Технология производства металлов

Физико-химические процессы, происходящие в доменной печи при производстве чугуна. Характеристика стали, предназначенной для изготовления деталей, подвергаемых улучшению. Критическая степень деформации металлов. Термическая обработка сварных изделий.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 05.06.2010
Размер файла 32,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Физико-химические процессы, происходящие в доменной печи при производстве чугуна

Одним из условий получения чугуна в доменной печи является удаление кислорода из оксидов, металлы которых входят в состав чугуна. Процесс отнятия кислорода от оксида и получения из него элемента или оксида с меньшим содержанием кислорода называется восстановлением. Наряду с восстановлением протекает окисление вещества, к которому переходит кислород оксида. Это вещество называется восстановителем.

Восстановительные процессы сопровождаются выделением или поглощением тепла. Химическая прочность оксида определяется силами химической связи данного элемента с кислородом.

Восстановление оксидов железа оксидом углерода

По степени убывания кислорода оксиды железа располагаются в ряд: Fe2O3 ; Fe3O4 ; FeO , содержащие соответственно 30,06; 27,64 и 22,28 % кислорода.

Из трех оксидов железа, взятых в свободном состоянии, наиболее прочным в условиях рабочего пространства доменной печи, а точнее при температуре выше

5700 С, является FeO. Восстановление железа из его оксидов протекает ступенчато путем последовательного удаления кислорода и в зависимости от температуры может быть изображено двумя схемами:

при температуре выше 5700 С

Fe2O3 - Fe3O4 - FeO

при температуре ниже 5700 С

Fe2O3 - Fe3O4 - Fe

В доменной печи восстановление железа из его оксидов протекает в основном по первой схеме, так как уже через несколько минут после загрузки материалов на колошник они нагреваются до температуры выше 5700 С. Большая половина кислорода, связанного в оксиды железа, отбирается оксидом углерода, поэтому основным восстановителем в доменной печи является оксид углерода.

Восстановление оксидов железа оксидом углерода при температуре выше 5700 С идет по реакциям:

3 Fe2O3 + СО = 2 Fe3O4 + СО2 + 37,137 МДж,

Fe2O3+ mCO ( 3FeO + (m - 1)CO + СО2 - 20,892 МДж,

FeO + nCO ( Fe + (n - 1)CO + СО2 + 13,607 МДж.

Схема пирометаллургического способа производства рафинированной меди

Пирометаллургический способ получения меди основан на применении плавки сульфидных руд. Расплавленная сульфидная руда при отстаивании разделяется на два слоя - нижний слой будет сплавом сульфидов плотностью около 5, а верхний - сплавом окислов плотностью около 3 г/см3.

Сплав сульфидов, состоящий главным образом из сульфидов меди и железа, называется штейном, а сплав окислов - шлаком. Штейн является промежуточным продуктом, поступающим далее в передел на черновую медь. Таким образом, в данном способе переработки различают две главные стадии процесса: плавка руды на медный штейн и передел расплавленного штейна на черновую медь продувкой его воздухом.

Передел штейна на черновую медь, независимо от методов его получения, одинаков и заключается в том, что расплавленный штейн (Си2S* n FеS) заливается в конвертор и продувается воздухом. Полученная в конверторе медь содержит от 1 до 3% примесей и называется черновой медью.

Рафинирование черновой меди является последней стадией ее производства. Применяют два способа рафинирования: огневой и электролитический. При огневом рафинировании черновую медь расплавляют в отражательной печи.

Кислород горячих газов, проходящих над расплавленной медью, частично окисляет ее до Си2О. Образующиеся окислы металлов всплывают на поверхность расплавленной меди в виде легко удаляемых шлаков, часть примесей удаляется вместе с газами.

Электролитическое рафинирование является более совершенным способом удаления примесей из меди. Для этого из черновой меди отливаются аноды массой до 350 кг и их помещают в электролизер, в котором в качестве электролита находится раствор СиSО4, подкисленный серной кислотой.

