Техника безопасности при работе с ЭВМ

Анализ опасных и вредных факторов при эксплуатации вычислительной сети. Характеристика электробезопасности, психофизиологических и эргономических факторов. Расчет вентиляции. Загрязнение окружающей среды при производстве ЭВМ и периферийных устройств.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид реферат
Язык русский
Дата добавления 28.01.2009
Размер файла 30,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

98

Техника безопасности при работе с ЭВМ

Введение

Охрана труда - система сохранения жизни и здоровья работников в процессе трудовой деятельности, включающая в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия.

При проектировании любого объекта и разработке любого технического процесса необходимо проводить анализ их производственной и экологической безопасности, чтобы обеспечить безопасные и здоровые условия труда. На основе проведенного анализа вырабатываются требования безопасности, выполнение которых сводит к минимуму вероятность травмы или заболевания работающих с одновременным обеспечением комфорта при максимальной производительности труда, выбираются и рассчитываются средства защиты работающих и окружающей среды от опасных и вредных факторов, действующих в производственной среде.

Выполнение правил и норм по технике безопасности и производственной санитарии являются юридически обязательным для всех рабочих, служащих и администрации предприятия.

1. Анализ опасных и вредных факторов при эксплуатации вычислительной сети

Работы, производящиеся при мониторинге локально-вычислительной сети, а также при последующей ее эксплуатации и обслуживании, можно квалифицировать как творческую работу с персональными электронными вычислительными машинами (ПЭВМ) и периферийными устройствами.

Работа сотрудников, непосредственно связанных с компьютером, а соответственно с дополнительным вредным воздействием целой группы факторов, существенно снижает производительность их труда. К таким факторам необходимо отнести:

повышенный уровень шума при работе ПЭВМ и периферийных устройств;

электромагнитное излучение;

ионизирующее излучение от экрана дисплея ПЭВМ;

возможность повышенной запыленности рабочей зоны;

изменение микроклимата и тепловыделение;

наличие опасного значения напряжения в электрической цепи, из-за контакта с которой может произойти поражение человека;

перенапряжение зрительных анализаторов.

1.1 Характеристика электробезопасности

При эксплуатации ЭВМ возникает следующий опасный фактор: опасный уровень напряжения в электрической цепи, замыкание которой может произойти через человека. Поражение электрическим током может возникнуть в результате прикосновения к оголенным проводам, находящимся под напряжением или к корпусам приборов, на которых вследствие пробоя возникло напряжение.

Электропитание ЭВМ осуществляется от сети переменного тока напряжением 220 В и частотой 50 Гц.

Перед подключением ЭВМ к сети обеспечивается либо наличие провода защитного заземления в розетке подключения ЭВМ, либо наличие заземляющего контура для внешнего заземления ЭВМ через заземляющий болт на задней крышке кожуха. Максимальное сопротивление цепи заземления 4 Ом.

Кроме того, токопроводящие части (провода, кабели) изолируются, приборы заземляются.

Обслуживающий персонал должен быть технически грамотен, а правила техники безопасности эксплуатации электроустановок должны соблюдаться неукоснительно.

При работе аппаратуры запрещается:

проверять на ощупь наличие напряжения токоведущих частей аппаратуры;

применять для соединения блоков и приборов провода с поврежденной изоляцией;

производить работу и монтаж в аппаратуре, находящейся под напряжением;

подключать блоки и приборы к работающей аппаратуре.

Согласно классификации правил эксплуатации электроустановок, помещение должно соответствовать первому классу: сухое, беспыльное помещение с нормальной температурой воздуха и изолированными полами.

Безопасность при работе с электроустановками регламентирует ГОСТ 12.1.038-82.

1.2 Пожарная опасность

Анализируемое оборудование может стать источником пожара при неисправностях токоведущих частей.

Наиболее частые причины пожаров:

перегрев проводов;

короткое замыкание;

большие переходные сопротивления в электрических сетях;

электрическая дуга или искрение.

Для обеспечения современных мер по обнаружению и локализации пожара, эвакуации рабочего персонала, а также для уменьшения материальных потерь необходимо выполнять следующие условия:

наличие системы автоматической пожарной сигнализации;

наличие эвакуационных путей и выходов;

наличие первичных средств тушения пожаров: пожарные стволы, внутренние пожарные водопроводы, сухой песок, огнетушители.

