Утилизация радиоактивных отходов

Проблема борьбы с радиоактивным загрязнением окружающей среды. Наиболее опасные для биосферы элементами радиоактивных отходов. Формы радиоактивных отходов, которые непосредственно подлежат хранению или захоронению. Этапы и правила обращения с отходами.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курсовая работа
Язык русский
Дата добавления 16.03.2016
Размер файла 3,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

ФАКУЛЬТЕТ «Автоматика и электроника» КАФЕДРА «Автоматика»

Реферат по дисциплине

«Безопасность жизнедеятельности» на тему:

«Утилизация радиоактивных отходов»

Выполнили: Демин Ф. В.

Пиманов Д.В.

Сердюков А.С.

Москва, 2015 г.

СОДЕРЖАНИЕ

  • ВВЕДЕНИЕ
  • Основная часть
    • 1.Происхождение радиоактивных отходов
    • 2. Классификация РАО
    • 3.Жизненный цикл РАО
    • 4. Обращение с РАО
      • 4.1 Сортировка РАО
      • 4.2 Кондиционирование
      • 4.3 Остекловывание РАО
      • 4.4 Прессование РАО
      • 4.5 Сжигание и плавление
    • 5. Захоронение РАО
      • 5.1 Геологические захоронение
      • 5.2 Глубокие захоронения
      • 5.3 Приповерхностные захоронения
    • 6. Другие способы захоронения
      • 6.1 Плавление горной породы
      • 6.2 Прямое закачивание
      • 6.4 Удаление под морское дно
      • 6.5 Удавление в зоны подвижек
      • 6.6 Захоронение в ледниковые щиты
      • 6.7 Удаление в космическое пространство
    • 8. Замкнутый ядерный цикл
    • 7. Трансмутация РАО
    • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Научный и технический прогресс, с одной стороны, облегчают нашу жизнь, но с другой -- оказывают своё пагубное влияние и вынуждают людей брать на себя большую ответственность, чем раньше. Сегодня, когда человечество научилось использовать ядерную энергию в мирных целях, остро встал вопрос об утилизации ядерных отходов, влияние которых, несомненно, вызывает негативное воздействие на окружающую среду.

Любой сектор, который использует радиоактивные изотопы или обрабатывает естественно встречающиеся радиоактивные материалы (ЕВРМ), может производить радиоактивные материалы, которые перестают быть полезными и поэтому должны обрабатываться как радиоактивные отходы. Ядерная промышленность, медицинский сектор, ряд других секторов промышленности, а также различные секторы, занятые исследовательской деятельностью - все генерируют радиоактивные отходы в результате своей деятельности.

Ввиду безусловной опасности радиоактивных отходов (РАО) для всех живых организмов и для биосферы в целом они нуждаются в дезактивации и (или) тщательном захоронении, что до сих пор является нерешенной проблемой. Проблема борьбы с радиоактивным загрязнением окружающей среды выдвигается на первый план среди других экологических проблем ввиду его огромных масштабов и особо опасных последствий.

Основная часть

1. Происхождение радиоактивных отходов

К радиоактивным отходам относятся не подлежащие дальнейшему использованию материалы, растворы, газообразные среды, изделия, аппаратура, биологические объекты, грунт и т.п., в которых содержание радионуклидов превышает уровни, установленные нормативными актами. В категорию «РАО» может быть включено также отработавшее ядерное топливо (ОЯТ), если оно не подлежит последующей переработке с целью извлечения из него компонентов и после соответствующей выдержки направляется на захоронение. РАО подразделяются на высокоактивные отходы (ВАО), среднеактивные (САО) и низкоактивные (НАО). Деление отходов по категориям устанавливается нормативными актами.

Радиоактивные отходы представляют собой смесь стабильных химических элементов и радиоактивных осколочных и трансурановых радионуклидов. Осколочные элементы с номерами 35-47; 55-65 являются продуктами деления ядерного топлива. За 1 год работы большого энергетического реактора (при загрузке 100 т ядерного топлива c 5% урана-235) вырабатывается 10% (0.5 т) делящегося вещества и производится примерно 0.5 т осколочных элементов. В масштабах страны ежегодно только на энергетических реакторах АЭС вырабатывается 100 т осколочных элементов.

Основными и наиболее опасными для биосферы элементами радиоактивных отходов являются Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, I, Cs, Ba, La....Dy и трансурановые элементы: Np, Pu, Am и Cm. Растворы радиоактивных отходов высокой удельной активности по составу представляют собой смеси азотнокислых солей с концентрацией азотной кислоты до 2,8 моль/литр, в них присутствуют добавки HF (до 0,06 моль/литр) и H2SO4 (до 0.1 моль/литр). Общее содержание солей конструкционных элементов и радионуклидов в растворах составляет приблизительно 10 мас%. Трансурановые элементы образуются в результате реакции нейтронного захвата. В ядерных реакторах топливо (обогащенный природный уран) в виде таблеток UO2 помещается в трубки из циркониевой стали (тепловыделяющий элемент - ТВЭЛ). Эти трубки располагаются в активной зоне реактора, между ними помещаются блоки замедлителя (графита), регулирующие стрежни (кадмиевые) и трубки охлаждения, по которым циркулирует теплоноситель - чаще всего, вода. Одна загрузка ТВЭЛов работает примерно 1-2 года.

Радиоактивные отходы образуются:

* при эксплуатации и снятии с эксплуатации предприятий ядерного топливного цикла (добыча и переработка радиоактивных руд, изготовление тепловыделяющих элементов, производство электроэнергии на АЭС, переработка отработавшего ядерного топлива);

* в процессе реализации военных программ по созданию ядерного оружия, консервации и ликвидации оборонных объектов и реабилитации территорий, загрязненных в результате деятельности предприятий по производству ядерных материалов;

* при эксплуатации и снятии с эксплуатации кораблей военно-морского и гражданского флотов с ядерными энергетическими установками и баз их обслуживания;

* при использовании изотопной продукции в народном хозяйстве и медицинских учреждениях;

* в результате проведения ядерных взрывов в интересах народного хозяйства, при добыче полезных ископаемых, при выполнении космических программ, а также при авариях на атомных объектах.