Катодом служит тонкая пластинка из чистой электролитической меди. При прохождении постоянного электрического тока происходит постепенное растворение анода и осаждение чистой меди на катоде. Рафинированная медь содержит 99.9-99.95% меди.

Характеристика стали, предназначенной для изготовления деталей, подвергаемых улучшению

Углеродистые стали широко применяются в машиностроении. Так, например, стали 30 и 35 используются для изготовления деталей, испытывающих небольшие напряжения: осей, валиков, шпинделей, тяг, рычагов и т. д. Стали 40 и 45, имеющие более высокие прочностные характеристики, применяются для изготовления коленчатых валов, шатунов, зубчатых колес, маховиков, головок цилиндров, осей прокатных валов и для других нормализуемых, улучшаемых и подвергаемых поверхностной обработке деталей, от которых требуется повышенная прочность.

В различных отраслях машиностроения, в т. ч. в автомобильной промышленности и станкостроении. Сталь ЗОХГТ используется для цементированных деталей (высокая твердость сердцевины увеличивает статическую и динамическую прочность таких деталей); сталь 40ХГТ -- для деталей, подвергаемых поверхностной закалке с нагревом токами высокой частоты и последующему отпуску при 180°, после такой обработки поверхностная твердость RC достигает Эз 52--56. Из стали 40ХГТ изготовляют также шестерни с обработкой зубьев на твердость (НС) = 48--53. Содержание Ti делает сталь 40ХГТ менее чувствительной к перегреву при поверхностной закалке с нагревом токами высокой частоты. В отд. случаях детали из этой стали закаливают в масле с последующим отпуском при 200°, после такой обработки сталь приобретает св-ва: о,, Зз 180 кг/мм* при а„5г 2,5 кем/см2.

Марки углеродистой и легированной стали, применяемой для изготовления деталей, подвергаемых поверхностной закалке

Легированную сталь используют в основном для изготовления ответственных деталей при особо высоких требованиях по механическим свойствам сердцевины или изделия в целом; при этом заготовки изделии в большинстве случаев подвергают термическому улучшению. В последнее время для изготовления шестерен, подвергаемых поверхностной закалке, в ряде случаев используют сталь с пониженной прокаливаемостью (например, сталь марки 55ПП).

После чернового точения предусматривается улучшение заготовки, а закалка с отпуском назначается только после предварительной токарной операции. Иногда перед шлифовальной чистовой операцией назначается второй отпуск. Для деталей, подвергаемых поверхностной закалке газовым пламенем или токами высокой частоты, операция поверхностной закалки и низкий отпуск назначаются последними; иногда после поверхностной закалки предусматривается зубошлифовальная операция.

Для деталей, у которых термическая обработка назначается после токарной или карусельной обдирочной операции, после термической обработки проводится дополнительно токарная или карусельная операция и связанные с ней все предыдущие операции. При закалке деталей на высокую твердость следует стремиться все поверхности, не проходящие шлифовки, выполнять до закалки. В маршруте при необходимости добавляется зубошлифовальная операция. Замена общей закалки деталей поверхностной закалкой дает большую экономию в металле, снижает *затраты труда и сокращает цикл производства. Для деталей, подвергаемых поверхностной закалке газовым пламенем или токами высокой частоты, операция поверхностной закалки и низкий отпуск почти всегда назначаются последними; иногда после поверхностной закалки предусматривается зубошлифовальная операция.

Классификация и строение полимеров и пластических масс и их применение в современном машиностроении

Классификация

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например, поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее рас­пространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевиноформальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы не органогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Свойства и важнейшие характеристики

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавкие и неспособны к высокоэластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязко текучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеры могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться, и размягчается при температуре около 80 °С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одно­временно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

Получение

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N, N=С=О) или непрочные гетероциклические группировки.

