно, лучшие магнитные характеристики холоднокатаной трансформаторной стали получаются в направлении прокатки. В направлении, перпендикулярно прокатке, т.е. под углом 90° к направлению прокатки, располагается диагональ грани куба, т.е. направление более трудного намагничивания, и в этом направлении сталь обладает значительно худшими магнитными свойствами. Чем более текстурована сталь, тем выше анизотропия магнитных свойств. Холоднокатаная трансформаторная сталь имеет в направлении прокатки меньшие потери на гистерезис и вихревые токи и более высокую магнитную индукцию, чем горячекатаная сталь. Это объясняется текстурой стали. Высокие магнитные свойства холоднокатаной трансформаторной стали объясняются также крупным зерном феррита, которое получается в результате высокотемпературного отжига. Различают электротехническую сталь с ребровой текстурой или текстурой Госса и электротехническую сталь с кубической текстурой. В ребровой текстуре (110) [100] диагональная плоскость куба (110) совпадает с плоскостью прокатки, а направление - ребро куба [100] совпадает с направлением прокатки. Таким образом, направление легкого намагничивания в решетке железа [100] совпадает с направлением прокатки, направление трудного намагничивания [111] находится под углом 45° к направлению прокатки, а направление среднего намагничивания [110] - под углом 90° к направлению прокатки. Следовательно, магнитные свойства стали с ребровой текстурой зависят от направления, в котором они измеряются. Более высокая магнитная индукция и низкие ваттные потери у такой стали будут в направлении холодной прокатки.

2.3.2 Фазовые и структурные превращения в анизотропной электротехнической стали

Анизотропная электротехническая сталь является сталью ферритного класса, так как содержит около 0,04 (% масс.) углерода и около 3 (% масс.) кремния после выплавки.

После горячей прокатки в структуре стали под микроскопом можно наблюдать 3-5% продуктов распада аустенита, в виде перлитных строчек.

Следом за горячей прокаткой проводятся первая холодная прокатка и обезуглероживающий отжиг. При этом отжиге содержание углерода снижается до количества не выше 0,04 (% масс.), поэтому при дальнейшей обработке фазовые превращения в стали, не происходят. В результате лазерной обработки получается термодинамически неравновесная структура в объеме зоны, так и в объеме всего металла.

Неравновесность выражается в различие ориентировок (текстуре) и размере зерен, в различном содержании дефектов кристаллического строения и частиц неметаллических включений.

Большое значение имеет анизотропия электротехнических свойств магнитного материала, которая должна быть минимальной. Важной характеристикой анизотропной электротехнической стали, является ее склонность к старению в процессе работы в магнитах, т. к. старение приводит к увеличению потерь и ухудшению показателей работы трансформаторов.

При изготовлении трансформаторов важное значение имеют не только «внутреннее» качество материала, но и внешние параметры. Весьма жесткие требования предъявляются к качеству поверхности листа. Не допускаются грубые и средние поверхностные дефекты, окалина, царапины и т.д. Качество трансформаторов во многом зависит от технологии их изготовления. Важной является возможность отжига магнитопровода после штамповки листа и сборки, снижение толщины изоляционного покрытия. Применение термостойкого покрытия позволяет отжигать магнитопровод для снятия наклепа после штамповки и улучшения электротехнических свойств на 5-10%. В настоящее время широкое развитие получил рулонный способ производства электротехнических сталей. Рассмотрим, влияние легирующих элементов на свойства электротехнической анизотропной стали.

Кремний

Легирование железа кремнием производится с целью изменения его магнитных и электрических свойств путем увеличения удельного электросопротивления, уменьшения констант магнитной кристаллографической анизотропии и магнитострикции, укрупнения величины зерна, энергичного раскисления жидкого металла в процессе выплавки и некоторой графитизации углерода 4.

Рис. 1. Диаграмма Fe - Si

Введение кремния в железо приводит к существенному увеличению удельного электросопротивления стали, большему, чем при введении других легирующих элементов. Так, при изменении содержания кремния от 1% до 4% удельное электросопротивление сплава возрастает в 2,5 раза, что приводит к соответствующему уменьшению потерь на вихревые токи [1]

Кремний ограничивает -область на диаграмме «железо-кремний», а уже при 2,0-2,5% стабилизирует -твердый раствор. Это создает возможность, нагрева стали до высоких температур без фазовой перекристаллизации. Являясь сильным графитообразующим элементом, кремний способствует обезуглероживанию -твердого раствора, переводя углерод из цементита в графит. Кремний способствует также росту зерна в процессе отжига.

