Надежность как комплексное свойство пожарной техники

Состояние пожарной техники, показатели ее безотказности и ремонтопригодности. Виды отказов и причинные связи ПТ. Критерии надежности невосстанавливаемых и восстанавливаемых объектов. Основные законы распределения, используемые в теории надежности.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 19.10.2010
Размер файла 716,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство Российской Федерации

по делам гражданской обороны, чрезвычайным ситуациям

и ликвидации последствий стихийных бедствий

Академия Государственной противопожарной службы

Кафедра: «Гражданской защиты»

Дисциплина: «Надежность технических систем и техногенный риск»

РЕФЕРАТ

Тема: «Надежность как комплексное свойство пожарной техники»

МОСКВА 2006

Содержание

Введение

1. Основные понятия теории надежности

1.1 Состояние пожарной техники

1.2 Переход пожарной техники в различные состояния

1.3 Показатели безотказности и ремонтопригодности ПТ

2. Характеристики отказов ПТ

2.1 Виды отказов и причинные связи

3. Количественные характеристики надежности

3.1 Критерии и количественные характеристики надежности

3.2 Критерии надежности невосстанавливаемой техники

3.3 Основные законы распределения, используемые в теории надежности

3.4 О выборе закона распределения отказов при расчете надежности

Вывод

Литература

Введение

Надежность - это свойство объекта сохранять во времени в установленных пределах все параметры, обеспечивающие выполнение требуемых функций в заданных условиях эксплуатации.

Уровень надежности в значительной степени определяет развитие техники по основным направлениям: автоматизации производства, интенсификации рабочих процессов и транспорта, экономии материалов и энергии.

Современные технические средства очень разнообразны и состоят из большого количества взаимодействующих механизмов, аппаратов и приборов. Первые простейшие машины и радиоприемники состояли из десятков или сотен деталей, а к примеру, система радиоуправления ракетами состоит из десятков и сотен миллионов различных деталей. В таких сложных системах в случае отсутствия резервирования отказ всего одного ответственного элемента может привести к отказу или сбою в работе всей системы.

Низкий уровень надежности оборудования вполне может приводить к серьезным затратам на ремонт, длительному простою оборудования, к авариям и т.п.

В настоящее время наблюдается быстрое и многократное усложнение машин, объединение их в крупные комплексы, уменьшение их металлоемкости и повышением их силовой и электрической напряженности. Поэтому наука о надежности быстро развивается.

Отказы деталей и узлов в разных машинах и разных условиях могут иметь сильно отличающиеся последствия. Последствия выхода из строя машины, имеющейся на заводе в большом количестве, могут быть легко и без последствий устранены силами предприятия. А отказ специального станка, встроенного в автоматическую линию, вызовет значительные материальные убытки, связанные с простоем многих других станков и невыполнением заводом плана.

В этом реферате я рассмотрю надежность станков и промышленных роботов, потому что эти вопросы имеют большое значение для производства, и они связаны с моей специальностью и, возможно, будущей работой.

1. Основные понятия теории надежности

ПТ- пожарная техника.

Предварительные замечания

В основу перечня положен ГОСТ 27.002-89 "Надежность в технике. Основные понятия. Термины и определения", формулирующего применяемые в науке и технике термины и определения в области надежности. Однако не все термины охватываются указанным ГОСТом, поэтому в отдельных пунктах введены дополнительные термины, отмеченные "звездочкой" (*). Объект, элемент, система.

В теории надежности используют понятия: объект, элемент, система. Объект - техническое изделие определенного целевого назначения, рассматриваемое в периоды проектирования, производства, испытаний и эксплуатации. Объектами могут быть различные системы и их элементы, в частности: сооружения, установки, технические изделия, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали. Элемент системы - объект, представляющий отдельную часть системы. Само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элементов. Понятия система и элемент выражены друг через друга, поскольку одно из них следовало бы принять в качестве исходного, постулировать. Понятия эти относительны: объект, считавшийся системой в одном исследовании, может рассматриваться как элемент, если изучается объект большего масштаба. Кроме того, само деление системы на элементы зависит от характера рассмотрения (функциональные, конструктивные, схемные или оперативные элементы), от требуемой точности проводимого исследования, от уровня наших представлений, от объекта в целом. Человек-оператор также представляет собой одно из звеньев системы человек-машина. Система - объект, представляющий собой совокупность элементов, связанных между собой определенными отношениями и взаимодействующих таким образом, чтобы обеспечить выполнение системой некоторой достаточно сложной функции. Признаком системности является структурированность системы, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели. Системы функционируют в пространстве и времени.

