Средства и методы измерений

Создание и развитие метрической системы, ее основные единицы. Средства измерений и возможные методы измерения длины, угла. Классификация измерительных приборов. Измерение деталей штангенциркулем, микрометром гладким. Устройство угломера с нониусом.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 02.05.2010
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задание № 1

Средства и методы измерений

План

1. Создание и развитие метрической системы

2.Средства измерений и возможные методы измерения длины, угла

3.Штангенциркуль

4. Микрометр

5. Угломер

Список используемой литературы

1. Создание и развитие метрической системы

«Международный комитет законодательной метрологии, собравшись на пленарном заседании 7 октября 1958 г. в Париже, объявляет о присоединении к резолюции Международного комитета мер и весов об установлении международной системы единиц измерения (SI).

Основными единицами этой системы являются:

метр, килограмм, секунда, Ампер, градус Кельвин, свеча.

Комитет рекомендует государствам - членам организации принятие этой системы в законодательстве о единицах измерений».

В октябре 1960 г. вопрос о Международной системе единиц был рассмотрен на одиннадцатой Генеральной конференции по мерам и весам.

По этому вопросу конференция приняла следующую резолюцию:

"Одиннадцатая Генеральная конференция по мерам и весам, принимая во внимание резолюцию 6 десятой Генеральной конференции по мерам и весам, в которой она приняла шесть единиц в качестве базы для установления практической системы измерений для международных сношений принимая во внимание резолюцию 3, принятую Международным комитетом мер и весов в 1956 г., и принимая во внимание рекомендации, принятые Международным комитетом мер и весов в 1958 г., относящиеся к сокращенному наименованию системы и к приставкам для образования кратных и дольных единиц, решает:

1. Присвоить системе, основанной на шести основных единицах, наименование "Международная система единиц";

2. Установить международное сокращенное наименование этой системы "SI";

3. Образовывать наименования кратных и дольных единиц посредством следующих приставок:

4.Применять в этой системе ниже перечисленные единицы, не предрешая, какие другие единицы могут быть добавлены в будущем:

Принятие Международной системы единиц явилось важным прогрессивным актом, подытожившим большую многолетнюю подготовительную работу в этом направлении и обобщившим опыт научно-технических кругов разных стран и международных организаций по метрологии, стандартизации, физике и электротехнике.

Решения Генеральной конференции и Международного комитета мер и весов по Международной системе единиц учтены в рекомендациях Международной организации по стандартизации (ИСО) по единицам измерений и уже нашли свое отражение в законодательных положениях о единицах и в стандартах на единицы некоторых стран.

В 1958 г. в ГДР было утверждено новое Положение о единицах измерений, построенное на основе Международной системы единиц.

В 1960 г. в правительственном законоположении о единицах измерений Венгерской Народной Республики за основу принята Международная система единиц.

Государственные стандарты СССР на единицы 1955-1958 гг. были построены на основе системы единиц, принятой Международным комитетом мер и весов в качестве Международной системы единиц.

В 1961 г. Комитет стандартов, мер и измерительных приборов при Совете Министров СССР утвердил ГОСТ 9867 -- 61 "Международная система единиц", в котором устанавливается предпочтительное применение этой системы во всех областях науки и техники и при преподавании.

В 1961 г. правительственным декретом узаконена Международная система единиц во Франции и в 1962 г. в Чехословакии.

Международная система единиц получила отражение в рекомендациях Международного союза чистой и прикладной физики, принята Международной электротехнической комиссией и рядом других международных организаций.

В 1964 г. Международная система единиц легла в основу "Таблицы единиц законного измерения" Демократической Республики Вьетнам.

В период 1962 по 1965 гг. в ряде стран были изданы законы о принятии Международной системы единиц в качестве обязательной или предпочтительной и стандарты на единицы СИ.

В 1965 г. в соответствии с поручением XII Генеральной конференции по мерам и весам Международное бюро мер и весов провело опрос относительно положения с принятием СИ в странах, присоединившихся к Метрической конвенции.