1.3 Характеристика психофизиологических и эргономических факторов при работе на ПЭВМ

Особенности характера и условий труда работников, работающих с видеотерминалом и клавиатурой - значительное умственное напряжение, постоянная статическая нагрузка, обусловленная относительно неподвижной рабочей позой и другие физические и нервно - психические нагрузки - приводят к изменению у работников функционального состояния центральной нервной системы, нервно-мышечного аппарата рук, шеи, плеч, спины, напряжению зрительного аппарата. У работников появляются боли, зрительная усталость, раздражительность, общее утомление.

Снижения влияния этих факторов и сохранения высокой работоспособности можно достичь рациональной организацией режима труда и отдыха, который предусматривает периодические перерывы и производственную гимнастику. Гимнастика должна включать специальные упражнения для глаз и для снятия утомления от статического напряжения.

Регламентированные перерывы с интервалом 5-10 минут используются на пассивный отдых и для проведения специальной гимнастики работниками индивидуально, в зависимости от усталости глаз.

В регламентированные перерывы с интервалом 15 минут необходимо проводить комплекс физических упражнений для снятия общего утомления. Гимнастику можно выполнять сидя на рабочем месте.

Большое значение при работе имеет правильная планировка рабочего места.

Предпочтительнее сидение, имеющее выемку, соответствующую форме бедер, и наклон назад. Спинка стула должна быть изогнутой формы, обнимающей поясницу.

Все необходимое для работы должно быть легко доступным. Уровень глаз при вертикально расположенном экране должен приходится на цент или 2/3 высоты экрана. Расстояние между монитором и лицом оператора должно быть не менее, чем 40 см. клавиатура располагается в 10 см от края стола, что позволяет запястьям рук опираться на стол.

Требования по психофизическим и эргономическим параметрам регламентируются ГОСТ 12.2.032-88.

При конструировании рабочих мест учитываются следующие общие эргономические требования:

достаточное рабочее пространство, позволяющее работающему человеку осуществлять необходимые движения и перемещения при эксплуатации и техническом обслуживания оборудования;

достаточные физические, зрительные и слуховые связи между работающим человеком и оборудованием, а также между людьми в процессе выполнения общей трудовой задачи;

оптимальное размещение рабочих мест в производственных помещениях, а также безопасные и достаточные проходы для людей;

необходимое и естественное и искусственное освещение;

допустимый уровень шума и вибрации, создаваемых оборудованием рабочего места или другими источниками;

наличие необходимых средств защиты работающих от действия опасных и вредных производственных факторов (физических, химических, биологических, психофизических).

Конструкция рабочего места должна обеспечивать быстроту, безопасность, простоту и экономичность технического обслуживания в нормальных и аварийных условиях, полностью отвечать функциональным требованиям и предполагаемым условиям эксплуатации.

1.4 Характеристика запыленности

Анализируемое оборудование не является источником пыли и газов.

Но при работе на анализируемом оборудовании пыль, постоянно находящаяся в воздухе, оседает на мониторе, системном блоке из - за электростатического поля компьютера. В помещении, где предусматривается эксплуатация комплекса программных средств, находится бытовая пыль. Электризованная пыль вызывает раздражение кожи и слизистой оболочки глаз и носа. При длительной работе в обстановке повышенной запыленности повышается опасность возникновения воспалительных процессов у человека. Требуемое состояние рабочей зоны достигается выполнением следующих мероприятий:

применение вентиляции;

кондиционирование воздуха;

проведение влажной уборки во всех помещениях, и особенно в тех, где эксплуатируется вычислительная техника.

Для защиты воздуха рабочей зоны и атмосферы от повышенной запыленности применяется система вентиляции. В данном случае необходимо использовать приточную вентиляцию.

Воздух рабочей зоны должен соответствовать требованиям ГОСТ 12.1.005-88.

1.5 Характеристика шума

Повышенный уровень шума, возникающий при работе ПЭВМ и периферийных устройств, вредно воздействует на нервную систему человека, снижая производительность труда, способствуя возникновению травм.