Полимеры в машиностроении

Ничего удивительного в том, что эта отрасль - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37--38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки. Ниже будет подробнее рассказано о применении полимеров в автомобильной и авиационной промышленности, здесь же упомянем лишь один примечательный факт: несколько лет назад по Москве ходил цельнопластмассовый трамвай. А вот другой факт: четверть всех мелких судов - катеров, шлюпок, лодок - теперь строится из пластических масс.

До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.

То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.

Широко применяются полимерные материалы и в такой отрасли народного хозяйства, как приборостроение. Здесь получен самый высокий экономический эффект в среднем в 1,5-2,0 раза выше, чем в других отраслях машиностроения. Объясняется это, в частности тем, что большая часть полимеров перерабатывается в приборостроении самыми прогрессивными способами что повышает уровень полезного использования (безотходность и отходность) термопластов, увеличивает коэффициент замены дорогостоящих материалов. Наряду с этим значительно снижаются затраты живого труда. Простейшим и весьма убедительным примером может служить изготовление печатных схем: процесс, не мыслимый без полимерных материалов, а с ними и полностью автоматизированный.

Есть и другие подотрасли, где использование полимерных материалов обеспечивает и экономию материальных и энергетических ресурсов, и рост производительности труда. Почти полную автоматизацию обеспечило применение полимеров в производстве тормозных систем для транспорта. Неспроста практически все функциональные детали тормозных систем для автомобилей и около 45% для железнодорожного подвижного состава делаются из синтетических пресс материалов. Около 50% деталей вращения и зубчатых колес изготовляется из прочных конструкционных полимеров. В последнем случае можно отметить две различных тенденции. С одной стороны, все чаще появляются сообщения об изготовлении зубчатых колес для тракторов из капрона. Обрывки отслуживших свое, рыболовных сетей, старые чулки и путанку капроновых волокон переплавляют и формуют в шестерни. Эти шестерни могут работать почти без износа в контакте со стальными, вдобавок такая система не нуждается в смазке и почти бесшумна. Другая тенденция - полная замена металлических деталей в редукторах на детали из углепластиков. У них тоже отмечается резкое снижение механических потерь, долговременность срока службы.

Еще одна область применения полимерных материалов в машиностроении, достойная отдельного упоминания, - изготовление металлорежущего инструмента. По мере расширения использования прочных сталей н сплавов все более жесткие требования предъявляются к обрабатывающему инструменту. И здесь тоже на выручку инструментальщику и станочнику приходят пластмассы. Но не совсем обычные пластмассы сверхвысокой твердости, такие, которые смеют поспорить даже с алмазом. Король твердости, алмаз, еще не свергнут со своего трона, но дело идет к тому. Некоторые окислы (например, из рода фианитов), нитриды, карбиды, уже сегодня демонстрируют не меньшую твердость, да к тому же и большую термостойкость. Вся беда в том, что они пока еще более дороги, чем природные и синтетические алмазы, да к тому же им свойствен “королевский порок” - они в большинстве своем хрупки. Вот и приходится, чтобы удержать их от растрескивания, каждое зернышко такого абразива окружать полимерной упаковкой чаще всего из фенолформальдегидных смол. Поэтому сегодня три четверти абразивного инструмента выпускается с применением синтетических смол.

Таковы лишь некоторые примеры и основные тенденции внедрения полимерных материалов в подотрасли машиностроения. Самое же первое место по темпам роста применения пластических масс среди других подотраслей занимает сейчас автомобильная промышленность. Десять лет назад в автомашинах использовали от 7 до 12 видов различных пластиков, к концу 70-х годов это число перешагнуло за 30. С точки зрения химической структуры, как и следовало, ожидать, первые места по объему занимают стирольные пластики, поливинилхлорид и полиолефины. Пока еще немного уступают им, но активно догоняют полиуретаны, полиэфиры, акрилаты и другие полимеры. Перечень деталей автомобиля, которые в тех или иных моделях в наши дни изготовляют из полимеров, занял бы не одну страницу. Кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей. Наиболее характерные тенденции в применении пластмасс для автомобилестроения, в общем, те же, что и в других подотраслях. Во-первых, это экономия материалов: безотходное или малоотходное формование больших блоков и узлов. Во-вторых, благодаря использованию легких и облегченных полимерных материалов снижается общий вес автомобиля, а значит, будет экономиться горючее при его эксплуатации. В-третьих, выполненные как единое целое, блоки пластмассовых деталей существенно упрощают сборку и позволяют экономить живой труд.