1.1 Состояние пожарной техники

Исправность - состояние объекта, при котором он соответствует всем требованиям, установленным нормативно-технической документацией (НТД). Неисправность - состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных НТД. Работоспособность - состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения основных параметров в пределах, установленных НТД. Основные параметры характеризуют функционирование объекта при выполнении поставленных задач и устанавливаются в нормативно-технической документации. Неработоспособность - состояние объекта, при котором значение хотя бы одного заданного параметра характеризующего способность выполнять заданные функции, не соответствует требованиям, установленным НТД. Понятие исправность шире, чем понятие работоспособность. Работоспособный объект в отличие от исправного удовлетворяет лишь тем требованиям НТД, которые обеспечивают его нормальное функционирование при выполнении поставленных задач. Работоспособность и неработоспособность в общем случае могут быть полными или частичными. Полностью работоспособный объект обеспечивает в определенных условиях максимальную эффективность его применения. Эффективность применения в этих же условиях частично работоспособного объекта меньше максимально возможной, но значения ее показателей при этом еще находятся в пределах, установленных для такого функционирования, которое считается нормальным. Частично неработоспособный объект может функционировать, но уровень эффективности при этом ниже допускаемого. Полностью неработоспособный объект применять по назначению невозможно. Понятия частичной работоспособности и частичной неработоспособности применяют главным образом к сложным системам, для которых характерна возможность нахождения в нескольких состояниях. Эти состояния различаются уровнями эффективности функционирования системы. Работоспособность и неработоспособность некоторых объектов могут быть полными, т.е. они могут иметь только два состояния. Работоспособный объект в отличие от исправного обязан удовлетворять лишь тем требованиям НТД, выполнение которых обеспечивает нормальное применение объекта по назначению. При этом он может не удовлетворять, например, эстетическим требованиям, если ухудшение внешнего вида объекта не препятствует его нормальному (эффективному) функционированию. Очевидно, что работоспособный объект может быть неисправным, однако отклонения от требований НТД при этом не настолько существенны, чтобы нарушалось нормальное функционирование. Предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению должно быть прекращено из-за неустранимого нарушения требований безопасности или неустранимого отклонения заданных параметров за установленные пределы, недопустимого увеличения эксплуатационных расходов или необходимости проведения капитального ремонта. Признаки (критерии) предельного состояния устанавливаются НТД на данный объект. Невосстанавливаемый объект достигает предельного состояния при возникновении отказа или при достижении заранее установленного предельно допустимого значения срока службы или суммарной наработки, устанавливаемых из соображений безопасности эксплуатации в связи с необратимым снижением эффективности использования ниже допустимой или в связи с увеличением интенсивности отказов, закономерным для объектов данного типа после установленного периода эксплуатации. Для восстанавливаемых объектов переход в предельное состояние определяется наступлением момента, когда дальнейшая эксплуатация невозможна или нецелесообразна вследствие следующих причин: - становится невозможным поддержание его безопасности, безотказности или эффективности на минимально допустимом уровне; - в результате изнашивания и (или) старения объект пришел в такое состояние, при котором ремонт требует недопустимо больших затрат или не обеспечивает необходимой степени восстановления исправности или ресурса. Для некоторых восстанавливаемых объектов предельным состоянием считается такое, когда необходимое восстановление исправности может быть осуществлено только с помощью капитального ремонта. Режимная управляемость* - свойство объекта поддерживать нормальный режим посредством управления с целью сохранения или восстановления нормального режима его работы.

1.2 Переход пожарной техники в различные состояния

Повреждение - событие, заключающееся в нарушении исправности объекта при сохранении его работоспособности. Отказ - событие, заключающееся в нарушении работоспособности объекта. Критерий отказа - отличительный признак или совокупность признаков, согласно которым устанавливается факт отказа. Признаки (критерии) отказов устанавливаются НТД на данный объект. Восстановление - процесс обнаружения и устранения отказа (повреждения) с целью восстановления его работоспособности (исправности). Восстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа подлежит восстановлению в рассматриваемых условиях. Невосстанавливаемый объект - объект, работоспособность которого в случае возникновения отказа не подлежит восстановлению в рассматриваемых условиях. При анализе надежности, особенно при выборе показателей надежности объекта, существенное значение имеет решение, которое должно быть принято в случае отказа объекта. Если в рассматриваемой ситуации восстановление работоспособности данного объекта при его отказе по каким-либо причинам признается нецелесообразным или неосуществимым (например, из-за невозможности прерывания выполняемой функции), то такой объект в данной ситуации является невосстанавливаемым. Таким образом, один и тот же объект в зависимости от особенностей или этапов эксплуатации может считаться восстанавливаемым или невосстанавливаемым. Например, аппаратура метеоспутника на этапе хранения относится к восстанавливаемой, а во время полета в космосе - невосстанавливаемой. Более того, даже один и тот же объект можно отнести к тому или иному типу в зависимости от назначения: ЭВМ, используемая для неоперативных вычислений, является объектом восстанавливаемым, так как в случае отказа любая операция может быть повторена, а та же ЭВМ, управляющая сложным технологическим процессом в химии, является объектом невосстанавливаемым, так как отказ или сбой приводит к непоправимым последствиям. Авария* - событие, заключающееся в переходе объекта с одного уровня работоспособности или относительного уровня функционирования на другой, существенно более низкий, с крупным нарушением режима работы объекта. Авария может привести к частичному или полному разрушению объекта, созданию опасных условий для человека и окружающей среды.