При использовании радиоактивных материалов в медицинских и других научно-исследовательских учреждениях образуется значительно меньшее количество РАО, чем в атомной отрасли промышленности и военно-промышленном комплексе - это несколько десятков кубических метров отходов в год. Однако применение радиоактивных материалов расширяется, а вместе с ним возрастает объем отходов.

2. Классификация РАО

РАО классифицируют по различным признакам (рис. 1): по агрегатному состоянию, по составу (виду) излучения, по времени жизни (периоду полураспада Т 1/2), по удельной активности (интенсивности излучения). Однако, у используемой в России классификации РАО по удельной (объемной) активности есть свои недостатки и положительные стороны. К недостаткам можно отнести то, что в ней не учитывается период полураспада, радионуклидный и физико-химический состав отходов, а также наличие в них плутония и трансурановых элементов, хранение которых требует специальных жестких мер. Положительной стороной является то, что на всех этапах обращения с РАО включая хранение и захоронение главной задачей является предотвращение загрязнения окружающей среды и переоблучения населения, и разделение РАО в зависимости от уровня удельной (объемной) активности именно и определяется степенью их воздействия на окружающую среду и человека. На меру радиационной опасности влияет вид и энергия излучения (альфа-, бета-, гамма - излучатели), а также наличие химически токсичных соединений в отходах. Продолжительность изоляции от окружающей среды среднеактивных отходов составляет 100-300 лет, высокоактивных - 1000 и более лет, для плутония - десятки тысяч лет. Важно отметить, что РАО делятся в зависимости от периода полураспада радиоактивных элементов: на короткоживущие период полураспада меньше года; среднеживущие от года до ста лет и долгоживущие более ста лет.

Рис.1 Классификация РАО

Среди РАО наиболее распространенными по агрегатному состоянию считаются жидкие и твердые. Для классификации жидких РАО был использован параметр удельной (объемной) активности таблица 1.Жидкими РАО считаются жидкости, в которых допустимая концентрация радионуклидов превышает концентрацию установленную для воды открытых водоемов. Ежегодно на АЭС образуется большое количество жидких радиоактивных отходов (ЖРО). В основном большинство ЖРО просто сливается в открытые водоемы, так как их радиоактивность считается безопасной для окружающей среды. Жидкие РАО образуются также на радиохимических предприятиях и исследовательских центрах.

Из всех видов РАО жидкие наиболее распространены, так как в растворы переводят как вещество конструкционных материалов (нержавеющих сталей, циркониевых оболочек ТВЭЛов и т.п.), так и технологические элементы (соли щелочных металлов и др.). Большая часть жидких РАО образуется за счет атомной энергетики. Отработавшие свой ресурс ТВЭЛы, объединенные в единые конструкции - тепловыделяющие сборки, аккуратно извлекают и выдерживают в воде в специальных бассейнах-отстойниках для снижения активности за счет распада короткоживущих изотопов. За три года активность снижается примерно в тысячу раз. Затем ТВЭЛы отправляют на радиохимические заводы, где их измельчают механическими ножницами и растворяют в горячей 6-нормальной азотной кислоте. Образуется 10% раствор жидких высокоактивных отходов. Таких отходов производится порядка 1000 т в год по всей России (20 цистерн по 50 т.).

Твердые РАО (ТРО) - это та форма радиоактивных отходов, которая непосредственно подлежит хранению или захоронению. Существует 3 основных вида твердых отходов:

-- остатки урана или радия, не извлеченные при переработке руд,

-- искусственные радионуклиды, возникшие при работе реакторов и ускорителей,

-- выработавшие ресурс, демонтированные реакторами, ускорителями, радиохимическим и лабораторным оборудованием.

Газообразные РАО образуются в основном при работе АЭС, радиохимических заводов по регенерации топлива, а также при пожарах и других аварийных ситуациях на ядерных объектах.

Это радиоактивный изотоп водорода 3Н (тритий), который не задерживается нержавеющей сталью оболочки ТВЭЛов, но поглощается (99 %) циркониевой оболочкой. Кроме этого при делении ядерного топлива образуется радиогенный углерод, а также радионуклиды криптона и ксенона.

Инертные газы, в первую очередь 85 Kr (T1/2 = 10,3 года), предполагают улавливать на предприятиях радиохимической промышленности, выделяя его из отходящих газов с помощью криогенной техники и низкотемпературной адсорбции. Газы с тритием окисляются до воды, а углекислый газ, в котором присутствует радиогенный углерод, химически связывается в карбонатах.

3 Жизненный цикл РАО

отходы радиоактивный загрязнение

Обращение с отходами, как правило, делится на два крупных этапа - предшествующий захоронению и непосредственно захоронение. Первый включает все стадии обращения с РАО от образования до захоронения, в том числе обработку (например, предварительная обработка, переработка и кондиционирование), временное (промежуточное) хранение и транспортировку. Захоронение предусматривает постоянное размещение отходов в соответствующем сооружении без намерения их изъятия. РАО готовят к захоронению с помощью технологий, которые, в первую очередь, предназначены для получения формы отходов, совместимой с выбранным или ожидаемым вариантом захоронения. Для оценки того или иного процесса или технологии необходимо рассмотреть имеющиеся решения с точки зрения выполнения требований к переработке, хранению и захоронению отходов.

4. Обращение с РАО

4.1 Сортировка РАО

Сортировка - проводится на крупных предприятиях, либо при работах по реабилитации радиационно-загрязненных объектов. Обычно РАО разделяются по либо по морфологическому составу (металл, стекло, изоляционные материалы и т.д.), либо по активности (НАО, САО), либо по способам дальнейшей переработки (прессуемые-непрессуемые, горючие-негорючие и т.п.).