При длительном воздействии шума на организм человека происходят нежелательные явления: снижается острота слуха, повышается кровяное давление. Кроме того, шум влияет на общее состояние человека - возникает чувство неуверенности, стесненности, плохого самочувствия.

Для снижения уровня шума в помещении, где эксплуатируется вычислительная техника, проводят:

Акустическая обработку помещения (звукоизоляция стен, окон, дверей, потолка, установка штучных звукопоглощателей);

Ослаблении шума самих источников, полностью выполнив требования по звукоизоляции оборудования, изложенные в технической документации на данное оборудование;

Размещение более тихих помещений вдали от шумных;

Мероприятия по борьбе с шумом на пути его распространения (звукоизолирующие ограждения, кожухи, экраны).

Уровень шума на рабочем месте должен соответствовать требованиям ГОСТ 12.1.003-83 и составлять:

для помещений, где работают программисты и операторы видеотерминалов - не более 50 дБ;

где работают инженерно-технические работники, осуществляющие лабораторный, аналитический и измерительный контроль - не более 60 дБ;

для помещений, где размещаются шумные агрегаты вычислительных машин -75 дБ.

1.6 Характеристика микроклимата

Микроклимат в рабочей зоне определяется сочетанием температуры, влажности, скорости движения воздуха и температурой окружающих поверхностей.

Неблагоприятные микроклиматические условия (повышенная или пониженная температура воздуха, повышенная влажность воздуха, повышенная подвижность воздуха) на рабочем месте приводит к снижению работоспособности, быстрой утомляемости, что может стать причиной получения производственных травм.

Для обеспечения благоприятных микроклиматических условий используются отопительные установки (в зимнее время) и системы кондиционирования (в летнее).

Работа оператора относится к категории Ia (легкие физические работы).

Оптимальные и допустимые нормы температуры, влажности и скорости движения воздуха для рабочей зоны помещения категории работ I отражены в таблицах 1 и 2 соответственно.

Параметры микроклимата в рабочей зоне регламентирует ГОСТ 12.1.005 - 88.

Таблица 1.

Оптимальные нормы параметров воздушной среды.

Температура наружного воздуха, 0С

Оптимальные параметры воздушной среды на постоянных рабочих местах

Температура, 0С

Относительная влажность, %

Скорость движения воздуха, м/с

Ниже +10

21 - 25

не более 75

не более 0,1

Выше +10

22 - 28

75 при 24 0С

не более 0,1 - 0,2

Таблица 2.

Допустимые нормы параметров воздушной среды.

Температура наружного воздуха, 0С

Допустимые параметры воздушной среды на постоянных рабочих местах

Температура, 0С

Относительная влажность, %

Скорость движения воздуха, м/с

Ниже +10

21 - 25

не более 75

не более 0,1

Выше +10

22 - 28

75 при 24 0С

70 при 25 0С

65 при 26 0С

60 при 27 0С

55 при 28 0С

не более 0,1 - 0,2

1.7 Требования к освещению помещений и рабочих мест ПЭВМ

1. Естественное освещение должно осуществляться через светопроёмы, ориентированные преимущественно на север и северо-восток и обеспечивать коэффициент естественной освещенности (КЕО) от 1,2% до 1,5%. Рабочие места должны быть расположены так, чтобы естественный свет падал сбоку, преимущественно слева.

2. Искусственное освещение в помещениях эксплуатации ПЭВМ должно осуществляться системой общего равномерного освещения. В производственных и административно-общественных помещениях, в случае преимущественной работы с документами, допускается применение системы комбинированного освещения (к общему освещению дополнительно устанавливаются светильники местного освещения, предназначенные для освещения зоны расположения документов).

3. Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300 - 500 лк. Допускается установка светильников местного освещения для подсветки документов. Местное освещение не должно создавать бликов на поверхности экрана и увеличивать освещенность экрана более 300 лк.

4. Следует ограничивать прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, должна быть не более 200 кд/кв.м.