1.3 Временные характеристики пожарной техники

Наработка - продолжительность или объем работы объекта. Объект может работать непрерывно или с перерывами. Во втором случае учитывается суммарная наработка. Наработка может измеряться в единицах времени, циклах, единицах выработки и др. единицах. В процессе эксплуатации различают суточную, месячную наработку, наработку до первого отказа, наработку между отказами, заданную наработку и т.д.

Если объект эксплуатируется в различных режимах нагрузки, то, например, наработка в облегченном режиме может быть выделена и учитываться отдельно от наработки при номинальной нагрузке. Технический ресурс - наработка объекта от начала его эксплуатации до достижения предельного состояния. Обычно указывается, какой именно технический ресурс имеется в виду: до среднего, капитального, от капитального до ближайшего среднего и т.п. Если конкретного указания не содержится, то имеется в виду ресурс от начала эксплуатации до достижения предельного состояния после всех (средних и капитальных) ремонтов, т.е. до списания по техническому состоянию. Срок службы - календарная продолжительность эксплуатации объекта от ее начала или возобновления после капитального или среднего ремонта до наступления предельного состояния.

Под эксплуатацией объекта понимается стадия его существования в распоряжении потребителя при условии применения объекта по назначению, что может чередоваться с хранением, транспортированием, техническим обслуживанием и ремонтом, если это осуществляется потребителем. Срок сохраняемости - календарная продолжительность хранения и (или) транспортирования объекта в заданных условиях, в течение и после которой сохраняются значения установленных показателей (в том числе и показателей надежности) в заданных пределах. Определение надежности Работа любой технической системы может характеризоваться ее эффективностью (рис. 1.1), под которой понимается совокупность свойств, определяющих способность системы выполнять при ее создании определенные задачи.

Рис. 1.1. Основные свойства технических систем

В соответствии с ГОСТ 27.002-89 под надежностью понимают свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортировки.

Таким образом:

1. Надежность - свойство объекта сохранять во времени способность выполнять требуемые функции. Например: для электродвигателя - обеспечивать требуемые момент на валу и скорость; для системы электроснабжения - обеспечивать электроприемники энергией требуемого качества. 2. Выполнение требуемых функций должно происходить при значениях параметров в установленных пределах. Например: для электродвигателя - обеспечивать требуемые момент и скорость при температуре двигателя, не превышающей определенного предела, отсутствии выделения источника взрыва, пожара и т.д. 3. Способность выполнять требуемые функции должна сохраняться в заданных режимах (например, в повторно-кратковременном режиме работы); в заданных условиях (например, в условиях запыленности, вибрации и т.д.). 4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке. Надежность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве очистительной установки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надежности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению. В зависимости от назначения объекта оно может включать в себя в различных сочетаниях безотказность, долговечность, ремонтопригодность, сохраняемость. Например, для невосстанавливаемого объекта, не предназначенного для хранения, надежность определяется его безотказностью при использовании по назначению. Информация о безотказности восстанавливаемого изделия, длительное время находящегося в состоянии хранения и транспортировки, не в полной мере определяет его надежность (при этом необходимо знать и о ремонтопригодности, и сохраняемости). В ряде случаев очень важное значение приобретает свойство изделия сохранять работоспособность до наступления предельного состояния (снятие с эксплуатации, передача в средний или капитальный ремонт), т.е. необходима информация не только о безотказности объекта, но и о его долговечности. Техническая характеристика, количественным образом определяющая одно или несколько свойств, составляющих надежность объекта именуется показатель надежности. Он количественно характеризует, в какой степени данному объекту или данной группе объектов присущи определенные свойства, обусловливающие надежность. Показатель надежности может иметь размерность (например, среднее время восстановления) или не иметь ее (например, вероятность безотказной работы). Надежность в общем случае - комплексное свойство, включающее такие понятия, как безотказность, долговечность, ремонтопригодность, сохраняемость. Для конкретных объектов и условий их эксплуатации эти свойства могут иметь различную относительную значимость. Безотказность - свойство ПТ непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени. Ремонтопригодность - свойство ПТ быть приспособленным к предупреждению и обнаружению отказов и повреждений, к восстановлению работоспособности и исправности в процессе технического обслуживания и ремонта. Долговечность - свойство ПТ сохранять работоспособность до наступления предельного состояния с необходимым прерыванием для технического обслуживания и ремонтов. Сохраняемость - свойство ПТ непрерывно сохранять исправное и работоспособное состояние в течение (и после) хранения и (или) транспортировки. Для показателей надежности используются две формы представления: вероятностная и статистическая. Вероятностная форма обычно бывает удобнее при априорных аналитических расчетах надежности, статистическая - при экспериментальном исследовании надежности технических систем. Кроме того, оказывается, что одни показатели лучше интерпретируются в вероятностных терминах, а другие - в статистических.