Рис.8 Процесс сортировки РАО

4.2 Кондиционирование

Кондиционирование жидких и твердых РАО является операцией по изготовлению упаковки отходов, конечной целью которой является перевод РАО в форму, пригодную для транспортирования, хранения и захоронения. Кондиционирование включает в себя переработку отходов.

Методы кондиционирования РАО должны выбираться с учетом характеристики отходов, технологических и экономических показателей процесса, а также с учетом условий и продолжительности временного хранения упаковок, условий транспортирования и захоронения отходов. При выборе способа переработки предпочтение должно быть отдано тому из методов, при котором максимально снижается риск облучения людей на всех последующих стадиях обращения с РАО.

Объем кондиционированных РАО должен сокращаться до технически и экономически обоснованного минимума. Особенно это относится к отвержденным высокоактивным отходам, где объем определяется допустимым удельным тепловыделением, условиями теплоотвода и другими условиями хранения и захоронения.

Кондиционированные РАО должны иметь твердое агрегатное состояние, характеризующееся оптимальной устойчивостью к радиационному, механическому, химическому, тепловому и биологическому воздействиям. В РФ разработаны государственные стандарты, определяющие требования к отвержденным отходам. Так, действует Государственный стандарт Российской Федерации ГОСТ Р50926-96 «Отходы высокоактивные отвержденные», который определяет параметры названных форм отходов (таблица 3).

Размещение переработанных радиоактивных отходов в специальный контейнер с последующей его герметизацией является последним этапом кондиционирования отходов.

Упаковка радиоактивных отходов предназначена:

? для временного хранения отходов в наземном инженерном сооружении;

? для транспортирования отходов по территории предприятия или за его пределами в составе транспортно-упаковочного комплекта (ТУК) или без него;

? для длительного хранения в инженерных сооружениях или захоронения отходов. Упаковка радиоактивных отходов может быть предназначена для всех перечисленных стадий в целом или для временного хранения и транспортирования, или только для хранения и захоронения.

Рис.3 Контейнер НКЗ-III содержащих радионуклиды с периодом

Долговечность (срок службы) контейнера при хранении в наземных сооружениях определяется продолжительностью хранения до окончательного захоронения РАО в геологические формации и составляет не менее 50 лет.

При захоронении РАО, полураспада не более 30 лет (включая Cs-137), в приповерхностные сооружения требования к долговечности контейнера определяются по совокупности защитных свойств контейнера, инженерных сооружений и вмещающих пород.

В России для отходов низкой и средней активности разработан (ВНИПИЭТ) и серийно выпускается невозвратный железобетонный защитный контейнер НЗК. Контейнер рассчитан не только на хранение, но и на захоронение РАО.

Контейнер можно использовать в диапазоне температур от -50°С до + 100°С при относительной влажности до 80 %. Срок его службы в условиях временного хранения на площадках атомных станций - не менее 50 лет. При захоронении в приповерхностных или подземных региональных хранилищах (могильниках) контейнер обеспечивает надежную изоляцию отходов в течение 300 лет.

4.3 Остекловывание РАО

Остекловывание (витрификация) - процесс включения отходов высокого уровня активности в боросиликатное стекло, примерно 25% по массе. Остекловывание предназначено для фиксации радионуклидов в неподвижном состоянии в нерастворимой, стабильной матрице, готовой для захоронения.

Рис.4 Схема процесса остекловывания РАО в общем виде

В 1951 году было впервые предложено включать окислы продуктов деления в стекловидную матрицу, так как стекло, будучи нестехиометрическим соединением, при нагревании способно растворять, а при последующем охлаждении прочно удерживать сложную смесь продуктов деления. Получаемый продукт обладает высокой химической и радиационной стойкостью, является изотропным, непористым. Главный недостаток стекла - его термодинамическая нестойкость, которая проявляется в кристаллизации стекла («расстекловывание») под действием высокой температуры, обусловленной радиоактивным распадом. Явления расстекловывания ухудшают первоначальные свойства продукта, в частности, возрастает скорость его выщелачивания. Тем не менее, остеклование считают наиболее подходящим методом отверждения жидких радиоактивных отходов.

Перспективность использования стекла в качестве иммобилизирующей матрицы обусловлена:

-- высокой способностью включать в свой состав элементы независимо от заряда и размера их атомов;

-- стойкостью к радиационному повреждению благодаря тому, что их собственный беспорядок допускает большое число атомных перемещений;

-- относительной легкостью и дешевизной изготовления, поскольку не требует сложного оборудования;

-- отработанностью технологии производства, литья, формовки и отжига.

Стеклообразное состояние вещества - основная разновидность аморфного состояния, формирующегося при затвердевании переохлажденного расплава. Застывание переохлажденной жидкости в виде стекла происходит благодаря быстрому и непрерывному увеличению вязкости расплава при понижении температуры, что затрудняет структурные перестройки в нем, необходимые для энергетически более выгодной кристаллизации. Вязкость расплава, обусловленная межмолекулярными силами, определяет степень склонности конкретной жидкости к стеклообразованию: чем сильнее связанность структуры жидкости, тем легче из расплава образуется стекло. Условия охлаждения оказывают большое влияние на процессы стеклообразования и кристаллизации. Критическая скорость охлаждения данного расплава (минимальная скорость, при которой образуется стекло) зависит от вязкости жидкости, температуры и теплоты кристаллизации.

Силикатные стекла представляют собой наиболее изученный и распространенный класс оксидных стекол, применяемых для иммобилизации радиоактивных отходов. Основой силикатных стекол служит оксид - стеклообразователь - диоксид кремния SiO2. Оксиды, способные находиться в стеклообразном состоянии, например, B2O, P2O5, составляют вместе с кремнеземом основу сложных по составу стекол. Трехмерный каркас, хаотически составленный из тетраэдров SiO4 4-, структурного элемента кремнезема легко включает в свои пустоты оксиды, называемые модификаторами.