На 1 октября 1965 г. получены ответы от 30 из 41 опрошенных стран.

13 стран приняли СИ как обязательную или предпочтительную.

В 10 странах допущено применение Международной системы единиц и проводится подготовка к пересмотру законов с целью придания узаконенного, обязательного характера этой системе в данной стране.

В 7 странах СИ допущена как факультативная.

В конце 1962 г. вышла в свет новая рекомендация Международной комиссии по радиологическим единицам и измерениям (МКРЕ), посвященная величинам и единицам в области ионизирующих излучений. В отличие от предыдущих рекомендаций этой комиссии, которые в основном были посвящены специальным (внесистемным) единицам для измерений ионизирующих излучений, новая рекомендация включает таблицу, в которой на первом месте для всех величин поставлены единицы Международной системы.

На происходившей 14-16 октября 1964 г. седьмой сессии Международного комитета законодательной метрологии, в состав которого входили представители 34 стран, подписавших межправительственную конвенцию, учреждающую Международную организацию законодательной метрологии, была прнята по вопросам внедрения СИ следующая резолюция:

"Международный комитет законодательной метрологии, принимая во внимание необходимость быстрого распространения Международной системы единиц СИ, рекомендует предпочтительное применение этих единиц СИ при всех измерениях и во всех измерительных лабораториях.

В частности, во временных международных рекомендациях. принятых и распространенных Международной конференцией законодательной метрологии, эти единицы должны применять предпочтительно для градуировки измерительных аппаратов и приборов, на которые распространяются эти рекомендации.

Иные единицы, применение которых разрешается этими рекомендациями, допускаются лишь временно, и их должны избегать насколько возможно скоро".

Международный комитет законодательной метрологии создал секретариат-докладчик по теме "Единицы измерений", задачей которого является разработка типового проекта законодательства по единицам измерений на основе Международной системы единиц. Ведение секретариата-докладчика по этой теме приняла на себя Австрия.

6 октября 1956 г. Международный комитет мер и весов рассмотрел рекомендацию комиссии по системе единиц и принял следующее важное решение, завершающее работу по установлению Международной системы единиц измерений:

"Международный комитет мер и весов, принимая во внимание задание, полученное от девятой Генеральной конференции по мерам и весам в ее резолюции 6, относительно установления практической системы единиц измерения, которая могла бы быть принята всеми странами, подписавшими Метрическую конвенцию; принимая во внимание все документы, полученные от 21 страны, ответивших на опрос, предложенный девятой Генеральной конференцией по мерам и весам; принимая во внимание резолюцию 6 девятой Генеральной конференции по мерам и весам, устанавливающую выбор основных единиц будущей системы, рекомендует:

1) чтобы называлась "Международной системой единиц" система, основанная на основных единицах, принятых десятой Генеральной конференцией и являющихся следующими;

2) чтобы применялись единицы этой системы, перечисленные в следующей таблице, не предопределяя другие единицы, могущие быть добавленные впоследствии".

На сессии в 1958 г. Международный комитет мер и весов обсудил и принял решение о символе для сокращенного обозначения наименования "Международная система единиц". Был принят символ, состоящий из двух букв SI (начальные буквы слов System International - международная система).

В октябре 1958 г. Международный комитет законодательной метрологии принял следующую резолюцию по вопросу о Международной системе единиц:

Метрическая система мер была создана в конце XVIII в. во Франции, когда развитие торговли промышленности настоятельно потребовало замены множества единиц длины и массы, выбранных произвольно, едиными, унифицированными единицами, какими и стали метр и килограмм.

Первоначально метр был определен как 1/40 000 000 часть Парижского меридиана, а килограмм - как масса 1 кубического дециметра воды при температуре 4 С, т. е. единицы были основаны на естественных эталонах. В этом заключалась одна из важнейших особенностей метрической систем, определившая ее прогрессивное значение. Вторым важным преимуществом являлось десятичное подразделение единиц, соответствующее принятой системе исчисления, и единый способ образования их наименований (включением в название соответствующей приставки: кило, гекто, дека, санти и милли), что избавляло от сложных преобразований одних единиц в другие и устраняло путаницу в названиях.