Кстати, те же преимущества стимулируют и широкое применение полимерных материалов в авиационной промышленности. Например, замена алюминиевого сплава графитопластиком при изготовлении предкрылка крыла самолета позволяет сократить количество деталей с 47 до 14, крепежа - с 1464 до 8 болтов, снизить вес на 22%, стоимость - на 25%. При этом запас прочности изделия составляет 178%. Лопасти вертолета, лопатки вентиляторов реактивных двигателей рекомендуют изготовлять из поликонденсационных смол, наполненных алюмосиликатными волокнами, что позволяет снизить вес самолета при сохранении прочности и надежности. По английскому патенту № 2047188 покрытие несущих поверхностей самолетов или лопастей роторов вертолетов слоем полиуретана толщиной всего 0,65 мм в 1,5-2 раза повышает их стойкость к дождевой эрозии. Жесткие требования были поставлены перед конструкторами первого англо-французского сверхзвукового пассажирского самолета “Конкорд”. Было рассчитано, что от трения об атмосферу внешняя поверхность самолета будет разогреваться до 120-150° С, и в то же время требовалось, чтобы она не поддавалась эрозии в течение по меньшей мере 20000 часов. Решение проблемы было найдено с помощью поверхностного покрытия защиты самолета тончайшей пленкой фторопласта.

Процессы, происходящие в металле, при его горячей обработке давлением. Критическая степень деформации и её значение для металлов

Обработка металлов давлением относится к виду обработки металлов без снятия материала и основана на использовании пластичности металлов, т.е. на их способности в определенных условиях воспринимать под действием внешних сил остаточную деформацию без нарушения целостности материала заготовки, поэтому она применима лишь к металлам достаточно пластичным.

Пластичность средне - и высокоуглеродистой сталей и других металлов в холодном состоянии недостаточна; при нагреве до определенных температур их пластичность повышается и способность к деформации возрастает.

Если обработка металлов давлением выполняется при температуре ниже температуры рекристаллизации, то такая обработка называется холодной. Если обработка металлов давлением происходит при нагреве металлического тела выше температуры рекристаллизации, то она называется горячей. Некоторые металлы и сплавы непластичны даже при нагревании, они остаются твердыми вплоть до расплавления. Такие металлы не могут обрабатываться давлением. Основными видами обработки металлов давлением являются прокатка, прессование, ковка и штамповка.

Штамповка без предварительного нагрева заготовки - для металлов и сплавов такой процесс деформирования соответствует условиям холодной деформации. Отсутствие окисленного слоя на заготовках (окалины) при холодной штамповке обеспечивает хорошее качество поверхности детали и достаточно высокую точность размеров, это уменьшает объём обработки резанием или даже исключает её. Основные разновидности холодной объёмной штамповки - холодное выдавливание, холодная высадка, холодная штамповка в открытом штампе.

Критическая деформация [critical deformation] - степень деформации, после которой наблюдается резкий рост зерен наклеп, металла при рекристаллизации (I рода) или после окончания гор. деформации (рекристаллизация II рода). Для большинства металлов и сплавов к. д. составляет обычно 2--10 % и зависит от условий деформации и нагрева. Иногда наблюдают интенсивный рост рекристаллизов. зерна при очень высоких степенях деформации. В связи с этим для поликристаллических материалов под к. д. понимают мин. степень деформации, которая вызывает появление первого максимума на кривых зависимости величины зерна от степени деформации;

Схема, устройство и область применения пневматического молота

Среди ковочных молотов максимальное распространение имеют пневматические и паровоздушные молоты. Пневматический молот работает от электродвигателя. Пневматический молот имеет компрессорный и рабочий цилиндры, которые имеют связь между собой.