Тип связывания атомов ответственен за сложное поведение стекла, содержащего радиоактивные отходы, при его выщелачивании. Понятие аморфности предполагает отсутствие дальнего порядка в расположении тетраэдра SiO4. Ранее полагали, что стеклообразное состояние - это непрерывная беспорядочная сетка, имеющая бесконечно большую элементарную ячейку с отсутствием периодичности и симметрии. Сейчас предпочитают модель кристаллоподобной упорядоченности.

При охлаждении в процессе изготовления, свойства аморфного вещества зависят только от температуры и скорости охлаждения. Скоростью охлаждения определяется «замороженная структура», чем выше скорость охлаждения, тем выше температура стеклования. При повторном нагревании твердого аморфного вещества характер изменения свойств зависит от скорости нагрева и от тепловой предыстории, т.е. от структуры, зафиксированной в образце.

Процесс включения отходов в стекло заключается в добавлении оксидов, например, в виде кальцинированного порошка или шлама, к стеклообразующим материалам и последующем плавлении полученной смеси для образования гомогенной структуры.

Рис.5 Схема установки для двухстадийного процесса остекловывания отходов:

1 - трубчатый теплообменник; 2 - калорифер; 3 - сушилка: 4 - фильтр МКФ; 5 - тарельчатый пневмопитатель; 6 - ресивер: 7 - бачок; 8 - барботажно-абсорбционная колонна; 9 - фильтр грубой очистки: 10 - дымовая труба; 11 - фильтр тонкий очистки: 12 - вакуум насос; 13-тележка с тиглем; 14 - тигель; 15 - подъемник: 16 - монжюс; 17 - насос; 18 - выпарной аппарат; 19 - емкость упаренного раствора; 20 - насос-дозатор.

Реальные составы застеклованных РАО зависят от исходного состава отходов и особенностей применяемой технологии остекловывания: способа денитрации отходов, применяемого устройства для их кальцинирования, способа нагрева, режима процессов отверждения и т.п. В России разрабатывают два направления остекловывания жидких отходов: двух и одностадийные процессы. При реализации двустадийного процесса обезвоживание и кальцинацию отходов проводят при температуре 600-650 ?С в аппарате с кипящем слоем мелкозернистого материала, а плавление стекла - в керамическом тигле при температуре до 1200 ?С (Рис.4).

При одностадийном процессе операции сушки, кальцинации и плавки проводят в одном аппарате (Рис.5). Боросиликатные стекла при хранении хорошо сохраняют свои первоначальные свойства, если температура по центральной оси блока не превышает 500 -600 ?С, т.е. не превышает температуры начала процесса кристаллизации.

Рис.6 Схема установки для одностадийного остекловывания отходов:

1 - электропечь; 2 - барботер-конденсатор; 3 - фильтр грубой очистки; 4 - фильтр тонкой очистки: 5 - колонка с пиролюзитом; 6 - абсорбционная колонка

Рис.7 Подготовка к транспортировке контейнера со стеклопродуктами

Для увеличения надежности хранения отвержденных стеклопродуктов высоко радиоактивных отходов существуют различные способы:

-- использование кольцевых контейнеров для хранения стекла или контейнеров с металлическими перегородками, что повышает теплопроводность продукта и снижает температуру в центральной части контейнера;

-- проведение контролируемой кристаллизации стекла для превращения его в стеклокерамику специальной термообработкой продукта;

-- включение небольших частиц стекла в металлические матрицы, например, на основе свинца.

4.4 Прессование РАО

Рис.7 Процесс прессования РАО

Прессование - используется для уменьшения объема прессуемых ТРО (теплоизоляция, отработанные фильтры газоочистки, смешанные отходы и др.). Прессование обычно происходит в 100 или 200 литровых бочках. Большинство используемых прессов обеспечивает уменьшение объема в 3-5 раз. Также существуют установки прессования с усилием до 2 МН, т.н. «суперкомпакторы», позволяющие достигнуть уменьшения объема в 10-15 раз.

4.5 Сжигание и плавление

Сжигание - используется для значительного уменьшения объема сжигаемых органических ТРО (ветошь, органические остатки, илы и др.). Большинство существующих печей также позволяют сжигать органические ЖРО. Разработано большое количество конструкций печей, температура сжигания варьируется от 800 до 1700 ?С (плазменная технология). Плазменная технология позволяет также сжигать смешанные ТРО со значительным количеством негорючих РАО. Недостатком данного метода является необходимость тщательной очистки отходящих дымовых газов, что повышает стоимость переработки.

Плавление (переплавка) - используется для уменьшения объема загрязненной теплоизоляции (до 100 раз), либо для очистки металлических РАО, загрязненных незначительными количествами радиоактивных веществ.
Обычно применяется комплексная технология переработки, включающая несколько методов. На крупных предприятиях существуют большие стационарные комплексы для переработки образующихся ТРО. Из предприятий, не относящихся к ядерному топливному циклу, и эксплуатирующих крупные комплексы для переработки ТРО, можно выделить ГУП «МосНПО «Радон», Ленинградское отделение ФГУП «РосРАО» и ФГУП «СевРАО». Переработку значительных количеств металлических РАО осуществляет ЗАО «Экомет-С».

5. Захоронение РАО

5.1 Геологические захоронение

Захоронение предусматривает размещение отходов в соответствующем сооружении без намерения их изъятия.

Проблема безопасного захоронения РАО является одной из тех проблем, от которых в значительной мере зависят масштабы и динамика развития ядерной энергетики. Генеральной задачей безопасного захоронения РАО является разработка таких способов их изоляции от биоцикла, которые позволят устранить негативные экологические последствия для человека и окружающей среды. Конечной целью заключительных этапов всех ядерных технологий является надежная изоляция РАО от биоцикла на весь период сохранения отходами радиотоксичности.

Выбор места (площадки) для захоронения или хранения радиоактивных отходов, зависит от ряда факторов: экономических, правовых, социально-политических и природных. Особая роль отводится геологической среде -- последнему и важнейшему барьеру защиты биосферы от радиационно опасных объектов.