Метрическая система мер стала базой для унификации единиц во всем мире.

Однако в последующие годы метрическая система мер в первоначальном виде (м, кг, м , м . л. ар и шесть десятичных приставок) не могла удовлетворить запросы развивающейся науки и техники. Поэтому каждая отрасль знаний выбирала удобные для себя единицы и системы единиц. Так, в физике придерживались системы сантиметр - грамм - секунда (СГС); в технике нашла широкое распространение система с основными единицами: метр - килограмм-сила - секунда (МКГСС); в теоретической электротехнике стали одна за другой применяться несколько систем единиц, производных от системы СГС; в теплотехнике были принят системы, основанные, с одной стороны, на сантиметре, грамме и секундде, с другой стороны, - на метре, килограмме и секунде с добавлением единицы температуры - градуса Цельсия и внесистемных единиц количества теплоты - калории, килокалории и т. д. Кроме этого, нашли применение много других внесистемных единиц: например, единицы работы и энерги - киловатт-час и литр-атмосфера, единицы давления - миллиметр ртутного столба, миллиметр водяного столба, бар и т. д. В итоге образовалось значительное число метрических систем единиц, некоторые из них охватывали отдельные сравнительно узкие отрасли техники, и много внесистемных единиц, в основу определений которых были положены метрические единицы.

Одновременное их применение в отдельных областях привело к засорению многих расчетных формул числовыми коэффициентами, не равными единице, что сильно усложнило расчеты. Например, в технике стало обычным применение для измерения массы единицы системы МКС - килограмма, а для измерения силы единицы системы МКГСС - килограмм-силы. Это представлялось удобным с той точки зрения, что числовые значения массы (в килограммах) и ее веса, т. е. силы притяжения к Земле (в килограмм-силах) оказались равными (с точностью, достаточной для большинства практических случаев). Однако следствием приравнивания значений разнородных по существу величин было появление во многих формулах числового коэффициента 9,806 65 (округленно 9,81) и к смешению понятий массы и веса, которое породило множество недоразумений и ошибок.

Такое многообразие единиц и связанные с этим неудобства породили идею создания универсальной системы единиц физических величин для всех отраслей науки и техники, которая могла бы заменить все существующие системы и отдельные внесистемные единицы. В результате работ международных метрологических организаций такая система была разработана и получила название Международной системы единиц с сокращенным обозначением СИ (Система Интернациональная). СИ была принята ХI Генеральной конференцией по мерам и весам (ГКМВ) в 1960 г. как современная форма метрической системы.

2.Средства измерений и возможные методы измерения длины, угла

Измерительная техника является неотъемлемой частью материального производства. Без системы измерений, позволяющей контролировать технологические процессы, оценивать свойства и качество продукции, не может существовать ни одна область техники

Совершенствование методов средств и измерений происходит непрерывно. Их успешное освоение и использование на производстве требует глубоких знаний основ технических измерений, знакомства с современными образцами измерительных приборов и инструментов.

Средства измерений -- технические средства, используемые при измерениях и имеющие нормированные метрологические свойства. Средства измерений делят на меры и измерительные приборы.

Мера-- средство измерений, предназначенное для воспроизведения физической величины заданного размера, например концевая мера длины, гиря -- мера массы. Однозначная мера воспроизводит физическую величину одного размера (например, концевая мера длины), а многозначная мера--ряд одноименных величин различного размера (например, штриховая мера длины и многогранная призма). Специально подобранный комплект мер, применяемых не только в отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера, называется набором мер (например, наборы плоскопараллельных концевых мер длины и наборы угловых мер).