При работе молота воздух, который играет роль упругой связи, нагнетается поршнем попеременно то в верхнюю то в нижнюю область рабочего цилиндра, в результате боёк делает удары по заготовке.

Падающие части пневматических молотов имеют массу от 75 до 1000 килограмм, а количество ударов в минуту от 95 до 225. Устройство распределительных дает возможность удерживать боёк в верхнем или нижнем положение (прижимать заготовку к нижнему бойку). Пневматические молоты применяются для обработки маленьких поковок.

Для обработки средних по массе до 3 тонн поковок используют паровоздушные молоты двойного действия, в которых применяется энергия сжатого воздуха или пара при давление 100-800 кПа, а падающие части данных молотов имеют массу 1-5 тонн, число ударов 30-60 в минуту.

Для обработки больших заготовок используются гидравлические и парогидравлические прессы. Действие гидравлического пресса основано на законе Паскаля. Давление до 20 МПа в рабочем цилиндре через плунжер, траверсу и боёк передается на заготовку.

Технология получения и схема процесса отливок вакуумным всасыванием

Сущность процесса литья вакуумным всасыванием состоит в том, что расплав под действием разряжения, создаваемого в полости формы, заполняет ее и затвердевает, образуя отливку. Изменением разности между атмосферным давлением и давлением в полости формы можно регулировать скорость заполнения формы расплавим, управляя этим процессом. Вакуумирование полости форм при заливке позволяет заполнить формы тонкостенных отливок с толщиной стенки 1-1.5 мм, исключить попадание воздуха в расплав, повысить точность, и механические свойства отливок.

В производстве используют установки двух основных разновидностей.

Установки первого типа имеют две камеры: нижнюю и верхнюю. Нижняя камера представляет собой раздаточную печь с электрическим или газовым обогревом, в которой располагается тигель с расплавим. Верхняя камера расположена на крышке нижней камеры, в крышке установлен металлопровод. Форму устанавливают и закрепляют в камере так, чтобы литник соединялся прижимами с крышкой. Полость верхней камеры через вакуум-привод соединена с ресивером, в котором насосом создается разряжение, регулируемое системой управления. В начальный момент клапан управления открывается, в верхней камере создается разряжение, и расплав вследствие разницы давлений в камерах по металлопроводу поднимается и заполняет полость формы. После затвердевания отливки клапан системы управления соединяет полость верхней камеры с атмосферой, давление в обеих камерах становится одинаковым, а остатки незатвердевшего расплава сливаются из металлопровода в тигель. Верхняя камера снимается, форма с отливкой извлекается и цикл может повторятся.

Установки такого типа используют обычно для улучшения заполнения форм тонкостенных сложных фасонных отливок из алюминиевых и магниевых сплавов с толщиной стенки 2-2.5мм, а иногда и до 1-1.5мм.

Установки второго типа используют для отливки втулок, слитков и заготовок простой конфигурации в водоохлаждаемых системах кристаллизаторы. Носок металлического водоохлаждаемого кристаллизатора погружается в расплав, находящийся в тигле раздаточной печи. Рабочая полость кристаллизатора, образующая отливку, соединяется вакуумом-проводом с вакуумным ресивером. Разряжение в системе создается вакуумом-насосом и регулируется натекателем. Поворотом распределительного крана рабочая полость кристаллизатора соединяется в вакуумным ресивером. В полости кристаллизатора создается разрежение, и расплав всасывается внутрь кристаллизатора, поднимаясь на высоту, пропорциональную разрежению и обратно пропорционально ее плотности. После затвердевания отливки носок кристаллизатора извлекают из ванны расплава, поворотом крана, рабочую полость соединяют с атмосферой и отливка выпадает из кристаллизатора в приемный короб.