Пункт захоронения должен быть окружен зоной отчуждения, в которой допускается появление радионуклидов, но за ее границами активность никогда не достигает опасного уровня. Посторонние объекты могут быть расположены не ближе, чем на расстоянии 3 радиусов зоны от пункта захоронения. На поверхности эта зона носит название санитарно-защитной, а под землей представляет собой отчужденный блок горного массива.

Отчужденный блок необходимо изъять из сферы человеческой деятельности на период распада всех радионуклидов, поэтому он должен располагаться за пределами месторождений полезных ископаемых, а также вне зоны активного водообмена. Проводимые при подготовке к захоронению отходов инженерные мероприятия должны обеспечить необходимый объем и плотность размещения РАО, действие систем безопасности и надзора, а том числе долговременный контроль за температурой, давлением и активностью в пункте захоронения и отчуждаемом блоке, а также за миграцией радиоактивных веществ по горному массиву.

С позиций современной науки, решение о конкретных свойствах геологической среды на участке хранилища должно быть оптимальным, то есть отвечающим всем поставленным целям, и прежде всего гарантирующим безопасность. Оно должно быть объективным, то есть защищаемым перед всеми заинтересованными сторонами. Такое решение должно быть доступным для понимания широкой общественности.

Решение должно предусмотреть степень риска при выборе территории для захоронения РАО, а также опасность возникновения различных чрезвычайных ситуаций. При оценке геологических источников риска загрязнения окружающей среды необходимо учитывать физические (механические, тепловые), фильтрационные исорбционные свойства горных пород; тектоническую обстановку, общую сейсмическую опасность, новейшую активность разломов, скорость вертикальных движений блоков земной коры; интенсивность изменения геоморфологических характеристик: водообильность среды, активность динамики подземных вод, включая влияние глобального изменения климата, подвижности радионуклидов в подземных водах; особенности степени изоляции от поверхности водонепроницаемыми экранами и образования каналов гидравлической связи подземных и поверхностных вод; наличие ценных ресурсов и перспектив их обнаружения. Эти геологические условия, определяющие пригодность территории для устройства хранилища, должны оцениваться независимо, по представительному параметру для всех источников риска. Они должны обеспечить оценку по совокупности частных критериев, связанных с горными породами, гидрогеологическими условиями, геологическими, тектоническими и минеральными ресурсами. Это позволит экспертам дать корректную оценку пригодности геологической среды. При этом неопределенность, связанная с узостью информационной базы, а также и с субъективизмом экспертов, может быть уменьшена применением оценочных шкал, ранжированием признаков, единой формой опросных листов, компьютерной обработкой результатов экспертизы. Сведения о типе, количестве, ближайшей и долгосрочной динамике поступления ОЯТ предоставят возможность выполнить районирование территории области, чтобы оценить пригодность участков для размещения хранилища, устройства (использование) коммуникаций, развития инфраструктуры и прочих смежных, но не менее важных проблем.

Рис.9 Способы захоронения РАО в зависимости от степени их радиоактивности

5.2 Глубокие захоронения

Продолжительный масштаб времени, в течение которого некоторые из отходов остаются радиоактивными, привел к идее глубокого геологического захоронения в подземных хранилищах в устойчивых геологических формациях. Изоляция обеспечивается комбинацией инженерных и естественных барьеров (горная порода, соль, глина), при этом никаких обязательств по активному обслуживанию такого захоронения не передается будущим поколениям. Этот метод часто называют многобарьерной концепцией с учетом того, что упаковка отходов, инженерное оборудование хранилища и сама геологическая среда - все это обеспечивает барьеры по предотвращению достижения радионуклидами людей и окружающей среды.

Хранилище включает в себя пройденные в горных породах туннели или пещеры, в которых размещаются упакованные отходы. В некоторых случаях (например, влажная горная порода) контейнеры с отходами затем окружаются материалом типа цемента или глины (обычно бентонит), чтобы обеспечить дополнительный барьер (называемым буфером или закладкой). Выбор материалов для контейнеров с отходами, а также проекта и материалов для буфера изменяется в зависимости от типа отходов, которые нужно сдерживать, и от характера пород, в которых закладывается это хранилище.

Рис.10 Глубокое геологическое захоронение

5.3 Приповерхностные захоронения

МАГАТЭ определяет вариант приповерхтностного захоронения как захоронение радиоактивных отходов с инженерными барьерами или без них в:

1. Приповерхностные захоронения на уровне земли. Эти захоронения находятся на или ниже поверхности, где толщина защитного покрытия составляет примерно несколько метров. Контейнеры с отходами размещаются в построенных камерах для хранения, и когда камеры заполняются, они забутовываются (засыпаются). В конечном счете, они будут закрыты и покрыты непроницаемой перегородкой и верхним слоем почвы. Эти захоронения могут включать некоторую форму дренажа и, возможно, газовую систему вентиляции.

2. Приповерхностные захоронения в пещерах ниже уровня земли. В отличие от приповерхностного захоронения на уровне земли, где выемка грунта проводится с поверхности, неглубокие захоронения требуют подземной выемки грунта, но захоронение располагается на глубине нескольких десятков метров ниже поверхности земли и доступно через слабонаклонную горную выработку.

Рис.11 Приповерхтностное геологическое захоронение

На эти захоронения могут воздействовать долгосрочные изменения климата (например оледенение), и этот эффект должен приниматься во внимание при рассмотрении аспектов безопасности, так как такие изменения способны вызывать разрушение этих захоронений. Однако этот тип захоронения обычно используется для отходов низкого и среднего уровня активности, содержащих радионуклиды с коротким периодом полураспада (приблизительно до 30 лет).

6. Другие способы захоронения

6.1 Плавление горной породы

Вариант плавления горной породы, расположенной глубоко под землей, предусматривает плавление отходов в смежной породе. Идея состоит в том, чтобы произвести устойчивую, твердую массу, которая включает в себя отходы, или внедрить отходы в разбавленной форме в породу (то есть рассредоточить по большому объему породы), которая не может легко выщелачиваться и переноситься обратно к поверхности. Этот метод предлагался, главным образом, для отходов, генерирующих тепло, например, остеклованных, и для пород с подходящими характеристиками по уменьшению потерь тепла.