1.4 Показатели безотказности и ремонтопригодности ПТ

Наработка до отказа - вероятность того, что в пределах заданной наработки отказ ПТ не возникнет (при условии работоспособности в начальный момент времени). Для режимов хранения и транспортировки может применяться аналогично определяемый термин "вероятность возникновения отказа". Средняя наработка до отказа - математическое ожидание случайной наработки ПТ до первого отказа. Средняя наработка между отказами - математическое ожидание случайной наработки ПТ между отказами. Обычно этот показатель относится к установившемуся процессу эксплуатации. В принципе средняя наработка между отказами объектов, состоящих из стареющих во времени элементов, зависит от номера предыдущего отказа. Однако с ростом номера отказа (т.е. с увеличением длительности эксплуатации) эта величина стремится к некоторой постоянной, или, как говорят, к своему стационарному значению. Средняя наработка на отказ - отношение наработки восстанавливаемого объекта за некоторый период времени к математическому ожиданию числа отказов в течение этой наработки. Этим термином можно назвать кратко среднюю наработку до отказа и среднюю наработку между отказами, когда оба показателя совпадают. Для совпадения последних необходимо, чтобы после каждого отказа объект восстанавливался до первоначального состояния. Заданная наработка - наработка, в течение которой объект должен безотказно работать для выполнения своих функций. Среднее время простоя - математическое ожидание случайного времени вынужденного нерегламентированного пребывания объекта в состоянии неработоспособности. Среднее время восстановления - математическое ожидание случайной продолжительности восстановления работоспособности (собственно ремонта). Вероятность восстановления - вероятность того, что фактическая продолжительность восстановления работоспособности объекта не превысит заданной. Показатель технической эффективности функционирования - мера качества собственно функционирования объекта или целесообразности использования объекта для выполнения заданных функций. Этот показатель определяется количественно как математическое ожидание выходного эффекта объекта, т.е. в зависимости от назначения системы принимает конкретное выражение. Часто показатель эффективности функционирования определяется как полная вероятность выполнения объектом задачи с учетом возможного снижения качества его работы из-за возникновения частичных отказов. Коэффициент сохранения эффективности - показатель, характеризующий влияние степени надежности к максимально возможному значению этого показателя (т.е. соответствующему состоянию полной работоспособности всех элементов объекта). Нестационарный коэффициент готовности - вероятность того, что объект окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного момента времени), для которого известно начальное состояние этого объекта. Средний коэффициент готовности - усредненное на заданном интервале времени значение нестационарного коэффициента готовности. Стационарный коэффициент готовности (коэффициент готовности) - вероятность того, что восстанавливаемый объект окажется работоспособным в произвольно выбранный момент времени в установившемся процессе эксплуатации. (Коэффициент готовности может быть определен и как отношение времени, в течение которого объект находится в работоспособном состоянии, к общей длительности рассматриваемого периода. Предполагается, что рассматривается установившийся процесс эксплуатации, математической моделью которого является стационарный случайный процесс. Коэффициент готовности является предельным значением, к которому стремятся и нестационарный, и средний коэффициенты готовности с ростом рассматриваемого интервала времени. Часто используются показатели, характеризующие простой объект, - так называемые коэффициенты простоя соответствующего типа. Каждому коэффициенту готовности можно поставить в соответствие определенный коэффициент простоя, численно равный дополнению соответствующего коэффициента готовности до единицы. В соответствующих определениях работоспособность следует заменить на неработоспособность. Нестационарный коэффициент оперативной готовности - вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в заданный момент времени, отсчитываемый от начала работы (или от другого строго определенного времени), и, начиная с этого момента времени, будет работать безотказно в течение заданного времени.

Средний коэффициент оперативной готовности - усредненное на заданном интервале значение нестационарного коэффициента оперативной готовности. Стационарный коэффициент оперативной готовности (коэффициент оперативной готовности) - вероятность того, что восстанавливаемый элемент окажется работоспособным в произвольный момент времени, и с этого момента времени будет работать безотказно в течение заданного интервала времени. Предполагается, что рассматривается установившийся процесс эксплуатации, которому соответствуют в качестве математической модели стационарный случайный процесс. Коэффициент технического использования - отношение средней наработки объекта в единицах времени за некоторый период эксплуатации к сумме средних значений наработки, времени простоя, обусловленного техническим обслуживанием, и времени ремонтов за тот же период эксплуатации. Интенсивность отказов - условная плотность вероятности отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник. Параметр потока отказов - плотность вероятности возникновения отказа восстанавливаемого объекта, определяемая для рассматриваемого момента времени. Параметр потока отказа может быть определен как отношение числа отказов объекта за определенный интервал времени к длительности этого интервала при ординарном потоке отказов. Интенсивность восстановления - условная плотность вероятности восстановления работоспособности объекта, определенная для рассматриваемого момента времени, при условии, что до этого момента восстановление не было завершено. Показатели долговечности и сохраняемости. Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью.