1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис. 2. Влияние кремния на максимальную магнитную проницаемость max: 1 - отжиг при температуре 1000°С; 2 - 1300°С в водороде; 3-1300°С в водороде с последующим охлаждением в магнитном поле)

1

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рис. 3. Влияние легирующих элементов на константу магнитной кристаллографической анизотропии (к1)

В связи с понижением пластичности при увеличении содержания кремния в стали, а также увеличением твердости и хрупкости, для холоднокатаных марок стали, используют содержание кремния не более 3,8-4 (% масс.), а для горячекатаных - не более 4,8 (% масс.).

Большое влияние кремний оказывает на механические, и технологические свойства стали, повышая предел текучести, предел прочности и твердость. Одновременно с повышением твердости, кремний сильно увеличивает хрупкость, что затрудняет холодную прокатку, и обработку стали. Поэтому сплавы с содержанием кремния больше 4,6 (% масс.) не имеют практического применения, несмотря на то, что удельные потери с дальнейшим повышением содержания кремния продолжают уменьшаться.

С возрастанием содержания кремния размеры ферритных зерен уменьшаются. Так, например, в горячекатаной электротехнической стали после высокотемпературного (1120-1150°С) отжига в вакууме наблюдается следующая зависимость величины ферритных зерен от содержания кремния приведенная в таблице 12.

Таблица 12. Зависимость величины ферритных зёрен от содержания кремния

Содержание кремния, масс. %

3,8-4,0

4,2-4,5

5,1-5,3

Величина зерна, мм

16

8

2

Углерод

Углерод является наиболее вредной примесью в электротехнической стали. С увеличением содержания углерода снижается проницаемость в слабых и средних полях, растет коэрцитивная сила, снижается магнитная индукция. Присутствие нескольких сотых долей процента углерода расширяет (+) - область и сдвигает границы между (+) - и - областями к 5-6 (% масс.) Si (рис. 7). Наличие превращения может приводить к возникновению фазового наклепа, измельчению зерна и нарушению кристаллической текстуры, а следовательно, к росту коэрцитивной силы и снижению магнитной проницаемости.

При малых количествах углерод, образуя твердый раствор с железом, увеличивает электрическое сопротивление сплавов, снижая потери на вихревые токи. Однако при этом возрастают потери на гистерезис и коэрцитивная сила. Таким образом, общие потери возрастают [4].

Рис. 7. Влияние содержания углерода на положение фазовых областей , +, для сплавов железо-кремний

Степень отрицательного влияния углерода на свойства стали, определяется не только его содержанием в материале, но и формой, в которой он находится в сплаве, и дисперсностью включений карбидов. Коэрцитивная сила при изменении вида углерода как структурной составляющей может измениться в два раза. Когда углерод переходит из цементита в графит, магнитные свойства улучшаются [1].

В то же время при содержании в стали около 0,09% (масс.) углерода интенсифицируется развитие первичной рекристаллизации с образованием мелкозернистой структуры и обеспечивается формирование при окончательном отжиге совершенной ребровой текстуры.

Присутствие 0,02-0,05 процента углерода приводит к образованию при горячей прокатке аустенитной фазы, что является ключевым фактором в управлении процессами формирования ингибиторных фаз в сталях. Он оказывает существенное влияние на структуру, магнитные и пластические свойства анизотропной электротехнической стали.

При снижении содержания углерода в готовом листе магнитные свойства улучшаются. Большое значение имеет содержание углерода перед окончательным высокотемпературным отжигом. Увеличение содержания углерода даже до 0,05 (% масс.) вызывает значительное снижение магнитной индукции и увеличение удельных потерь. Ухудшение свойств листа при увеличении содержания углерода более 0,04 (% масс.) объясняется недостаточным обезуглероживанием при рекристаллизационном отжиге.

С увеличением содержания углерода размеры зерен феррита в анизотропной электротехнической стали, уменьшаются и в связи с этим ухудшатся магнитные свойства. Требуется значительное повышение температуры отжига, чтобы устранить вредное влияние углерода на рост зерен феррита.