Высоко активные отходы в жидкой или твердой форме могли бы помещаться в полость или глубокую буровую скважину. Выделяемая отходами теплота затем бы аккумулировалась, что в результате привело бы к достижению достаточно больших температур, для того чтобы расплавить окружающую породу и растворить радионуклиды в растущей толще расплавленного материала. Когда горная порода охладится, она кристаллизуется и станет матрицей для радиоактивных веществ, таким образом, рассеивая отходы по большому объему породы.

Просчитана разновидность этого варианта, при котором тепло, генерируемое отходами, аккумулировалось бы в контейнерах, а порода плавилась бы вокруг контейнера. В качестве альтернативы, в случае, если бы отходы генерировали недостаточно тепла, отходы фиксировались бы в неподвижном состоянии в матрице породы обычным или ядерным взрывом.

Плавление горной породы нигде не было реализовано для удаления радиоактивных отходов. Не было никаких примеров практической демонстрации выполнимости этого варианта, кроме лабораторных исследований плавления горных пород.

6.2 Прямое закачивание

Этот подход касается закачивания жидких радиоактивных отходов непосредственно в пласт горной породы глубоко под землей, который выбирается из-за своих подходящих характеристик по удержанию отходов (то есть минимизируется любое их дальнейшее движение после закачивания).

Для этого нужен ряд геологических предпосылок. Должен иметься пласт горной породы (пласт закачки) с достаточной пористостью, чтобы разместить отходы, и с достаточной проницаемостью, чтобы позволять легкое закачивание (то есть действовать подобно губке). Выше и ниже пласта закачки должны быть непроницаемые пласты, которые могли бы действовать как естественные затворы. Дополнительные выгоды могут обеспечивать геологические характеристики, которые ограничивают горизонтальное или вертикальное перемещение. Например, закачивание в пласты горной породы, содержащей природную рапу грунтовой воды. Это связано с тем, что высокая плотность рапы (соленая вода) уменьшила бы возможность движения, направленного вверх.

Прямое закачивание могло бы, в принципе, использоваться для любого типа радиоактивных отходов при условии, что они будут преобразованы в раствор или гидросмесь (очень мелких частиц в воде). Гидросмеси, содержащие цементный раствор, который отвердевает под землей, также могут использоваться, чтобы минимизировать движение радиоактивных отходов.

6.3 Удаление в море

Удаление в море касается радиоактивных отходов, вывозимых на кораблях и сбрасываемых в море в упаковках, спроектированных:

- для того чтобы взорваться на глубине, в результате чего происходит непосредственный выброс и рассеивание радиоактивного материала в море, или

- для погружения на морское дно и достижения его в неповрежденном виде.

Через какое-то время физическое сдерживание контейнеров перестанет действовать, и радиоактивные вещества будут рассеиваться и разбавляться в море. Дальнейшее разбавление приведет к тому, что радиоактивные вещества будут мигрировать от места сброса под действием течений.

Количество радиоактивных веществ, остающихся в морской воде, далее снижалось бы из-за естественного радиоактивного распада и перемещения радиоактивных веществ в отложения морского дна в процессе сорбции.

6.4 Удаление под морское дно

Вариант удаления предполагает захоронение под морским дном контейнеров с радиоактивными отходами в соответствующую геологическую среду ниже дна океана на большой глубине. Этот вариант был предложен для отходов низкого, среднего и высокого уровня активности. Вариации этого варианта включают:

- хранилище, расположенное ниже морского дна. Хранилище было бы доступно с земли, с небольшого необитаемого острова или с сооружения, расположенного на некотором расстоянии от берега;

- захоронение радиоактивных отходов в глубоких океанических осадках. Этот метод запрещен международными соглашениями.

Удаление радиоактивных отходов в хранилище, созданное ниже морского дна, рассматривалось Швецией и Великобританией. Если бы концепция хранилища ниже морского дна была бы признана желательной, то проект такого хранилища мог бы быть разработан так, чтобы гарантировать возможность будущего возврата отходов. Контроль за отходами в таком хранилище был бы менее проблематичен, чем при других формах удаления в море.

6.5 Удавление в зоны подвижек

Зоны подвижек - это области, в которых одна более плотная плита земной коры перемещается ниже по направлению к другой, более легкой, плиты. Надвигание одной литосферной плиты на другую приводит к образованию разлома (желоба), возникающего на некотором расстоянии от морского берега, и вызывает землетрясения, происходящие в зоне наклонного контакта плит земной коры. Край доминирующей плиты сминается и вздымается, формируя цепь гор, параллельную разлому. Глубокие морские отложения соскабливаются с нисходящей плиты и встраиваются в смежные горы. Когда океанская плита опускается в горячую мантию, ее части могут начать плавиться. Так образуется магма, мигрирующая наверх, часть ее достигает поверхности земли в виде лавы, извергающейся из кратеров вулканов. Как показано на прилагаемой иллюстрации, идея для этого варианта состояла в том, чтобы захоранивать отходы в такой зоне разлома, чтобы потом они были увлекались вглубь земной коры.

Этот метод не разрешен международными соглашениями, так как он является формой захоронения в море.Хотя зоны подвижек плит имеются в ряде мест на поверхности Земли, географически число их очень ограничено. Никакая страна, производящая радиоактивные отходы, не вправе рассматривать вариант захоронения в глубокие морские желоба без поиска международно приемлемого решения этой проблемы. Впрочем, такой вариант не был нигде реализован, так как он является одной из форм захоронения РАО в море и поэтому не разрешен международными соглашениями.

6.6 Захоронение в ледниковые щиты

При этом варианте захоронения контейнеры с отходами, испускающими тепло, размещались бы в стабильных ледниковых щитах, например, тех, что обнаружены в Гренландии и Антарктиде. Контейнеры расплавили бы окружающий лед и опустились бы глубоко в ледниковый щит, где лед смог бы рекристаллизоваться над отходами, создавая мощный барьер.

