Группы полевых шпатов и хлоритов

Обзор процессов образования и изменения минералов. Закономерности их совместного нахождения в природе. Методы синтеза и практического использования. Химический состав, физические свойства, генезис и экономическое значение группы полевых шпатов и хлоритов.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 28.10.2016
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Группа полевых шпатов. Химический состав, физические свойства, генезис и экономическое значение

2. Группа хлоритов

Список использованной литературы

Введение

МИНЕРАЛОГИЯ (от минерал и греч. льгпт - логос, слово, учение / англ. Mineralogy; нем. Mineralogie; фр. Minйralogie; ит. Mineralogнe) - наука о минералах. Изучает состав, свойства, морфологию, особенности структуры, процессы образования и изменения минералов, закономерности их совместного нахождения в природе, а также условия и методы искусственного получения (синтеза) и практического использования. Главные задачи: разработка научной классификации минералов, выявление связей между вариациями их состава, строения, свойств и условиями образования и нахождения в природе; создание научных основ для поисков и оценки месторождений минерального сырья, совершенствования технологии его переработки, вовлечения новых видов минерального сырья в промышленное использование; разработка методов искусственного выращивания и облагораживания кристаллов ценных минералов. В данном реферате рассмотрены такие вопросы минералогии, как группа полевых шпатов, их химический состав и физические свойства, а также группа хлоритов и их особенности.

1. Группа полевых шпатов. Химический состав, физические свойства, генезис и экономическое значение

Полевые шпаты из всех силикатов являются наиболее распространенными в земной коре, составляя в ней в общем около 50% по весу. Название происходит от шведских слов feldt, или fдlt - поле и spar, или spat - шпат (шведские крестьяне часто находили на своих полях куски шпата). Примерно 60% их заключено в изверженных горных породах; около 30% приходится на долю метаморфических горных пород, преимущественно кристаллических сланцев; остальные 10-11% падают главным образом на песчаники и конгломераты, в которых полевые шпаты встречаются в виде окатанных зерен или входят в состав галек.

По своему химическому составу полевые шпаты представляют алюмосиликаты Na, К и Са-Na[AlSi3O8], K[AlSi3O8], Ca[Al2Si2O8], изредка Ва-Ba[Al2Si2O8]. Иногда в ничтожных количествах присутствуют Li, Rb, Cs в виде изоморфной примеси к щелочам и Sr, заменяющий Са. Другой характернейшей особенностью минералов этой группы является их способность образовывать изоморфные, главным образом бинарные ряды. Таковы, например, ряды: Na[AlSi3O8]-Ca[Al2Si2O8], Na[AlSi3O8]-K[AlSi3O8] и K[AlSi3O8]-Ba[Al2Si2O8]. Для первых двух пар наглядное представление о степени распространенности и совершенства явлений изоморфизма дает диаграмма составов полевых шпатов (рис. 1).

При высоких температурах существуют непрерывные ряды твердых растворов. Среди плагиоклазов различают (в скобках указано содержание CaAl2Si2O8 в мол.%): альбит (0-10), олигоклаз (10-30), андезин (30-50), лабрадор (50-70), битовнит (70-90) и анортит (90-100). Среди щелочных ПШ выделяют (в скобках указано содержание NaAlSi3O8 в мол.%): санидин (0-63), ортоклаз (O), микроклин (О), представляющие собой полиморфные модификации KAlSi3O8, и анортоклаз (63-90).