Измерительные приборы-- средства измерений, предназначенные для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. По характеру показаний измерительные приборы делят на аналоговые, цифровые, показывающие, регистрирующие, самопишущие и печатающие, а по принципу действия -- на приборы прямого действия, приборы сравнения, интегрирующие и суммирующие приборы. Для линейных и угловых измерений широко используются показывающие приборы прямого действия, допускающие только отсчет показаний.

По назначению измерительные приборы делят на универсальные - предназначенные для измерения одноименных физических величин различных изделий, и специализированные - служащие для измерения отдельных видов изделий (например, размеров зубчатых колес) или отдельных параметров изделий (например, шероховатости, отклонений формы поверхностей).

По конструкции универсальные приборы для линейных измерений делят на:

1) штриховые приборы, снабженные нониусом (штангенинструменты);

2) приборы, основанные на применении микрометрических /винтовых пар (микрометрические инструменты);

3) рычажно-механические приборы, которые по типу механизма подразделяют на рычажные (миниметры), зубчатые (индикаторы часового типа), рычажно-зубчатые (индикаторы или микромеры), пружинные ; (микрокаторы и микаторы) и рычажно-пружинные (миникаторы); 4) оптико-механические (оптиметры, оптикаторы, контактные интерферометры, длиномеры, измерительные машины, измерительные микроскопы, проекторы).

По установившейся терминологии простейшие измерительные приборы -- штангенциркули, микрометры называют измерительным инструментом.

Для специальных линейных и угловых измерений в машиностроении также широко применяют измерительные приборы, основанные на других принципах работы, пневматические, электрические, оптико-механические с использованием лазерных источников света.

Для выполнения операций контроля в машиностроении широко используются калибры, которые представляют собой тела или устройства, предназначенные для проверки соответствия размеров изделий или их конфигурации установленным допускам. К ним относятся гладкие предельные калибры (пробки и скобы), резьбовые калибры, шаблоны и т.д.

Рассмотрим подробнее следующие измерительные приборы

3. Штангенциркули

Штангенциркуль (от нем. Stangenzirkel) -- универсальный инструмент, предназначенный для высокоточных измерений наружных и внутренних размеров, а также глубин отверстий.

Штангенциркуль -- один из самых популярных инструментов измерения во всём мире[источник не указан 179 дней], благодаря простой конструкции, удобству в обращении и быстроте в работе.

История

Деревянные штангенциркули использовались уже в начале XVII века. Первые настоящие штангенциркули с нониусом появились только в конце XVIII века в Лондоне[источник не указан 179 дней]. В Россию пришел гораздо позже.

Устройство

Штангенциркуль, как и другие штангенинструменты (штангенрейсмас, штангенглубиномер), имеет измерительную штангу (отсюда и название этой группы) с основной шкалой и нониус -- вспомогательную шкалу для отсчёта долей делений. Точность его измерения -- десятые доли миллиметра.

Порядок отсчёта показаний штангенциркуля по шкалам штанги и нониуса:

читают число целых миллиметров, для этого находят на шкале штанги штрих, ближайший слева к нулевому штриху нониуса, и запоминают его числовое значение;

читают доли миллиметра, для этого на шкале нониуса находят штрих, ближайший к нулевому делению и совпадающий со штрихом шкалы штанги, и умножают его порядковый номер на цену деления (0,1 мм) нониуса.

подсчитывают полную величину показания штангенциркуля, для этого складывают число целых миллиметров и долей миллиметра.

Виды штангенциркулей

Штангенциркули по ГОСТ 166-89

ШЦ-I -- штангенциркуль с двусторонним расположением губок для измерения наружных и внутренних размеров и с линейкой для измерения глубин.

ШЦ-IC -- (штангенциркуль со стрелочным отсчётом) для отсчёта показаний вместо нониуса имеет отсчётную стрелочную головку. В выемке штанги размещена рейка, с которой сцеплена шестерёнка головки, поэтому показания штангенциркуля, отвечающие положению губок и, читают на круговой шкале головки по положению стрелки. Это значительно проще, быстрее и менее утомительно для исполнителя, чем чтение отсчёта по нониусу;

ШЦТ-I -- с односторонним расположением губок, оснащённых твёрдым сплавом для измерения наружных размеров и глубин в условиях повышенного абразивного изнашивания.