Особенности формирования отливки. Форма может заполнятся расплавим с требуемой скоростью, плавно, без разбрызгивания, сплошным фронтом; расплав, заполнивший форму, затвердевает в условиях вакуума; газы, содержащиеся в расплаве, могут из него выделяться, благодаря чему создаются условия для получения отливок без газовых раковин и пористости. Для получения плотных отливок без усадочных дефектов необходимо согласовывать интенсивности затвердевания и питания отливки.

Обычно при литье вакуумным всасыванием слитков, втулок, расплав засасывают в тонкостенный металлический водоохлаждаемый катализатор, благодаря чему отливка затвердевает с высокой скоростью.

Таким способом можно получать тонкостенные отливки типа втулок без стержней. В этом случае после всасывания расплава в кристаллизатор и намораживания на внутренних стенках кристаллизатора корочки твердого металла заданной толщины вакуум отключается и незатвердевший расплав сливается обратно в тигель. Таким образом получают плотные заготовки втулок без газовых и усадочных раковин и пористости. Способ позволяет получать отливки из легких цветных и медных сплавов, чугуна и стали. Наиболее часто этот способ используется для литья заготовок втулок, вкладышей, подшипников скольжения из дорогостоящих медных сталей. При этом наиболее ярко проявляются основные преимущества данного способа: спокойное заполнение формы расплавим с регулируемой скоростью, сокращение расхода металла в следствии устранения литников и прибылей, автоматизация процесса заполнения формы.

Термическая обработка сварных изделий, её разновидности и назначение

В термическую обработку сварных изделий входит термическая подготовка деталей перед сваркой, термическая обработка в процессе сварки и термическая обработка готового сварного изделия. Термическая подготовка деталей перед сваркой выполняется для улучшения свариваемости металла. Поэтому свариваемую сталь перед сваркой рекомендуется подвергать отжигу или высокому отпуску, режимы которых зависят от состава стали.

Выбор теплового режима сварки зависит от свойств свариваемых металлов и сплавов, жесткости конструкции и состояния ее при сварке При сварке черных металлов термический режим состоит в подогреве свариваемых деталей. Причем для стали чем выше склонность ее к закатке и трещинам, тем выше должна быть температура подогрева.

Термическая обработка после сварки проводится для снятия напряжений, полученных в результате сварки и для улучшения механических свойств При сварке применяют следующие виды термической обработки.

Отжиг для снятия внутренних напряжений После сварки изделие помещают в нагревательную печь, нагрев осуществляют постепенно Для низко- и среднеуглеродистых сталей температура нагрева достигает 600--680°С После нагрева изделие выдерживают в печи при этой температуре в течение 2,5 мин на 1 мм толщины металла, и охлаждают вместе с печью.

Для полного отжига стальное изделие нагревают до температуры 820--930° С, выдерживают при этой температуре и затем медленно охлаждают Время выдержки изделия при данной температуре такое же, как и при отжиге для снятия напряжений, но не менее 30 мин Затем изделие охлаждают вместе с печью со скоростью 50-- 75° С в час до температуры 300° С, после чего его вынимают из печи и охлаждают на воздухе При полном отжиге устраняются внутренние напряжения и улучшается структура металла. Металл становится мелкозернистым и более пластичным.

Нормализация --это термическая обработка, подобная отжигу, но с более быстрым охлаждением изделий, которое обычно проводят на воздухе. При нормализации сварное изделие нагревают до температуры 850--900° С, выдерживают при этой температуре и затем охлаждают на воздухе В этом случае металл шва и околошовной зоны приобретает мелкозернистую структуру, повышается его прочность и твердость.