Рис. 1. Диаграмма колебаний химического состава полевых шпатов

минерал полевой шпат хлорит

Основа кристаллической структуры ПШ-трехмерный каркас, построенный из тетраэдров SiO4 и AlO4, связанных между собой вершинами. Тетраэдры в каркасе сочленяются таким образом, что образуют четырехчленные кольца, которые в свою очередь объединяются в коленчато-зигзагообразные цепочки, вытянутые параллельно кристаллографической оси. Между соседними цепочками имеются крупные полости, в которых располагаются катион-щелочных или щелочноземельных металлов. координированные в зависимости от их размера с девятью (в случае К) или шестью-семью (Na, Ca) ионами кислорода. Симметрия структуры с катионами Na+ и Ca2+ триклинная. Калиевые полевые шпаты могут быть как триклинными (микроклин), так и моноклинными (санидин, ортоклаз). В зависимости от расположения атомов Al и Si по возможным тетраэдрическим позициям КПШ бывают упорядоченными (определенные позиции заняты только атомами Al, разупорядоченными (атомы Al и Si распределены статистически) и с промежуточной степенью упорядоченности. Разупорядоченные ПШ, как правило, высокотемпературные, упорядоченные - низкотемпературные. Температура плавления чистого KAlSi3O8 при атмосферном давлении 11500C. Чистые альбит NaAlSi3O8 и анортит CaAl2Si3O8 при давлении 105 Па плавятся при 1118 и 15500C соответственно. В присутствии H2O при повышении давления температура плавления ПШ понижается, и при 5-108 Па альбит, например, плавится при 7500C, анортит - при 12250C. Кристаллизующийся плагиоклаз всегда содержит больше ионов Ca2+, чем жидкость, с которой он находится в равновесии.

Соответственно особенностям химического состава полевые шпаты разбиваются на следующие три подгруппы:

· а) Подгруппа натриево-кальциевых полевых шпатов, называемых плагиоклазами, представляющих непрерывный изоморфныи ряд Na[AlSi3O8] - Ca[Al2Si2O8]; нередко в незначительных количествах в виде изоморфной примеси в них содержится также K[AlSi3O8].

· б) Подгруппа кали-натриевых полевых шпатов, которые при высоких температурах также способны давать непрерывные твердые растворы K[AlSi3O8] - Na[AlSi3O8], распадающиеся при медленном охлаждении на два компонента существенно калиевых и существенно натриевых (ср. галит-сильвин). Содержание в виде изоморфной примеси Ca[Al2Si2O8] обычно совершенно незначительно.

· в) Подгруппа редко встречающихся кали-бариевых полевых шпатов, называемых гиалофанами, представляющими также изоморфные смеси K[AlSi3O8] - Ba[Al2Si2O8].

Физические свойства ПШ также сходны. Все они имеют совершенную спайность в двух направлениях (параллельных базальному и боковому пинакоидам, образующими прямой или близкий к прямому угол), одинаковую твердость 6, плотность от 2,55 до 2,76 (у бариевых полевых шпатов - до 3,1-3,4). Два очень редких ПШ - бариевый банальсит и стронциевый строналсит - имеют ромбическую сингонию. ПШ - главные породообразующие минералы большинства изверженных горных пород (кроме ультраосновных, пироксенитов и некоторых щелочных пород), а также многих метаморфических пород (гнейсов и др.). Тип и состав ПШ в значительной мере определяют название породы. ПШ слагают большую часть объема пегматитов и могут встречаться в гидротермальных жильных месторождениях. Они подвержены выветриванию (химическому воздействию атмосферных агентов и просачивающихся грунтовых вод), приводящему к разложению полевых шпатов с образованием разных глинистых минералов.

Спайность под прямым углом дала имя моноклинному ПШ ортоклазу (греч. - «прямо колющийся») - алюмосиликату калия KAlSi3O8. Хотя ортоклаз чаще всего встречается в виде неправильных зерен в изверженных горных породах, он может образовывать таблитчатые кристаллы с наиболее развитой гранью, параллельной боковому пинакоиду. Довольно часто отмечаются двойники, особенно карлсбадского типа, с поворотом вокруг двойниковой оси с (вертикальной) и плоскостью срастания по боковому пинакоиду. Окраска обычно светлая, чаще всего белая, нередко от розовой до красной (из-за рассеянных частиц гематита), иногда желтоватая или серая. Ортоклаз отличается самой низкой плотностью среди ПШ - 2,55-2,56. Бесцветная, просвечивающая или прозрачная разновидность ортоклаза в виде кристаллов, имеющих сходство с ромбоэдрами, известна как адуляр; если у него наблюдается нежно-голубая иризация, то его называют лунным камнем (Рис.2,3).