Выделение углерода в горячекатаной анизотропной электротехнической стали в форме структурно-свободных карбидов оказывает вредное влияние не только на магнитные, но также и на пластические свойства. Присутствие на границах зерен структурно-свободных карбидов приводит к повышенной и неоднородной хрупкости (устраняется повторным отжигом в вакууме при температуре 800-900°С.

Хром

Хром вносится в сталь с исходной шихтой, ферросилицием, а также при восстановлении окислов хрома из магнезитохромитовых огнеупоров футеровки печи. Повышение концентрации хрома в стали с 0,03 до 0,12 (% масс.) приводит к увеличению удельных потерь на 2-3 (%масс.) и незначительному увеличению магнитной индукции. Хром затрудняет обезуглероживание листа при отжиге. Карбиды хрома препятствуют росту зерен. Наиболее четко вредное влияние хрома проявляется на свойствах холоднокатаного листа толщиной 0,35 мм. Допустимым содержанием хрома считают 0,06% (масс.) [5].

Марганец

Марганец влияет на электрические и магнитные свойства электротехнических сталей: снижает индукцию насыщения, увеличивает константу магнитной кристаллографической анизотропии, обеспечивает рост удельного электрического сопротивления на 0,7-0,8 ОмЧмм на каждый один процент вводимого марганца. Как карбидообразующий элемент марганец несколько повышает потери на гистерезис [1].

Ощутимо влияние марганца на электротехнические свойства листа при его содержании в металле более 0,10 (% масс.). Марганец оказывает влияние на образование максимального количества аустенита при температуре 1150°С. Увеличение аустенита заметно при небольших добавках марганца. Марганец является вредной примесью в анизотропной электротехнической стали и его удалению из плавки следует уделять большое внимание. Содержание марганца оказывает заметное влияние на фазовый состав стали. В результате фазовых превращений возникают напряжения в металле, и происходит измельчение зерен феррита. Как первое, так и второе ухудшает, магнитные свойства стали. Марганец, как и углерод, стабилизирует - фазу.

Введение марганца способствует повышению пластичности стали, обеспечивая, таким образом, возможность дополнительного легирования стали кремнием при сохранении хорошей технологичности и повышении магнитных свойств. В анизотропной электротехнической стали обычно содержится 0,1-0,3 (% масс.) марганца [1].

Никель

Никель является, неизбежной примесью любой стали, т.к. его удаление из плавки невозможно ни при каких переделах. Он расширяет г - область и в электротехнической стали, действует в направлении ухудшения ее свойств. При увеличении содержания никеля от 0,05 до 0,15 (% масс.) установлено незначительное ухудшение свойств листа. В настоящее время содержание никеля в электротехнической стали незначительно, и ограничивается 0,1 (% масс) [5].

Медь

С повышением содержания меди наиболее значительно изменяется магнитная индукция в слабых и средних полях. Медь увеличивает удельные потери, начиная с содержания 0,3 (% масс.) и особенно с 0,5 (% масс.). При выделении меди в чистом виде или в виде сернистых соединений образуются гетерогенные смеси, ухудшающие магнитные свойства анизотропной электротехнической стали [5].

Фосфор

Фосфор является активным структурно формирующим элементом, положительно влияющим на рост зерна феррита в железе и связанные с этим структурно чувствительные магнитные характеристики. Он повышает удельное электросопротивление железа, что должно оказывать положительное влияние на вихревую составляющую удельных потерь.

При концентрациях в пределах содержания в электротехнических сталях целиком входит в состав твердого раствора и не образует фосфидов.

С увеличением фосфора до 0,33% (масс.) средний линейный размер зерна увеличивается в два раза.

Фосфор резко сужает - область в сплавах железо-кремний.

Фосфор существенно повышает удельное электросопротивление стали: с увеличением содержания фосфора до 0,33 (% масс.) удельное электросопротивление стали, увеличивается на 40 (% масс.).

С увеличением содержания фосфора площадь петли гистерезиса уменьшается, соответственно снижаются гистерезисные потери. Потери на вихревые токи также уменьшаются.

Магнитная проницаемость стали, увеличивается с увеличением содержания фосфора. На индукцию насыщения фосфор влияет незначительно.