Хотя удаление в ледниковые щиты могло бы технически рассматриваться для всех типов радиоактивных отходов, оно было серьезно исследовано только для отходов высокого уровня активности , где выделяемая отходами тепло могло бы с выгодой использоваться для самозахоронения отходов в толще льда благодаря его плавлению.

6.7 Удаление в космическое пространство

Этот вариант ставит своей целью удаление радиоактивных отходов с Земли навсегда, выбрасывая их в космос. Очевидно, что отходы при этом должны упаковываться так, чтобы оставаться неповрежденными при сценариях самых немыслимых аварий. Ракета или космический челнок могли бы использоваться для запуска упакованных отходов в космическое пространство. Рассматривалось несколько конечных пунктов назначения отправки отходов, включая направления их в сторону Солнца, сохранение на орбите вокруг Солнца между Землей и Венерой и выбросом отходов вообще за пределы солнечной системы. Это необходимо из-за того, что размещение отходов в космическом пространстве на околоземной орбите чревато возможным их возвращением на Землю.

Высокая стоимость этого варианта означает, что такой метод удаления радиоактивных отходов мог бы быть подходящим для отходов высокого уровня активности или для отработанного топлива (то есть для долгоживущего высокорадиоактивного материала, который относительно мал по своему объему). Переработка отходов могла бы потребоваться, чтобы отделить наиболее радиоактивные материалы для удаления в космическое пространство и, следовательно, уменьшить объем транспортируемого груза. Этот вариант не был реализован, и дальнейшие исследования не проводились из-за высокой стоимости и из-за аспектов безопасности, связанных с возможным риском неудачного запуска.

7.Замкнутый ядерный цикл

Замкнутый ядерный топливный цикл (ЯТЦ) - ядерный топливный цикл, в котором отработавшее ядерное топливо, выгруженное из реактора, перерабатывается для извлечения урана и плутония для повторного изготовления ядерного топлива.

Этапы замкнутого ЯТЦ включают выдержку отработанного ядерного топлива на территории АЭС в течение 3-10 лет; временное контролируемое хранение ОЯТ в автономных хранилищах при радиохимическом заводе (сроком до 40 лет), переработку ОЯТ с выделением из него отдельных (или суммы) делящихся нуклидов и продуктов деления, представляющих коммерческий интерес, отверждение и захоронение отходов.

Переработка отработанного ядерного топлива даёт определённые экономические выгоды, восстанавливая неиспользованный уран и вовлекая в энергетику наработанный плутоний. При этом уменьшается объем высокорадиоактивных и опасных отходов, которые необходимо надлежащим образом хранить, что также имеет определенную экономическую целесообразность. В отработанном ядерном топливе содержится примерно 1% плутония. Это очень хорошее ядерное топливо, которое не нуждается ни в каком процессе обогащения, оно может быть смешано с обедненным ураном и поставляться в виде свежих топливных сборок для загрузки в реакторы. Его можно использовать для загрузки и в реакторы- размножители (коверторы и бридеры).

8. Трансмутация РАО

Разделение и трансмутация означают преобразование долгоживущих и токсичных радионуклидов в менее токсичные с как можно более коротким периодом полураспада. Идея в том, что программа трансмутации преобразовала бы проблему долгосрочной изоляции РАО в менее трудную проблему хранения отходов в течение нескольких десятков или сотен лет.

Идея ядерной трансмутации элементов отнюдь не нова. Этой идее почти столько же лет, сколько самой ядерной физике. Первый результат по превращению макроскопических количеств одного элемента в другой был доложен Э.Резерфордом в 1919 году. Для трансмутации можно использовать практически любое ядерное излучение, однако нейтроны дают наибольшую эффективность благодаря отсутствию кулоновского барьера и большим сечениям взаимодействия. На сегодняшний день разработаны несколько вариантов концепции трансмутации РАО. Как правило, все эти концепции основаны на подходах, реализуемых в ядерном комплексе Франции, где существенная роль принадлежит быстрым реакторам - "дожигателям", или Японии с двухуровневой схемой переработки ОЯТ. При этом во всех концепциях трансмутации РАО существенная роль отводится быстрым подкритическим системам, управляемым ускорителями, в которых происходит утилизация долгоживущих компонентов РАО, в первую очередь, минорных актинидов (МА): изотопов америция, кюрия, а также нептуния, - изотопы которых имеют существенно меньшую долю запаздывающих нейтронов в спектре деления. Кроме минорных актинидов подкритические системы могут уничтожать продукты деления. Главную проблему представляют долгоживущие продукты деления, такие как 99Tc и 129I, представляющие наибольшую опасность с точки зрения долговременного (несколько тысяч лет) безопасного хранения РАО.
Без применения подкритических систем на базе сильноточных протонных ускорителей, по-видимому, не удастся полностью утилизовать МА. Дело в том, что для этих изотопов очень мала доля запаздывающих нейтронов, которые позволяют обеспечить устойчивое управление обычным критическим реактором. Кроме того, другие параметры, обеспечивающие безопасную работу критического реактора, такие как запас реактивности зоны с МА, реактивностный эффект потери теплоносителя, допплеровский коэффициент топлива, накладывают существенные ограничения на создание критического реактора с МА. Таким образом, оказывается, что невозможно построить устойчиво работающий критический реактор с топливом, состоящим более чем на 15 - 20% из МА.

Сложившиеся на сегодняшний день концепции трансмутации РАО выглядят следующим образом. Сохраняется традиционная ядерная энергетика на легководных реакторах (LWR). После переработки ОЯТ во всех схемах выделяется плутоний и направляется либо обратно в легководные реакторы (Япония, ЕС), либо в подкритические системы - трансмутаторы (США). МА и долгоживущие продукты деления во всех концепциях перерабатываются в подкритических системах. Различия концепций обусловлены сложившейся структурой ядерной отрасли страны (США, Франция, Япония) или интересом к новым направлениям ядерной энергетики (включение в топливный цикл 232Th). Важным моментом во всех схемах является возможность утилизации в подкритических системах или быстрых реакторах плутония из демонтируемых в соответствии с международными договоренностями боезарядов.