5. Следует ограничивать отраженную блесткость на рабочих поверхностях (экран, стол, клавиатура и др.) за счет правильного выбора типов светильников и расположения рабочих мест по отношению к источникам естественного и искусственного освещения, при этом яркость бликов на экране ВДТ и ПЭВМ не должна превышать 40 кд/кв.м и яркость потолка, при применении системы отраженного освещения, не должна превышать 200 кд/кв.м.

6. Показатель ослепленности для источников общего искусственного освещения в производственных помещениях должен быть не более 20, показатель дискомфорта в административно-общественных помещениях - не более 40, в дошкольных и учебных помещениях - не более 25.

7. Следует ограничивать неравномерность распределения яркости в поле зрения пользователя ВДТ и ПЭВМ, при этом соотношение яркости между рабочими поверхностями не должно превышать 3:2 - 5:1, а между рабочими поверхностями и поверхностями стен и оборудования 10:1.

8. В качестве источников света при искусственном освещении должны применяться преимущественно люминесцентные лампы типа ЛБ. При устройстве отраженного освещения в производственных и административно-общественных помещениях допускается применение металлогалогенных ламп мощностью до 250 Вт. Допускается применение ламп накаливания в светильниках местного освещения.

9. Общее освещение следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении ПЭВМ. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращенному к оператору.

2 Расчет опасных и вредных факторов, возникающих при эксплуатации вычислительной сети

2.1 Расчет вентиляции

Системы отопления и системы кондиционирования следует устанавливать так, чтобы ни теплый, ни холодный воздух не направлялся на людей. На производстве рекомендуется создавать динамический климат с определенными перепадами показателей. Температура воздуха у поверхности пола и на уровне головы не должна отличаться более, чем на 5 градусов. В производственных помещениях помимо естественной вентиляции предусматривают приточно-вытяжную вентиляцию. Основным параметром, определяющим характеристики вентиляционной системы, является кратность обмена, т.е. сколько раз в час сменится воздух в помещении.

Vвент - объем воздуха, необходимый для обмена;

Vпом - объем рабочего помещения.

Для расчета примем следующие размеры :

Рабочего помещения:

Окна:

длина В = 7,35 м;

ширина А = 2,3 м;

ширина А = 4,9 м;

высота Н = 2 м.

высота Н = 4,2 м.

Соответственно объем помещения равен:

V помещения = А В H =151,263 м3

Необходимый для обмена объем воздуха Vвент определим исходя из уравнения теплового баланса:

Vвент С( tуход - tприход ) Y = 3600 ? Qизбыт

Qизбыт - избыточная теплота (Вт);

С = 1000 - удельная теплопроводность воздуха (Дж/кг? К);

Y = 1,2 - плотность воздуха (мг/см).

Температура уходящего воздуха определяется по формуле:

tуход = tр.м. + ( Н - 2 )? t , где

t = 2 0С - превышение t на 1м высоты помещения (выбирается в пределах от 1 до 5 0С);

tр.м. = 25 0С - температура на рабочем месте;

Н = 4,2 м - высота помещения;

tприход = 18 0С.

tуход = 25 + ( 4.2 - 2 )? 2 = 29,4

Qизбыт = Qизб.1 + Qизб.2 + Qизб.3 , где

Qизб. - избыток тепла от электрооборудования и освещения.

Qизб.1 = Е р , где

Е - коэффициент потерь электроэнергии на топлоотвод ( Е=0,55 для освещения);

р - мощность, р = 40 Вт 15 = 600 Вт.

Qизб.1 = 0,55 600=330 Вт

Qизб.2 - теплопоступление от солнечной радиации,

Qизб.2 =m S k Qc , где

m - число окон, примем m = 4;

S - площадь окна, S = 2,3 2 = 4,6 м2;

k - коэффициент, учитывающий остекление. Для двойного остекления

k = 0,6;

Qc = 127 Вт/м - теплопоступление от окон.

Qизб.2 = 4,6 4 0,6 ??127 = 1402 Вт

Qизб.3 - тепловыделения людей

Qизб.3 = n q , где

q = 80 Вт/чел. , n - число людей, например, n = 15

Qизб.3 = 15 80 = 1200 Вт

Qизбыт = 330 +1402 + 1200 = 2932 Вт

Из уравнения теплового баланса следует:

Vвент м3

Оптимальным вариантом является кондиционирование воздуха, т.е. автоматическое поддержание его состояния в помещении в соответствии с определенными требованиями (заданная температура, влажность, подвижность воздуха) независимо от изменения состояния наружного воздуха и условий в самом помещении.