Стекловидный санидин KAlSi3O8 встречается в виде вкрапленников в риолитах и других кислых излившихся горных породах, очень часто в трахитах, а также в некоторых малоглубинных калиевых щелочных интрузивных породах типа сынныритов (названы по Сыннырскому массиву в Северном Прибайкалье)(Рис.4). Самая типичная обстановка нахождения ортоклаза - гранит, который может содержать до 60% этого минерала (однополевошпатовый гранит). В граните вместо ортоклаза часто присутствует триклинный КПШ микроклин. К другим интрузивным породам со значительным участием ортоклаза относятся гранодиорит и сиенит. Эффузивные аналоги кислых интрузивных пород - риолит, дацит и трахит - также содержат ортоклаз, хотя нередко он там замещен санидином. Кроме того, ортоклаз присутствует в гнейсах, мигматитах и других породах высокой степени метаморфизма, образовавшихся с участием гранитизации. Он может появляться в качестве жильного минерала в гидротермальных жилах, особенно высокотемпературных. Наконец, ортоклаз встречается в полевошпатовых песчаниках (аркозах), при формировании которых песчинки накапливались так быстро, что разрушение полевого шпата с образованием глинистых минералов не происходило.

Рис. 2. Ортоклаз

Рис. 3. Лунный камень

Рис. 4. Санидин

Микроклин представляет собой триклинный КПШ с той же формулой, что и у ортоклаза, - KalSi3O8. Натрий может частично замещать калий (но в меньшей пропорции, чем в ортоклазе). Высокотемпературный триклинный щелочной ПШ, в котором натрия больше, чем калия, называется анортоклазом (Na, K) AlSi3O8; он характерен для некоторых богатых натрием эффузивных, реже интрузивных, щелочных пород. По своим физическим свойствам, включая характер двойникования, анортоклаз очень похож на микроклин. Хотя микроклин и является триклинным, отклонение оси b от направления 90 составляет всего 30, так что различия угла спайности у микроклина и ортоклаза недостаточны для визуальной дифференциации этих минералов. Кроме карлсбадского и других простых двойников, свойственных ортоклазу, микроклин может быть полисинтетически сдвойникован по альбитовому закону, когда боковой пинакоид является одновременно двойниковой плоскостью и плоскостью срастания, и по периклиновому закону, когда двойниковой осью служит ось b. Пересечение этих двух серий двойниковых полосок почти под прямым углом создает эффект «решетки» при наблюдении микроклина под микроскопом в поляризованном свете. Однако решетчатыми являются лишь т.н. максимальные микроклины, характеризующиеся наибольшей степенью структурной упорядоченности. Цвет микроклина в основном белый, часто от розового до красного (из-за гематитовой «пыли»), серый (в редкометалльных пегматитах - до темно-серого), а иногда зеленый (амазонит)(Рис. 5,6).

Рис. 5. Микроклин

Рис. 6. Амазонит

Закономерные взаимопрорастания кварца и ПШ (обычно микроклина) называют письменным гранитом, или еврейским камнем, так как по форме вростков кварца он напоминает иудейские письмена. Ориентированные срастания микроклина и натриевого полевого шпата альбита, образующего в микроклине пластинчатые вростки, называются пертитом. Микроклин встречается в изверженных породах вместо ортоклаза или наряду с ним. Это преобладающий полевой шпат и вместе с тем самый распространенный минерал гранитных пегматитов, в которых его отдельные кристаллы могут достигать нескольких метров в поперечнике (например, из кристалла, найденного в Карелии, получили более 2000 т полевошпатового сырья, т.е. его объем составлял ~80 м3). Амазонит, используемый как декоративно-поделочный камень, добывается в США (близ Флориссанта, Колорадо), в России (на Урале, Кольском п-ове и в Забайкалье), на Мадагаскаре. Калиево-натриевые полевые шпаты - ортоклаз, микроклин, санидин, анортоклаз, а также альбит - часто называют щелочными. Они составляют одну из главных групп в семействе полевых шпатов.