Средний ресурс - математическое ожидание ресурса. Назначенный ресурс - суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния. Средний ремонтный ресурс - средний ресурс между смежными капитальными ремонтами объекта. Средний ресурс до списания - средний ресурс объекта от начала эксплуатации до его списания. Средний ресурс до капитального ремонта средний ресурс от начала эксплуатации объекта до его первого капитального ремонта. Гамма-процентный срок службы - срок службы, в течение которого объект не достигает предельного состояния с вероятностью 1- ?. Средний срок службы - математическое ожидание срока службы. Средний межремонтный срок службы - средний срок службы между смежными капитальными ремонтами объекта. Средний срок службы до капитального ремонта - средний срок службы от начала эксплуатации объекта до его первого капитального ремонта. Средний срок службы до списания - средний срок службы от начала эксплуатации объекта до его списания. Гамма-процентный срок сохраняемости - продолжительность хранения, в течение которой у объекта сохраняются установленные показатели с заданной вероятностью 1- ?. Средний срок сохраняемости - математическое ожидание срока сохраняемости. Виды надежности Многоцелевое назначение оборудования и систем приводит к необходимости исследовать те или другие стороны надежности с учетом причин, формирующих надежностные свойства объектов. Это приводит к необходимости подразделения надежности на виды. Различают: - аппаратурную надежность, обусловленную состоянием аппаратов; в свою очередь она может подразделяться на надежность конструктивную, схемную, производственно-технологическую; - функциональную надежность, связанную с выполнением некоторой функции (либо комплекса функций), возлагаемых на объект, систему; - эксплуатационную надежность, обусловленную качеством использования и обслуживания; - программную надежность, обусловленную качеством программного обеспечения (программ, алгоритмов действий, инструкций и т.д.); - надежность системы "человек-машина", зависящую от качества обслуживания объекта человеком-оператором.

2. Характеристики отказов

Одним из основных понятий теории надежности является понятие отказа (ПТ, элемента, системы). Отказ объекта - событие, заключающееся в том, что объект полностью или частично перестает выполнять заданные функции. При полной потере работоспособности возникает полный отказ, при частичной - частичный. Понятия полного и частичного отказов каждый раз должны быть четко сформулированы перед анализом надежности, поскольку от этого зависит количественная оценка надежности. По причинам возникновения отказов в данном месте различают: отказы из-за конструктивных дефектов; отказы из-за технологических дефектов; отказы из-за эксплуатационных дефектов; отказы из-за постепенного старения (износа). Отказы вследствие конструктивных дефектов возникают как следствие несовершенства конструкции из-за "промахов" при конструировании. В этом случае наиболее распространенными являются недоучет "пиковых" нагрузок, применение материалов с низкими потребительскими свойствами, схемные "промахи" и др. Отказы этой группы сказываются на всех экземплярах изделия, объекта, системы. Отказы из-за технологических дефектов возникают как следствие нарушения принятой технологии изготовления изделий (например, выход отдельных характеристик за установленные пределы). Отказы этой группы характерны для отдельных партий изделий, при изготовлении которых наблюдались нарушения технологии изготовления. Отказы из-за эксплуатационных дефектов возникают по причине несоответствия требуемых условий эксплуатации, правил обслуживания действительным.

Отказы этой группы характерны для отдельных экземпляров изделий. Отказы из-за постепенного старения (износа) вследствие накопления необратимых изменений в материалах, приводящих к нарушению прочности (механической, электрической), взаимодействия частей объекта. Отказы по причинным схемам возникновения подразделяются на следующие группы: отказы с мгновенной схемой возникновения; отказы с постепенной схемой возникновения; отказы с релаксационной схемой возникновения; отказы с комбинированными схемами возникновения.

Отказы с мгновенной схемой возникновения характеризуются тем, что время наступления отказа не зависит от времени предшествующей эксплуатации и состояния объекта, момент отказа наступает случайно, внезапно. Примерами реализации такой схемы могут служить отказы изделий под действием пиковых нагрузок в электрической сети, механическое разрушение посторонним внешним воздействием и т.п. Отказы с постепенной схемой возникновения происходят за счет постепенного накопления вследствие физико-химических изменений в материалах повреждений. При этом значения некоторых "решающих" параметров выходят за допустимые границы и объект (система) не способен выполнять заданные функции. Примерами реализации постепенной схемы возникновения могут служить отказы вследствие снижения сопротивления изоляции, электрической эрозии контактов и т.п. Отказы с релаксационной схемой возникновения характеризуются первоначальным постепенным накоплением повреждений, которые создают условия для скачкообразного (резкого) изменения состояния объекта, после которого возникает отказное состояние. Примерами реализации релаксационной схемы возникновения отказов могут служить пробой изоляции кабеля вследствие коррозионного разрушения брони. Отказы с комбинированными схемами возникновения характерны для ситуаций, когда одновременно действуют несколько причинных схем. Примером, реализующим эту схему, может служить отказ двигателя в результате короткого замыкания по причинам снижения сопротивления изоляции обмоток и перегрева. При анализе надежности необходимо выявлять преобладающие причины отказов и лишь затем, если в этом есть необходимость, учитывать влияние остальных причин. По временному аспекту и степени предсказуемости отказы подразделяются на внезапные и постепенные. По характеру устранения с течением времени различают устойчивые (окончательные) и самоустраняющиеся (кратковременные) отказы. Кратковременный отказ называется сбоем. Характерный признак сбоя - то, что восстановление работоспособности после его возникновения не требует ремонта аппаратуры. Примером может служить кратковременно действующая помеха при приеме сигнала, дефекты программы и т.п. Для целей анализа и исследования надежности причинные схемы отказов можно представить в виде статистических моделей, которые вследствие вероятностного возникновения повреждений описываются вероятностными законами.