ШЦ-II -- с двусторонним расположением губок для измерения наружных и внутренних размеров и для разметки. Для облегчения последней оснащён рамкой микрометрической подачи.

ШЦ-III -- с односторонним расположением губок для измерения наружных и внутренних размеров.

ШЦЦ -- с цифровой индикацией (электронный).

Измерения штангенциркулем

По способу снятия показаний, штангенциркули делятся на:

нониусные (см. Нониус)

циферблатные -- оснащены циферблатом для удобства и быстроты снятия показаний

цифровые -- с цифровой индикацией для безошибочного считывания

Уход

В условиях активной работы со штангенциркулем рекомендуется протирать его салфеткой, смоченной в водно-щелочном растворе, затем вытирать насухо, а по окончании работ -- укладывать в чехол. Не желательно допускать при эксплуатации грубых ударов или падения инструмента во избежание изгибов штанги, а также царапин на измерительных поверхностях или их трения об измеряемую деталь.

Интересные факты

В современном немецком языке слово «штангенциркуль» отсутствует. По-немецки штангенциркуль называется Messschieber или Schieblehre -- соответственно, «раздвижной измеритель» или «раздвижная линейка».

Разновидность штангенциркуля, оснащённая глубиномером называется «Колумбус» или «Колумбик». Это название произошло от «Columbus» -- производителя измерительного инструмента, такой штангенциркуль массово поставлялся в СССР под этой маркой.

В авиационной промышленности такие штангенциркули назывались «Маузер», по причине того что штангенциркули повышенного качества поставлялись в СССР фирмой «Маузер».

предназначены для измерения наружных и внутренних размеров изделий. Они выпускаются четырех типов: ШЦ--I (рис. а);

ШЦТ--I (ШЦ--1 без верхних губок и с нижними губками, оснащенными твердым сплавом); ШЦ--II (рис. б) и ШЦ--111 (ШЦ--П без верхних губок). Основные части штангенциркулей: штанга 1, измерительные губки 2, рамка 3, зажим рамки 4, нониус 5, глубомерная линейка 6 и микрометрическая подача 7 для установки на точный размер. При измерениях наружной стороной губок штангенциркулей ШЦ--II размер Ь = 10 мм прибавляется к отчету.

4. Микрометры гладкие типа МК

предназначены для измерения наружных размеров изделий. Основные узлы микрометра (рис.2а): скоба /, пятка 2 и микрометрическая головка 4 -- отсчетное устройство, 'основанное на применении винтовой пары, которая преобразует вращательное движение микровинта в поступательное движение подвижной измерительной пятки. Пределы измерений микрометров зависят от размера скобы и составляют 0--25; 25--50; ...; 275-- 300, 300--400; 400--500 и 500--600 мм.

Микрометры для размеров более 300 мм оснащены сменными (рис. 26) или переставными (рис. 2в) пятками, обеспечивающими диапазон измерений 100 мм. Переставные пятки крепятся в требуемом положении фиксатором 5, а сменные пятки -- гайками 6.

На рис. 1а показана микрометрическая головка, которой оснащают микрометры с верхним пределом измерений до 100 мм. Микрометрический винт / проходит через гладкое направляющее отверстие стебля 2 и ввинчивается в разрезную микрогайку 4, которая стягивается регулирующей гайкой 5 так, чтобы устранить зазоры в винтовой паре. На микровинте установочным колпачком 6 закреплен барабан 3. Палец 9, помещенный в глухое отверстие колпачка, прижимается пружиной 10 к зубчатой поверхности трещетки 7, которая крепится на колпачке винтом 8. При вращении трещетка передает микровинту через палец крутящий момент, обеспечивающий заданное измерительное усилие 5--9 Н. Если измерительное усилие больше, то трещетка проворачивается с характерными щелчками. Винт 12 ввинчивается во втулку 11 и фиксирует микровинт в требуемом положении. Микрометрические головки микрометров с нижним пределом измерений свыше 100 мм имеют несколько отличное устройство (рис. 2б). Микровинт / стопорится гайкой 13, которая зажимает разрезную втулку 14. Барабан 3 затягивается установочным колпачком 6 на конусную поверхность микровинта. Палец 9 прижимается к торцовой зубчатой поверхности трещетки 7.