Другая группа ПШ - плагиоклазы (триклинные натриево-кальциевые полевые шпаты) - образует непрерывный ряд от натриевого плагиоклаза альбита NaAlSi3O8 до известкового (кальциевого) плагиоклаза анортита CaAl2Si2O8. Плагиоклазы несколько тяжелее, чем калиевые полевые шпаты, их плотность возрастает от 2,62 (альбит) до 2,76 (анортит). Угол между направлениями спайности по базальному и боковому пинакоидам у альбита 93, а у анорита - 94. Плагиоклазы почти всегда сдвойникованы по альбитовому закону. Поскольку это двойникование повторяется многократно в каждом отдельном образце (полисинтетические двойники), плоскости базальной спайности плагиоклазов покрыты параллельными штрихами, которые представляют собой следы выхода на поверхность двойниковых швов и контактов между сдвойникованными индивидами.

Плагиоклазы обычно подразделяются на шесть минеральных видов, но границы между ними условные. Классификация основана на соотношении между чистой альбитовой (Ab) молекулой (NaAlSi3O8) и чистой анортитовой (An) молекулой (CaAl2Si2O8). Самый распространенный минерал среди плагиоклазов - альбит; его состав (в мол.%) 100-90% Ab и 0-10% An. Он встречается вместе с другими щелочными полевыми шпатами в щелочных гранитах и риолитах, щелочных сиенитах и трахитах. Весьма распространен в виде пертитовых срастаний с микроклином в гранитных и сиенитовых пегматитах, а также в прожилках и телах замещения в пегматитах. В таких условиях альбит образует либо таблитчатые и крупнопластинчатые розетковидные агрегаты, часто нежно-голубого цвета, называемые клевеландитом, либо массивные мелкозернистые агрегаты «сахаровидного» альбита. Подобно ортоклазу, альбит и следующий член ряда - олигоклаз - могут иногда проявлять переливчатость цвета (молочно-белую и голубоватую иризацию), хотя и более слабую; тогда его называют лунным камнем. Альбит весьма распространен в зеленых сланцах - метаморфических породах низкой ступени метаморфизма. Олигоклаз содержит 70-90% Ab и 10-30% An и наряду с андезином, следующим членом ряда плагиоклазов, является главным компонентом изверженных пород кислого и среднего состава, в том числе гранитов, гранодиоритов, монцонитов, сиенитов, диоритов и их эффузивных аналогов. Олигоклаз с включениями гематита, придающего ему мерцающий блеск, называют солнечным камнем (бывают также альбитовые, ортоклазовые, микроклиновые солнечные камни). Олигоклазовый лунный камень носит название беломорит. Следующий член плагиоклазового ряда, содержащий 50-70% Ab, в изобилии присутствует в андезитовых лавах в Андах и потому назван андезином. Основной (богатый кальцием) плагиоклаз, содержащий 50-70% An, получил название лабрадорита по месту первой находки минерала на п-ове Лабрадор (Канада), где содержащие его породы (анортозиты) залегают в виде крупных массивов. Спайные плоскости лабрадорита проявляют очень красивую иризацию. Лабрадорит - единственный существенный компонент горной породы, именуемой анортозитом, а также главный (наряду с пироксенами) породообразующий минерал других видов основных изверженных пород, включая габбро и базальты. Битовнит (70-90% An) и анортит (90-100% An) относительно редки. Они могут встречаться совместно с лабрадоритом или порознь в основных изверженных породах.

Рис. 7. Альбит

Рис. 8. Лабрадор

Щелочные ПШ, особенно калиевые, в меньшей степени альбит, широко используются в промышленности. Их источником служат пегматиты, преимущественно керамические и слюдоносные, отчасти редкометалльные, из которых иногда извлекают также слюду, реже берилл, колумбит и другие ценные минералы. КПШ - необходимый ингредиент тонкой керамики и электрокерамики, так как входит в состав фарфоровой шихты, широко потребляется стекольно-керамической промышленностью, в производстве фарфоровых изделий (включая сами изделия и глазури), а также эмалей. Полевые шпаты добываются в США, Канаде, Швеции, Норвегии, Финляндии, Германии, Чехии, Италии, Китае и других странах. В России добыча калиевого полевого шпата сосредоточена в основном в Карелии и на Кольском п-ове; альбит для стекольной промышленности добывается также на Урале. Лунный и солнечный камни, амазонит и редко встречающийся прозрачный желтый железистый ортоклаз из пегматитов Мадагаскара - ювелирно-поделочные камни.