2.1 Виды отказов и причинные связи

Отказы элементов систем являются основными предметами исследования при анализе причинных связей. Как показано во внутреннем кольце (рис.2.2), расположенном вокруг "отказа элементов", отказы могут возникать в результате: 1) первичных отказов; 2) вторичных отказов; 3) ошибочных команд (инициированные отказы). Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы. Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа. Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы. Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

Рис. 2.2. Характеристики отказов элементов

Примером вторичных отказов служит "срабатывание предохранителя от повышенного электрического тока", "повреждение емкостей для хранения при землетрясении". Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта. Инициированные отказы (ошибочные команды). Люди, например, операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: "напряжение приложено самопроизвольно к обмотке реле", "переключатель случайно не разомкнулся из-за помех", "помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку", "оператор не нажал на аварийную кнопку" (ошибочная команда от аварийной кнопки). Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие: - конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы); - ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.); - воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации); - внешние катастрофические воздействия (естественные внешние явления, такие, как наводнение, землетрясение, пожар, ураган); - общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.); - общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов); - неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла.

Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним. Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия. Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом. Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т.д. Указанные выше свойства технических объектов и промышленная безопасность - взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей по его безопасности. В то же время, перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.

3. Количественные характеристики надежности

3.1 Критерии и количественные характеристики надежности

Критерием надежности называется признак, по которому можно количественно оценить надежность различных устройств. К числу наиболее широко применяемых критериев надежности относятся: - вероятность безотказной работы в течение определенного времени P(t); - средняя наработка до первого отказа Tср; - наработка на отказ tср; - частота отказов f(t) или a(t); - интенсивность отказов l(t); - параметр потока отказов w(t); - функция готовности Kг(t); - коэффициент готовности Kг. Характеристикой надежности следует называть количественное значение критерия надежности конкретного устройства. Выбор количественных характеристик надежности зависит от вида объекта.

3.2 Критерии надежности невосстанавливаемых объектов

Рассмотрим следующую модель работы устройства. Пусть в работе (на испытании) находится N0 элементов и пусть работа считается законченной, если все они отказали. Причем вместо отказавших элементов отремонтированные не ставятся. Тогда критериями надежности данных изделий являются: - вероятность безотказной работы P(t); - частота отказов f(t) или a(t); - интенсивность отказов ?(t); - средняя наработка до первого отказа Tср. Вероятностью безотказной работы называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени или в пределах заданной наработки не произойдет ни одного отказа. Согласно определению

P(t) = P(T>t), (1,1)

где T - время работы элемента от его включения до первого отказа; t - время, в течение которого определяется вероятность безотказной работы. Вероятность безотказной работы по статистическим данным об отказах оценивается выражением

(t) = [N0-n(t)] / N0 , (1.2)

где N0 - число элементов в начале работы (испытаний); n(t) - число отказавших элементов за время t; (t) - статистическая оценка вероятности безотказной работы. При большом числе элементов (изделий) N0 статистическая оценка (t) практически совпадает с вероятностью безотказной работы P(t). На практике иногда более удобной характеристикой является вероятность отказа Q(t).

Вероятностью отказа называется вероятность того, что при определенных условиях эксплуатации в заданном интервале времени возникает хотя бы один отказ. Отказ и безотказная работа являются событиями несовместными и противоположными, поэтому

Q(t)=P(Tt), (t)=n(t)/N0, Q(t)=1-P(t). (1.3)

Частотой отказов по статистическим данным называется отношение числа отказавших элементов в единицу времени к первоначальному числу работающих (испытываемых) при условии, что все вышедшие из строя изделия не восстанавливаются. Согласно определению

(t) = n(?t) / N0?t, (1.4)

где n(?t) - число отказавших элементов в интервале времени от (t_?t)/2 до (t+?t)/2.

Частота отказов есть плотность вероятности (или закон распределения) времени работы изделия до первого отказа. Поэтому

P(t) = 1 - Q(t), P(t) = 1 - . (1.5)

Интенсивностью отказов по статистическим данным называется отношение числа отказавших изделий в единицу времени к среднему числу изделий, исправно работающих в данный отрезок времени.

Согласно определению

(t) = n(?t) / (Nср?t), (1.6)

где Nср = (Ni + Ni+1) / 2 - среднее число исправно работающих элементов в интервале ?t; Ni - число изделий, исправно работающих в начале интервала ?t; Ni+1 - число элементов исправно работающих в конце интервала ?t.

Вероятностная оценка характеристики ?(t) находится из выражения ?(t) = f(t) / P(t). (1.7) Интенсивность отказов и вероятность безотказной работы связаны между собой зависимостью

P(t) = еxp . (1.8)

Средней наработкой до первого отказа называется математическое ожидание времени работы элемента до отказа.

Как математическое ожидание, Tср вычисляется через частоту отказов (плотность распределения времени безотказной работы):

M[t] = Tcр = . (1.9)

Так как t положительно и P(0)=1, а P()=0, то

Tcр = . (1.10)

По статистическим данным об отказах средняя наработка до первого отказа вычисляется по формуле

. (1.11)

где ti - время безотказной работы i-го элемента; N0 - число исследуемых элементов.