Микрометрические головки имеют шаг резьбы Р= 0,5 мм и длину резьбы 25 мм. При перемещении микровинта на шаг Р барабан совершает один оборот. На стебле микровинта нанесена шкала с делениями, равными шагу микровинта, и продольный отсчетный штрих. Для удобства отсчета четные и не' четные штрихи шкалы нанесены по разные стороны продольного штриха. На коническом срезе барабана нанесена круговая шкала с числом делении n = 50. Цена деления круговой шкалы микрометра с =Р/n = 0,5/50 = 0,01 мм, цена деления основной шкалы а = Р = 0,5 мм Диапазон показаний микрометрической головки равен 25 мм

Перед измерением микрометры устанавливают в исходное (нулевое) положение, при котором пятка и микровинт прижаты друг к другу или поверхностям установочных мер 3 (см. рис 2а) под действием усилия, обеспечиваемого трещеткой. При правильной установке нулевой штрих круговой шкалы барабана должен совпадать с продольным штрихом на стебле.

Порядок установки микрометров на нуль. а) закрепляют микровинт стопором, б) отворачивают установочный колпачок на пол-оборота; в) барабан поворачивают относительно микровинта до совпадения нулевого штриха барабана с продольным штрихом на стебле; г) барабан закрепляют колпачком; д) освобождают микровинт и снова проверяют нулевую установку и т. д.

При измерении изделие помещают без переноса между пяткой и микровинтом и вращают трещетку до тех пор, пока она не станет проворачиваться. Ближайший штрих к краю барабана определяет число делений шкалы, заключающееся в измеряемом размере. К отсчету по основной шкале прибавляют отсчет по круговой шкале, равный произведению цены деления с = 0,01 мм на номер деления, который находится напротив продольного штриха на стебле. На рис. 2а отсчет равен 14,18 мм.

5. Угломер

Угломер с нониусом

тип 2, предназначен для измерения наружных и внутренних углов. ГОСТ 151550-69

Устройство угломера с нониусом. Он смонтирован на основании 1.Жестко скреплен с линейкой 2. По дуге основания перемещается сектор 3. Несущий нониус 4. К сектору посредством зажима 5. Может быть прикреплен угольник 6. Тли линейка 7. Имеющие возможность перемещаться по грани сектора и фиксируется в требуемом положении стопорным винтом 9. Точная установка при измерении углов обеспечивается микрометрической подачей, путем вращения гайки с накаткой. Фиксирование осуществляется стопорным устройством 8.

Отсчет, полученный при измерении угловых размеров или при установке заданного угла, производится по шкале нониуса.

Условие эксплуатации: температура окружающей среды 20+\-5 С. Область применения- машиностроение.

Список используемой литературы

1. Власов А.Д., Мурин Б.П. Единицы физических величин в науке и технике, 1990

2. Ершов В.С. Внедрение Международной системы единиц, 1986.

3. Камке Д, Кремер К. Физические основы единиц измерения, 1980.

4. Новосильцев К истории основных единиц СИ, 1975.

5.Васильев А.С. «Основы метрологии и технические измерения» 1980 г.

6.Закон «Об обеспечении единства измерений» от 28.04.2001 г.

7.Махоня И.Т. «Справочник инструментальщика по техническим измерениям» 1984 г.

Задание № 2

1. Составить схему измерения, изобразить графически

2. Выполнить эскиз детали, рассчитать погрешность измерений, заданной детали.

3. перевести 450 мм в дюймы.