2.1.1 Выбор вентилятора

Вентиляционная система состоит из следующих элементов:

1. Приточной камеры, в состав которой входят вентилятор с электродвигателем, калорифер для подогрева воздуха в холодное время года и жалюзная решетка для регулирования объема поступающего воздуха;

2. Круглого стального воздуховода длиной 1,5 м;

3. Воздухораспределителя для подачи воздуха в помещение.

Потери давления в вентиляционной системе определяются по формуле:

,

где Н - потери давления, Па;

R - удельные потери давления на трение в воздуховоде, Па/м;

l - длина воздуховода, м;

V - скорость воздуха, ( V = 3 м/с );

? - плотность воздуха, (? = 1,2 кг/м ).

Необходимый диаметр воздуховода для данной вентиляционной системы:

м

Принимаем в качестве диаметра ближайшую большую стандартную величину - 0,45 м, при которой удельные потери давления на трение в воздуховоде R=0,24 Па/м.

Местные потери возникают в железной решетке (=1,2), воздухораспределителе (=1,4) и калорифере (=2,2). Отсюда, суммарный коэффициент местных потерь в системе:

= 1,2 +1,4 + 2,2 = 4,8

Тогда

Па

С учетом 10 %-го запаса:

Н = 110% 26,28 = 28,01 Па

Vвент = 110% 1442 = 1586,2 м/ч

По каталогу [9] выбираем вентилятор осевой серии МЦ4: расход воздуха - 1600, давление - 40 Па, КПД - 65% , скорость вращения - 960 об/мин, диаметр колеса - 400 мм, мощность электродвигателя - 0,032 кВт.

2.2 Расчет мощности дозы рентгеновского излучения на поверхности стекла монитора

В соответствии со спектральной характеристикой синего цвета электролюминафора, на его рентгеновскую часть приходится примерно 2,09?10-7 Вт мощности прожектора синего цвета кинескопа. С помощью этих данных можно определить мощность дозы. По закону поглощения рентгеновского излучения:

Dвнеш=Dвнутр?exp(-??),

где: Dвнеш - мощность дозы излучения на поверхности стекла кинескопа;

Dвнутр - мощность дозы при толщине слоя защиты ?=0;

? - толщина слоя защиты (стекло);

? - линейный коэффициент ослабления, равный 8,61.

Линейный коэффициент ослабления взят для алюминия, т.к. в периодической системе элементы Al и Si находятся рядом, и электронные оболочки атомов этих элементов практически одинаковы. Значит, рентгеновские лучи, взаимодействуя с электронными оболочками атомов этих элементов, имеют примерно равную вероятность рассеяния.

?стекла=8,61 см-1

Dвнутр=2,09?10-7 Вт/м

?=1,2 см

exp(-??)= exp(-8,61?1,2)=2,33

Следовательно, мощность рентгеновского излучения при толщине стекла 1,2 см ослабляется в 2,33 раз. Тогда:

Dвнеш=2,09?10-7 Вт/м?2,33=4,88?10-7 Вт/м

1P=8,8?10-3 Вт/м

Dвнеш=51,36 мкР/ч

Таким образом, мощность дозы рентгеновского излучения на поверхности стекла кинескопа составляет 51,36 мкР/ч, что отвечает требованиям ГОСТ 27.954-88.

3. Загрязнение окружающей среды при производстве ЭВМ и периферийных устройств

Очевидно, что при эксплуатации системы допечатной обработки на ПЭВМ не возникает сколько-нибудь заметного воздействия на окружающую среду. Действие опасных и вредных факторов, описанных выше, ограничивается пределами помещений, в которых установлена вычислительная техника.

Однако производство вычислительной техники является достаточно "грязным" с экологической точки зрения. Загрязнению подвергается как атмосфера (при производстве паяльных работ), так и водные бассейны, в которые сбрасываются сточные воды, использованные в ходе технологического процесса изготовления печатных плат.