Как видно из формулы (1.11), для определения средней наработки до первого отказа необходимо знать моменты выхода из строя всех испытуемых элементов. Поэтому для вычисления средней наработки на отказ пользоваться указанной формулой неудобно. Имея данные о количестве вышедших из строя элементов ni в каждом i-м интервале времени, среднюю наработку до первого отказа лучше определять из уравнения

. (1.12)

В выражении (1.12) tсрi и m находятся по следующим формулам: tсрi = (ti-1 + ti)/2, m = tk / ?t, где ti-1 - время начала i-го интервала; ti - время конца i-го интервала; tk - время, в течение которого вышли из строя все элементы; ?t = ti_1 _ ti - интервал времени. Из выражений для оценки количественных характеристик надежности видно, что все характеристики, кроме средней наработки до первого отказа, являются функциями времени. Конкретные выражения для практической оценки количественных характеристик надежности устройств рассмотрены в разделе "Законы распределения отказов".

Рассмотренные критерии надежности позволяют достаточно полно оценить надежность невосстанавливаемых изделий. Они также позволяют оценить надежность восстанавливаемых изделий до первого отказа. Наличие нескольких критериев вовсе не означает, что всегда нужно оценивать надежность элементов по всем критериям.

Наиболее полно надежность изделий характеризуется частотой отказов f(t) или a(t). Это объясняется тем, что частота отказов является плотностью распределения, а поэтому несет в себе всю информацию о случайном явлении - времени безотказной работы.

Средняя наработка до первого отказа является достаточно наглядной характеристикой надежности. Однако применение этого критерия для оценки надежности сложной системы ограничено в тех случаях, когда:

- время работы системы гораздо меньше среднего времени безотказной работы; - закон распределения времени безотказной работы не однопараметрический и для достаточно полной оценки требуются моменты высших порядков; - система резервированная; - интенсивность отказов не постоянная; - время работы отдельных частей сложной системы разное.

Интенсивность отказов - наиболее удобная характеристика надежности простейших элементов, так как она позволяет более просто вычислять количественные характеристики надежности сложной системы.

Наиболее целесообразным критерием надежности сложной системы является вероятность безотказной работы. Это объясняется следующими особенностями вероятности безотказной работы: - она входит в качестве сомножителя в другие, более общие характеристики системы, например, в эффективность и стоимость; - характеризует изменение надежности во времени; - может быть получена сравнительно просто расчетным путем в процессе проектирования системы и оценена в процессе ее испытания.

3.2 Критерии надежности восстанавливаемых объектов

Рассмотрим следующую модель работы. Пусть в работе находится N элементов и пусть отказавшие элементы немедленно заменяются исправными (новыми или отремонтированными). Если не учитывать времени, потребного на восстановление системы, то количественными характеристиками надежности могут быть параметр потока отказов ?(t) и наработка на отказ tср. Параметром потока отказов называется отношение числа отказавших изделий в единицу времени к числу испытываемых при условии, что все вышедшие из строя изделия заменяются исправными (новыми или отремонтированными). Статистическим определением служит выражение

(t) = n(?t) / N?t, (1.13)

где n(?t) - число отказавших образцов в интервале времени от t_?t/2 до t+?t/2; N - число испытываемых элементов; ?t - интервал времени. Параметр потока отказов и частота отказов для ординарных потоков с ограниченным последействием связаны интегральным уравнением Вольтера второго рода

?(t) = f(t)+ . (1.14)

По известной f(t) можно найти все количественные характеристики надежности невосстанавливаемых изделий. Поэтому (1.14) является основным уравнением, связывающим количественные характеристики надежности невосстанавливаемых и восстанавливаемых элементов при мгновенном восстановлении. Уравнение (4.2.14) можно записать в операторной форме:

, . (1.15)

Соотношения (1.15) позволяют найти одну характеристику через другую, если существуют преобразования Лапласа функций f(s) и ?(s) и обратные преобразования выражений (1.15).

Параметр потока отказов обладает следующими важными свойствами: 1) для любого момента времени независимо от закона распределения времени безотказной работы параметр потока отказов больше, чем частота отказов, т.е. ?(t)>f(t); 2) независимо от вида функций f(t) параметр потока отказов ?(t) при t стремится к 1/Tср. Это важное свойство параметра потока отказов означает, что при длительной эксплуатации ремонтируемого изделия поток его отказов независимо от закона распределения времени безотказной работы становится стационарным. Однако это вовсе не означает, что интенсивность отказов есть величина постоянная; 3) если ?(t) - возрастающая функция времени, то ?(t)>?(t)>f(t), если ?(t) - убывающая функция, то ?(t)>?(t)>f(t); 4) при ?(t)const параметр потока отказов системы не равен сумме параметров потока отказов элементов, т.е.

?с(t) . (1.16)

Это свойство параметра потока отказов позволяет утверждать, что при вычислении количественных характеристик надежности сложной системы нельзя суммировать имеющиеся в настоящее время значения интенсивности отказов элементов, полученных по статистическим данным об отказах изделий в условиях эксплуатации, так как указанные величины являются фактически параметрами потока отказов;

5) при ?(t)=?=const параметр потока отказов равен интенсивности отказов ?(t)=?(t)=?.