1. Способы графического изображения схемы измерения

Ступень передачи

Графическое изображение

От эталона или образцового средства измерений (далее - эталона) 1 объекту поверки 5 методом 3

От эталона 1 объектам поверки 5 и 6 методом 3

От эталона 1 объекту поверки 5 методом 3 или 4

От эталона 1 объекту поверки 5 методом 3 и объекту поверки 6 методом 4

От эталона 1 или 2 объекту поверки 5 методом 3

От эталона 1 или 2 объектам поверки 5 и 6 методом 3

От эталонов 1 и 2 единиц различных физических величин объекту поверки 5 методом 3

От эталонов 1 и 2 единиц различных физических величин объектам поверки 5 и 6 методом 3

От эталона 1 методом 3 или от эталона 2 методом 4 объекту поверки 5

От эталона 1 методом 3 или эталона 2 методом 4 объектам поверки 5 и 6

От эталона 1 или 2 объекту поверки 5 методом 3 или объекту поверки 6 методом 4

От эталонов 1 и 2 единиц различных физических величин методом 3 объекту поверки 5 и методом 4 объекту поверки 6

?26H9

Микрометр

0,1

26

Годен

M36 6g

Калибр пробка

Шаг 4

35,937

Годен

76

ШЦ- 2

0,5

76

Годен

?32h10

Микрометр

0,1

32

Годен

3. 450 мм в дюймы = 17,7165 дюймы


Подобные документы

  • Понятие об измерениях и их единицах. Выбор измерительных средств. Оценка метрологических показателей измерительных средств и методы измерений. Плоскопараллельные концевые меры длины, калибры, инструменты для измерения. Рычажно-механические приборы.

    учебное пособие [2,5 M], добавлен 11.12.2011

  • Измерение гладким микрометром диаметра элемента вала и отклонения формы его поверхности. Выбор микрометра с необходимой точностью измерения. Расчет величины каждого отклонения поверхности вала, вычисление числового значения седлообразности и допуска.

    лабораторная работа [54,3 K], добавлен 12.01.2010

  • Алгоритм выбора средств измерений для деталей. Разработка их принципиальных схем, принцип функционирования, поверка и настройка. Разработка измерительного устройства для определения отклонений формы и расположения поверхностей. Методы и средства контроля.

    курсовая работа [2,2 M], добавлен 29.07.2013

  • Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

    контрольная работа [28,8 K], добавлен 23.11.2010

  • Государственные эталоны, образцовые и рабочие средства измерений. Государственная система обеспечения единства измерений. Метрологические службы организаций. Определение и подтверждение соответствия систем измерения установленным техническим требованиям.

    презентация [36,0 K], добавлен 30.07.2013

  • История развития мер и измерительной техники. Основные единицы системы измерений. Классификация видов измерений, механические средства для их проведения. Применение щуповых приборов для определения параметров шероховатости поверхности контактным методом.

    курсовая работа [1,7 M], добавлен 16.04.2014

  • Основные термины и определения в области метрологии. Классификация измерений: прямое, косвенное, совокупное и др. Классификация средств и методов измерений. Погрешности средств измерений. Примеры обозначения класса точности. Виды измерительных приборов.

    презентация [189,5 K], добавлен 18.03.2019

  • Вопросы теории измерений, средства обеспечения их единства и способов достижения необходимой точности как предмет изучения метрологии. Исследование изменений событий и их частоты. Цифровые измерительные приборы. Методы, средства и объекты измерений.

    курсовая работа [607,8 K], добавлен 30.06.2015

  • Средства, методы и погрешности измерений. Классификация приборов контроля технологических процессов добычи нефти и газа; показатели качества автоматического регулирования. Устройство и принцип действия термометров сопротивления и глубинного манометра.

    контрольная работа [136,3 K], добавлен 18.03.2015

  • Средство измерений как техническое средство снятия параметров, имеющее нормированные метрологические характеристики. Порядок разработки и требования к методикам поверки средств измерения, сущность методов поверки, их классификация и порядок сертификации.

    контрольная работа [19,3 K], добавлен 23.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.