2. Группа хлоритов

Минералы, принадлежащие к этой группе, во многих отношениях напоминают слюды. Кристаллизуются они в моноклинной сингонии, обладают слюдообразной спайностью, низкой твердостью, небольшим удельным весом. Для большинства из них характерна бутылочно-зеленая окраска, что и послужило основанием для общего названия этой группы минералов ("хлорос" по-гречески - зеленый). С химической точки зрения, хлориты представляют алюмосиликаты, главным образом Mg, Fe** и Аl, отчасти Ni, Fe***, Сr***. Явно индивидуализированные в кристаллографическом отношении, богатые магнезией минеральные виды получили общее названиеортохлоритов. Химическая их формула выражается следующим образом:

(Mg, Fe)6-p(Al,Fe)2pSi4-pO10[OH]8.

Одна половина трехвалентных ионов (р) участвует в составе анионного комплекса в виде [АlO4]5-, другая - в качестве обычных катионов. Богатые железом, преимущественно колломорфные минеральные виды, характеризующиеся часто очень непостоянным составом, обычно выделяются в особую подгруппу алюмо-феррисиликатов под общим названием лептохлоритов. Большинство их принадлежит к числу наиболее бедных кремнеземом минералов не только среди слюдообразных минералов, но и среди вообще силикатов. Во многих из них Fe** преобладает над Fe***, значение коэфициента р нередко выше, чем в обычных ортохлоритах, часто присутствует молекулярная вода. Общая формула:

(Fe, Mg)n-p (Fe,Al)2pSi4-pO10[OH]2(n-2)*хH2O,

где n обычно около 5.

Хлориты обычно встречаются в виде листоватых и чешуйчатых агрегатов, а также сплошных масс. Хорошо образованные кристаллы сравнительно редки и имеют таблитчатый, а в отдельных случаях боченковидный облик (рис. 9 ). Они часто сдвойникованы по хлоритовому и слюдяному законам. Под микроскопом у хлоритов заметно секториальное и лучистое строение, иногда наблюдаются также вермикулитоподобные кристаллы.

Рис. 9. Габитус кристаллов хлоритов: а -- одиночные кристаллы, б, в -- двойники по хлоритовому закону (плоскость срастания (001), двойниковая ось, перпендикулярная к плоскости срастания)

Хлориты имеют зеленый цвет различных оттенков: от светло-зеленого и оливково-зеленого в магнезиальных разностях до зеленовато-темно-серого и даже черного у железистых разностей. Разности, обогащенные хромом, имеют коричнево-красный, розовый и фиолетовый цвет, а маложелезистые разности характеризуются белым цветом. Хлориты имеют слюдоподобную спайность, однако от слюд отличаются тем, что их легко расщепляемые тонкие листочки не упругие, хотя и гибкие. Они имеют низкую твердость и невысокую плотность.

По своему происхождению хлориты являются низкотемпературными гидротермальными образованиями, связанными с метаморфическими процессами. При высокой температуре они переходят в гранат и кордиерит. Хлориты часто образуются на контактах рудных жил в виде оторочки. Здесь они возникают за счет биотита (чешуйка по чешуйке) и роговой обманки. Процесс замещения биотита и роговой обманки хлоритом происходит благодаря гидротермальным растворам, выщелачивающим К и Na. Железистые хлориты -- тюрингнт и шамозит -- часто образуются экзогенным путем, как типичные морские осадки, возникшие в тюрингитовую фацию осадконакопления. Хлориты наиболее распространены в метаморфических горных породах, где иногда слагают толщи хлоритовых сланцев. В трещинах и пустотах этих пород часто наблюдаются хорошо образованные кристаллы хлорита.

Хорошие кристаллы хлорита найдены в жилах альпийского типа в Швейцарии, Тироле и в Приполярном Урале, а также в Николае-Максимилиановской, Ахматовской и Еремеевской копях (Шйшимские и Назямские горы на Южном Урале). Хромсодержащие хлориты встречаются в ультраосновных породах, где чаще всего ассоциируют с хромитом. Шамозит известен в Лотарингии, на восточном склоне Северного и Среднего Урала, в Халиловском месторождении Южного Урала и т. д. Большие скопления тюрингита известны в Тюрингии и Баварии. В России тюрингит найден в рудных пластах Курской магнитной аномалии. Из минералов, относящихся к группе хлоритов, только шамозит и тюрингит при больших скоплениях имеют практическое значение как железная руда(Рис.10).