Из рассмотрения свойств интенсивности и параметра потока отказов видно, что эти характеристики различны.

В настоящее время широко используются статистические данные об отказах, полученные в условиях эксплуатации оборудования. При этом они часто обрабатываются таким образом, что приводимые характеристики надежности являются не интенсивностью отказов, а параметром потока отказов ?(t). Это вносит ошибки при расчетах надежности. В ряде случаев они могут быть значительными.

Для получения интенсивности отказов элементов из статистических данных об отказах ремонтируемых систем необходимо воспользоваться формулой (1.6), для чего необходимо знать предысторию каждого элемента технологической схемы. Это может существенно усложнить методику сбора статистических данных об отказах. Поэтому целесообразно определять ?(t) по параметру потока отказов ?(t). Методика расчета сводится к следующим вычислительным операциям: - по статистическим данным об отказах элементов ремонтируемых изделий и по формуле (1.13) вычисляется параметр потока отказов и строится гистограмма ?i(t); - гистограмма заменяется кривой, которая аппроксимируется уравнением; - находится преобразование Лапласа ?i(s) функции ?i(t); - по известной ?i(s) на основании (1.15) записывается преобразование Лапласа fi(s) частоты отказов; - по известной fi(s) находится обратное преобразование частоты отказов fi(t); - находится аналитическое выражение для интенсивности отказов по формуле

; (1.17)

- строится график ?i(t). Если имеется участок, где ?i(t)=?i=const, то постоянное значение интенсивности отказов принимается для оценки вероятности безотказной работы. При этом считается справедливым экспоненциальный закон надежности. Приведенная методика не может быть применена, если не удается найти по f(s) обратное преобразование частоты отказов f(t). В этом случае приходится применять приближенные методы решения интегрального уравнения (1.14). Наработкой на отказ называется среднее значение времени между соседними отказами. Эта характеристика определяется по статистическим данным об отказах по формуле


Подобные документы

  • Анализ сроков службы пожарной аварийно-спасательной техники (ПАСА). Показатели в профилактике и борьбе с пожарами на территории Республики Беларусь. Среднее время выезда и прибытия ПАСА к месту вызова. Обоснование модернизации пожарной надстройки.

    дипломная работа [959,0 K], добавлен 15.11.2012

  • Анализ техники в подразделениях противопожарной службы во Владимирской области. Анализ работоспособности рукавной линии. Разработка концепции развития пожарной техники. Разработка пожарной автоцистерны для нужд МЧС России во Владимирской области.

    реферат [144,0 K], добавлен 13.06.2014

  • История становления и развития пожарного образования в России. История пожарной техники. Использование автоматических устройств противопожарной защиты. Эффективные методы борьбы с огнем. Изучение свойств и специфических особенностей огнетушащих веществ.

    курсовая работа [27,3 K], добавлен 10.02.2014

  • История становления и развития пожарного дела в России и за рубежом. Создание пожарной техники - паровых и центробежных насосов, автомобилей, пожарных лестниц, устройств подачи воды на высоту. Использование автоматических устройств противопожарной защиты.

    презентация [2,1 M], добавлен 01.06.2014

  • Меры по повышению эффективности пожарной безопасности. Описание современных средств и технологий по пожарной безопасности. Регламентирующая документация в области пожарной безопасности. Организация работы ведомственной пожарной охраны в аэропорту.

    дипломная работа [1,2 M], добавлен 26.06.2013

  • Обобщение некоторых законов и документов, касающихся пожарной безопасности. Характеристика основных правил пожарной безопасности. Основы теории горения. Классификация веществ и материалов по горючести, помещений и зданий по степени взрывопожароопасности.

    реферат [52,3 K], добавлен 14.11.2010

  • Организация советской пожарной охраны в годы Великой Отечественной войны. Федеральный закон от 22 июля 2008 г. №123-ФЗ "Технический регламент о требованиях пожарной безопасности". Общие принципы обеспечения пожарной безопасности и требования к ней.

    контрольная работа [4,6 M], добавлен 16.01.2014

  • Основные причины возникновения пожаров. Основы обеспечения и правила противопожарного режима в Российской Федерации. Понятие и задачи пожарной охраны. Основные элементы системы обеспечения пожарной безопасности. Виды систем оповещения. План эвакуации.

    презентация [661,1 K], добавлен 09.12.2015

  • Правила пожарной безопасности, действующие на территории Российской Федерации. Содержание первичного, повторного и внепланового инструктажа по пожарной безопасности. Ответственность должностных лиц и рабочих за нарушение правил пожарной безопасности.

    лекция [34,4 K], добавлен 09.08.2015

  • Проведение литературно-патентных исследований, исследование систем: пожарной и охранно-пожарной сигнализации, интегрированных систем пожарной безопасности. Анализ руководящих документов и другой нормативной базы по проектированию систем безопасности.

    отчет по практике [1,6 M], добавлен 12.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.