ЗАКЛЮЧЕНИЕ

Проблема утилизации радиоактивных отходов остро стоит во всем мире. Она требует внимания правительств всех стран, имеющих атомные электростанции, исследовательские атомные реакторы, атомные подводные и надводные корабли и, конечно же, владеющих атомным оружием.

Перед выбором конкретной технологии обращения с РАО необходим анализ образования отходов, их свойств, видов и объемов. Кроме того, нужно в полной мере соблюдать регуляторные требования и обеспечить наличие решения по захоронению при условии, что его нормативно-правовое обеспечение существует или будет установлено. Выбор технологии должен быть основан на оценке всех соответствующих критериев и ограничений.

На сегодняшний день наиболее распространенным способом утилизации радиоактивных отходов является их захоронение геологической среде. Сложная экономическая ситуация в нашей стране не позволяет использовать альтернативные дорогостоящие способы захоронения в промышленных масштабах.

Неправильное обращение с радиоактивными отходами может привести к серьезным экологическим катастрофам, поэтому экологически безопасное обращение с радиоактивными отходами является серьезной проблемой, стоящей перед всеми развивающими ядерную промышленность странами. Во многих из них она приобрела политическую значимость, поскольку привлекает пристальное критическое внимание населения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Бекман И. Н., Конечная стадия ядерного топливного цикла // Спецкурс Ядерная индустрия

2. Бычков А. В., Дрэйс З., Ожован М. И., Переработка и захоронение радиоактивных отходов: выбор технических решений // Российское атомное сообщество // 2014

3. Герасимов А.С., Киселев В.Г., Научно-технические проблемы создания электроядерных установок для трансмутации долгоживущих радиоактивных отходов и одновременного производства энергии (российский опыт) // «Физика элементарных частиц и атомного ядра» 2001, Т.32, Вып. 1

4. Кочкин Б.Т. Выбор геологических условий для захоронения высокорадиоактивных отходов // Дис. на соиск. д. г.-м. н. ИГЕМ РАН, М., 2002.

5. Лаверов Н.П., Омельяненко Б.И., Величкин В.И. Геологические аспекты проблемы захоронения радиоактивных отходов // Геоэкология. 1999. №6.

6. Полуэктов П.П., Технологии кондиционирования РАО для подготовки к длительному хранению и захоронению в РФ

7. Швецов В., Трансмутация отработанного ядерного топлива и радиоактивных отходов - один из вариантов стратегического развития атомной отрасли // ОИЯИ "Дубна" N 6 // 2003

8. Безопасность при обращении с радиоактивными отходами. Общие положения НП-058-04 // 2004

9. Федеральный закон Российской Федерации от 21 ноября 1995 г. № 170-ФЗ «Об использовании атомной энергии».

Размещено на Allbest.ru


Подобные документы

  • Жизненный цикл радиоактивных отходов. Выбор технологии предварительной обработки, переработки, хранения и захоронения ядерных материалов. Перемещение, классификация и категоризация радиоактивных отходов. Инвентаризация и этапы обращения с отходами.

    реферат [1,3 M], добавлен 19.01.2016

  • Альтернативные способы хранения и удаления отходов. Технология обращения с радиоактивными отходами на разных этапах становления атомной промышленности, ее особенности. Классификация жидких и твердых отходов. Проблема хранения и утилизации плутония.

    презентация [464,7 K], добавлен 10.02.2014

  • Виды отходов производства и отходов потребления. Правовые основы обращения с отходами производства. Оценка опасности отходов в рамках классификационной модели ЕРА. Отнесение опасных отходов к классу опасности для окружающей среды расчетным методом.

    курсовая работа [194,3 K], добавлен 26.01.2009

  • Источники образования радиоактивных газоаэрозольных выбросов. Удаление газов из контура теплоносителя и технологического оборудования. Контролируемый уровень выбросов в атмосферу за сутки. Способы снижения активности газообразных радиоактивных отходов.

    презентация [253,1 K], добавлен 24.08.2013

  • Радиоактивные и токсичные отходы: классификация и источники их появления. Обращение, переработка и захоронение отходов. Варианты решения проблемы отходов: получение полезностей из свойства "радиоактивность" и употребление в "нетрадиционных" технологиях.

    реферат [39,1 K], добавлен 15.11.2015

  • Порядок обращения с твердыми радмоактивными отходами (ТРО). Распределение обязанностей и ответственности в сфере обращения с ТРО. Задачи, аппаратное обнспечение и порядок выполнения сортировки ТРО. Технические данные устройств для радиационного контроля.

    курсовая работа [51,8 K], добавлен 19.11.2010

  • Основные мероприятия по сбору и утилизации отходов. Стерилизация ионизирующим, радиоактивным и инфракрасным излучением. Контроль и требования к организации системы обращения с медицинскими отходами. Способы и методы обеззараживания или обезвреживания.

    курсовая работа [41,3 K], добавлен 03.04.2013

  • Особенности использования радиоактивных веществ в открытом виде. Среднегодовые допустимые концентрации радиоактивных веществ и уровни загрязнения поверхностей. Степень опасности различных видов радиоактивных излучений. Методы дезактивации излучения.

    реферат [1,1 M], добавлен 17.03.2015

  • Понятие и основные этапы процессов дезактивации и дезинфекции, используемые методы и приемы, инструменты и материалы. Контроль удаления радиоактивных отходов. Главные технические средства дезактивации: виды, назначение, функциональные особенности.

    презентация [649,9 K], добавлен 11.12.2013

  • Литосфера, ее строение. Источники загрязнение почвы. Контроль загрязнения почвы. Разработка пестицидов безопасных для пищевой цепи. Способы обезвреживания жидких радиоактивных отходов. Способы обезвреживания, утилизация и ликвидации.

    реферат [23,1 K], добавлен 14.04.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.