Положительное влияние фосфора на уровень магнитных свойств связано с его рафинирующим действием. Он обладает большим сродством к кислороду, что способствует очистке, стали от этой вредной примеси.

Было изучено влияние фосфора, на уровень механических характеристик стали в отожженном состоянии. С увеличением содержания фосфора все прочностные характеристики стали повышаются.

Фосфор более интенсивно, чем кремний, упрочняет сталь. При содержании фосфора 0,33 (% масс.) холодная прокатка затрудняется из-за повышения жесткости металла. В связи с этим целесообразно содержание фосфора в стали ограничить пределом 0,12-0,20 (% масс.) [1].

Сера

По мере увеличения содержания серы в листах наблюдается повышение коэрцитивной силы, удельных потерь и снижение магнитной индукции в средних полях. Максимальная магнитная проницаемость по мере возрастания содержания серы также заметно снижается. С увеличением содержания серы размеры зерен феррита уменьшаются. Вредное влияние серы можно объяснить тем, что при застывании анизотропной электротехнической стали, сера полностью выделяется из жидкого раствора в виде включений сернистого железа, сернистого марганца и ряда других соединений. Выделившиеся включения являются барьерами, препятствующими нормальному росту зерен феррита при отжиге. Сера приводит к ухудшению не только магнитных свойств, но и технологичности стали вследствие красноломкости. С повышением в металле серы с 0,014 (% масс.) до 0,025 (% масс.) увеличиваются удельные потери на 0,5 Вт/кг [4].

Алюминий

Алюминий - активный раскислитель. При производстве электротехнической стали, алюминий используют наряду с кремнием. Кроме того, он способствует, росту зерна кремнистой стали и выделению углерода в форме графита. Алюминий увеличивает электросопротивление, уменьшает склонность стали к старению, а также резко уменьшает растворимость в стали кислорода и, в меньшей степени, азота. В то же время алюминий увеличивает хрупкость. Действие алюминия во многом аналогично действию кремния. Сталь становится ферритной при одном проценте алюминия. Однако укрупнение зерна феррита алюминием наблюдается до температуры отжига 850° С.

При высокотемпературном отжиге (1100-1150°С) магнитные свойства анизотропной электротехнической стали, при легировании алюминием, ухудшаются в связи с окислением алюминия и образованием глинозема. Размер зерна феррита в листах после ВТО заметно уменьшается с увеличением содержания алюминия. Это объясняется тем, что при ВТО в условиях недостаточной защиты металла от окисления образуются оксиды и нитриды алюминия, препятствующие, нормальному росту зерен феррита и ухудшающие магнитные свойства стали. Он также подавляет, склонность стали к старению благодаря связыванию азота в прочные нитриды.

Нитриды алюминия тормозят нормальный рост зерен, создавая условия для протекания вторичной рекристаллизации с образованием ребровой текстуры.

Алюминий, широко применяется, при производстве анизотропной стали по нитридному варианту, его влияние (при содержании 0,01-0,03% масс.) связано с его способностью, образовывать с азотом трудно растворимые соединения - нитриды. Дисперсные нитриды алюминия, выделяясь в процессе нагрева, тормозят нормальный рост зерен, создавая условия только для роста ребровых зерен и, обеспечивая, таким образом, протекание вторичной рекристаллизации с образованием текстуры (110) [001]. Следовательно, при выплавке анизотропной электротехнической стали, предназначаемой для ВТО в вакууме, следует стремиться к тому, чтобы содержание алюминия в ней было минимальным. В этом случае алюминий не следует применять ни в предварительном, ни в окончательном раскислении. В ферросилиции, применяемом, для раскисления анизотропной электротехнической стали, содержание алюминия не должно превышать 0,6-0,8 (% масс.). Алюминий резко снижает растворимость в стали кислорода.

Алюминий, ухудшает, технологичность стали при горячей и холодной прокатках. Уже при 0,08 (% масс.) алюминия наблюдается образование большого количества рванин на кромках горячекатаных полос. Повышение концентрации алюминия ухудшает также качество поверхности холоднокатаных полос.

В целом, полезное действие алюминия (в пределах 0,01-0,02% масс.) связано с его положительным влиянием на текстурообразование [1].


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.