Рис. 10. Шамозит

Список использованной литературы

1. Бетехтин А.Г. Курс минералогии. - М.: Книжный дом «Университет», 2008. - 736с.

2. Булах А.Г., Кривовчев В.Г., Золотарев А.А. Общая минералогия. - 4-е изд., пер. и доп.- М.: Академия, 2008. - 416с.

3. Кантор Б.З. Минерал рассказывает о себе. - М.: Недра, 1985. - 135с.

4. Макуров С. Л. Конспект лекций по курсу «Кристаллография и минералогия» для студентов специальностей 8.090401, 8.090404, 8.090406, Мариуполь, 2002, - 110с.

5. Попов Г.М., Шафрановский И.И. Кристаллография. - М.: Высшая школа, 1972. - 352с.

6. Полуэктова Т.И., Новоселов К.Л. Геометрическая кристаллография. -- Томск: Изд. ТПУ, 1998 -- 44 с.

7. Черкасова Т.Ю. Основы кристаллографии и минералогии, Томск: Изд-во ТПУ, 2014, 210 с.

http://geo.web.ru/mindraw/cristall1.html

Размещено на Allbest.ru


Подобные документы

  • Классификация и характеристика минералов группы полевых шпатов, их разновидности, территории распространения, особенности. Отличительные признаки калиевых полевых шпатов от плагиоклазов. Практическое значение минералов данной группы полевых шпатов.

    контрольная работа [150,5 K], добавлен 02.12.2010

  • Каркасные силикаты, их характеристика. Термодинамические свойства и температурная зависимость мольного объема полиморфных разновидностей окиси кремния. Распространенность полевых шпатов, сосуществование двух видов в магматических, метаморфических породах.

    презентация [9,1 M], добавлен 26.07.2013

  • Понятие и место в природе минералов, их строение и значение в организме человека, определение необходимых для здоровья доз. История исследования минералов от древних времен до современности. Классификация минералов, их физические и химические свойства.

    реферат [36,2 K], добавлен 22.04.2010

  • Классификация, химический состав и кристаллическая структура минералов, изоморфизм и полиморфизм. Физические процессы, определяющие рост кристаллов. Эволюционные закономерности построения минералов, их значение для познания биологической эволюции.

    реферат [2,2 M], добавлен 30.08.2009

  • Изучение физических и химических свойств минералов сфалерита и кварца. Определение твердости по Моопсу; спайность, цвет, магнитность кристаллов; характеристика излома, цвет черты. Диагностика в полевых условиях на растворимость в воде; реакция с HCl.

    лабораторная работа [317,7 K], добавлен 09.10.2013

  • Кристаллическая структура и химический состав как важнейшие характеристики минералов. Осадочное происхождение минералов. Классификация диагностических свойств минералов. Характеристика природных сульфатов. Особенности и причины образования пегматитов.

    контрольная работа [2,2 M], добавлен 07.10.2013

  • Понятие и особенности минеральных видов, их признаки. Полиморфные модификации веществ, свойства минеральных индивидов. Нахождение минералов в природе. Характеристика физических, оптических, механических свойств минералов. Наука минералогия, ее задачи.

    реферат [161,3 K], добавлен 09.12.2011

  • Электромагнитные свойства минералов и горных пород. Электрохимическая активность и поляризуемость. Пьезоэлектрические модули у турмалина. Особенности применения электроразведки. Майко-Лебедское рудное поле. Методы полевых электромагнитных зондирований.

    презентация [1,6 M], добавлен 30.10.2013

  • Определение и понимание генезиса, парагенезиса, типоморфизма и других генетических признаков минералов. Значение генетической минералогии. Изменение минералов при различных геологических и физико-химических процессах и в разных областях земной коры.

    курсовая работа [22,5 K], добавлен 05.04.2015

  • Минерал как природное вещество, состоящее из одного элемента или из закономерного сочетания элементов, образующееся в результате природных процессов. Их классификация и типы в зависимости от различных физических факторов. Анализ химического состава.

    презентация [4,9 M], добавлен 22.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.