Отпуск применяется для сталей, склонных к закалке, для уменьшения внутренних напряжений и хрупкости Изделие нагревают до температуры 400--700° С, выдерживают при этой температуре из расчета 2,5 мин на 1 мм толщины металла, медленно охлаждают до нормальной температуры. Поскольку изделия в этом случае нагреваются до температуры, лежащей ниже критической (723°С), структурных изменений в сварном шве и околошовной зоне не происходит.

Для каждой марки стали существуют свои режимы отпуска и скорости охлаждения, которые указываются в технических условиях на термообработку. Нагрев для термической обработки может производиться в печах, горнах, ямах, а также с помощью индукторов. Для местного нагрева применяют сварочные горелки. Местный нагрев пламенем сварочной горелки используют также для правки изделий после сварки. Мощность горелки берут из расчета 300 дм3/ч на 1 мм толщины нагреваемого металла. Сварочным пламенем нагревают выпуклую часть изделия, которую необходимо выправить При нагреве металл стремится расшириться, но этому препятствуют его холодные части, в металле возникают напряжения сжатия, вызывающие деформацию сжатия. При охлаждении на этом участке возникают обратные напряжения растяжения, которые и выпрямляют изделие.

Подогревают стальные изделия до 650--900° С, что соответствует темно-красному цвету. Скорость перемещения пламени при нагреве -- 500--600 мм/мин. Чем быстрее выполняется нагрев, тем успешнее проводится процесс правки изделия.


Подобные документы

  • Современные способы повышения качества металлов и сплавов. Подготовка руд к доменной плавке. Устройство и работа доменной печи. Сущность технологического процесса изготовления деталей и заготовок порошковой металлургией. Производство цветных металлов.

    дипломная работа [6,3 M], добавлен 16.11.2011

  • Исходные материалы для выплавки чугуна. Устройство доменной печи. Выплавка стали в кислородных конвертерах, мартеновских, электрических печах. Продукты доменного производства. Производство меди, алюминия. Термическая и химико-термическая обработка стали.

    учебное пособие [7,6 M], добавлен 11.04.2010

  • Назначение и виды термической обработки металлов и сплавов. Технология и назначение отжига и нормализации стали. Получение сварных соединений способами холодной и диффузионной сварки. Обработка металлов и сплавов давлением, ее значение в машиностроении.

    контрольная работа [2,6 M], добавлен 24.08.2011

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Расшифровка серого чугуна, характеризующегося пределом прочности в 20 МПа. Способ получения и термическая обработка материала. Схема доменной печи. Схема отливки чугуна методом литья в кокиль. Характеристика станка, инструментов и приспособлений.

    курсовая работа [4,2 M], добавлен 08.04.2011

  • Качественный и количественный состав чугуна. Схема доменного процесса как совокупности механических, физических и физико-химических явлений в работающей доменной печи. Продукты доменной плавки. Основные отличия чугуна от стали. Схемы микроструктур чугуна.

    реферат [768,1 K], добавлен 26.11.2012

  • Описание технологии производства чугуна и стали: характеристика исходных материалов, обогащение руд, выплавка и способы получения. Медь, медные руды и пути их переработки. Технология производства алюминия, титана, магния и их сплавов. Обработка металлов.

    реферат [101,6 K], добавлен 17.01.2011

  • Термическая обработка металлов и ее основные виды. Превращения, протекающие в структуре стали при нагреве и охлаждении. Основы химико-термической обработки. Цементация, азотирование, нитроцементация и цианирование, борирование и силицирование стали.

    реферат [160,5 K], добавлен 17.12.2010

  • Основы технологии термической обработки металлов и сплавов. Термическая обработка - этап технологического процесса изготовления деталей. Улучшение обрабатываемости материалов давлением или резанием. Формирования технических и электрических свойств.

    реферат [53,8 K], добавлен 20.01.2009

  • Механические свойства металлов, основные методы их определения. Технологические особенности азотирования стали. Примеры деталей машин и механизмов, подвергающихся азотированию. Физико-химические свойства автомобильных бензинов. Марки пластичных смазок.

    контрольная работа [1,1 M], добавлен 25.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.