3.1 Загрязнение сточных вод в процессе производства компьютерной техники

Для промывки печатных плат и других промышленных целей широко используется вода. После применения в ней присутствуют различные химические примеси (гидроокись меди, соединения цинка, никеля, хрома, хлорид железа и др.), масла, пыль, прочие отходы техпроцесса.

Существует большое количество способов очистки сточных вод и различные виды их классификации.

Очистка сточных вод от твердых частиц осуществляется методами процеживания, отстаивания, отделения твердых частиц в поле действия центробежных сил и фильтрования.

Очистка сточных вод от маслопродуктов осуществляется отстаиванием, обработкой в гидроциклонах, флотацией и фильтрованием.

Очистка сточных вод от примесей производится экстракцией, нейтрализацией, ионным обменом, озонированием и т.д.

Нейтрализация сточных вод предназначена для выделения из сточных вод кислот, щелочей, а также солей металлов на основе указанных кислот и щелочей.

Нейтрализацию осуществляют:

- смешением кислых и щелочных производственных сточных вод;

- добавлением щелочных (кислых) реагентов в кислые (щелочные) сточные воды.

Для нейтрализации серной кислоты и ионов железа в сточных водах, загрязняемых при производстве ЭВМ, применяется товарная известь.

3.2 Загрязнение воздушной среды в процессе производства компьютерной техники

Операции травлении металла и нанесения гальванических покрытий, пайки сопровождаются выделением большого количества токсичных и раздражающих веществ (аммиак и его соли, формальдегид, ацетон, фтористый водород, азотная и соляная кислоты, натр едкий, свинец и его соли, окись цинка и др), которые через вытяжную вентиляцию попадают в атмосферу. Поэтому необходима очистка выбросов воздуха, чтобы концентрация вредных примесей в воздушной среде не превышала допустимых санитарных норм. Для снижения концентрации этих веществ в воздухе широко используются различные типы пылеуловителей, фильтры, туманоуловители.

В технологическом процессе изготовления комплектующих компьютерной техники большой вклад в загрязнение окружающей среды вносят выбросы от сжигания топлива в топках. Топливо при сгорании образует поток теплого воздуха, который уносит с собой углекислый газ, азот и т.п., а также твердые частицы.

3.3 Расчет загрязнений выбросами углекислого газа

Рассчитаем загрязнения выбросами углекислого газа. В качестве начальных условий выберем следующие:

Расход топлива В=50 т/год;

В качестве топлива выберем уголь Б2Р, добываемый в Щекинской шахте объединения Тулуголь. Для этого угля низшая теплота сгорания натурального топлива равна Q=10,38 мДж/кг,

Выберем топку с цепной решеткой, для которой потери вследствие химической неполноты сгорания топлива составляют а3 = 0.5%, а потери давления вследствие механической неполноты сгорания топлива - а4 = 10%.

Годовая величина выброса в атмосферу составит:

Рассчитаем максимальное значение приземной концентрации. Для этого потребуется информация о трубе, климате и рельефе местности.

Пусть труба будет иметь диаметр D=30 см и высоту Н=10 м. Toгда расход ГВС составит:

Здесь, Wo=1 м/с - средняя технологическая скорость выхода ГВС.

Условия выхода газовоздушной смеси:

Здесь T = 50 С - среднегодовая разность температур ГВС и окружающего воздуха.

Наиболее неблагоприятная скорость ветра:

Максимальное значение приземной концентрации:

Здесь, А=140 - коэффициент, зависящий от температурной стратификации атмосферы; F=1 - скорость оседания вредных веществ в атмосфере; =1 - влияние рельефа местности.

Предельно допустимая концентрация для углекислого газа составляет 5 мг/м3, что намного больше полученного значения 1,525 мг/м3.

3.4 Характеристика твердых и жидких промышленных отходов

При производстве вычислительной техники образуются твердые отходы производства, такие как обрезки и стружка металлов и пластмасс, твердые смолы (текстолит и стеклотекстолит), производственный мусор, тара и упаковка, которые загрязняют окружающую среду.

Для поддержания чистоты окружающей среды необходимо применять переработку и утилизацию отходов производства, и как можно шире применять безотходные технологии.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.