Минералы и горные породы

Исследование генезиса минералов с позиций диалектики природы. Оценка месторождений полезных ископаемых, их свойств, строения и состава. Изучение процессов зарождения и роста кристаллов. Классификация горных пород. Основные виды минералообразования.

Рубрика Геология, гидрология и геодезия
Вид курсовая работа
Язык русский
Дата добавления 11.11.2014
Размер файла 31,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Содержание

Введение

1. Основные свойства минералов

2. Генезис минералов

2.1 Экзогенный процесс

2.2 Эндогенный процесс

2.3 Метаморфический процесс

2.4 Парагенезис

3. Причины и условия образования минералов

Заключение

Список литературы

Введение

Генезис (от греч. genesis) означает происхождение, возникновение, процесс образования. Например, в биологических науках генезис почв -- это происхождение и процесс образования почв. Аналогично и мы будем понимать под генезисом минерала его происхождение, возникновение, процесс его образования.

Более конкретно и предметно: в понятие генезиса минералов мы включаем как моменты предыстории, создающей в зависимости от геологической обстановки те или иные условия для кристаллизации минералов, так и саму историю их жизни -- зарождение, рост, существование. Рассматривая генезис минералов с позиций диалектики природы, нельзя остановиться и исключить из истории жизни следующий этап эволюции вещества -- изменения минералов и их разрушение.

Конкретные явления зарождения зерен и индивидов минерала, их рост и последующие изменения и разрушение объединяются Д. П. Григорьевым под общим названием онтогении минерала. Генетическая минералогия изучает генезис минералов в полном объеме этого понятия, начиная с геологических факторов и физико-химической обстановки образования минералов, исследуя процессы зарождения кристаллов, их роста и существования и кончая явлениями их разрушения.

1. Основные свойства минералов

Минералы - относительно конкретные и достаточно устойчивые химические соединения и самородные элементы, характеризующиеся строго постоянным внутренним строением. Обычно к минералам относят природные образования, возникшие в результате физико-химических процессов в недрах и на поверхности земной коры. Однако к ним нельзя не отнести и выращиваемые в лабораториях и на заводах драгоценные камни, минеральные образования, получаемые при моделировании геологических процессов, жемчуг, выращиваемый как аквакультура. На сегодня известно до 4000 минералов.

Разумеется, существуют различные их систематики. В пособии использован принцип, базирующийся на выделении классов, подклассов, групп дробных химических классификационных единиц. Деление на основе химической конституции отражает многие свойства минералов, позволяющие их диагностировать. В определителе приведены основные свойства наиболее типичных представителей самородных элементов, сульфидов, сульфатов, галлоидов, фторидов, фосфатов, карбонатов, окислов и силикатов.

Основные свойства присущи всем минералам, поэтому диагностика основывается на различиях в характеристиках этих признаков. Кроме того, диагностике помогают дополнительные признаки, отражающие специфические свойства, присущие далеко не всем, и даже единственным в своем роде, минералам, но позволяющие быстро и однозначно идентифицировать их.

В определителе учтены как основные (химизм, строение, минеральные агрегаты, твердость, плотность, спайность, излом, цвет, черта, блеск, генезис), так и дополнительные (магнитные и электрические свойства, гигроскопичность, запах, вкус, горючесть, упругость, ковкость, радиоактивность) свойства и приведены сведения относительно практического использования минералов. Строение минералов. В природе существуют твердые, жидкие и газообразные минеральные образования. Твердые минералы могут быть кристаллическими и аморфными. Кристаллические состоят из множества одинаковых структурных элементов, образующих упорядоченную пространственную (кристаллическую) решетку.

Различают атомный, ионный и молекулярный типы решеток, которые определяют анизотропность (различные свойства), изотропность (одинаковые свойства) кристаллов и их способность самоограняться. Кристаллы - как природные, так и искусственные - имеют форму многогранников. Они могут быть изотропными и анизотропными. Аморфные минералы всегда изотропны.

Способность веществ при одинаковом химическом составе кристаллизоваться в разных формах называется полиморфизмом (многоформностью). Например: алмаз и графит, пирит и марказит, кальцит и арагонит. Разная структура полиморфных разновидностей объясняет их различные свойства. Некоторые вещества разного химического состава могут образовывать сходные кристаллографические формы.

Такие вещества могут создавать смешанные формы, содержащие исходные компоненты в разной пропорции. Это явление называется изоморфизмом, а смеси именуются изоморфными. В качестве примера можно назвать полевые шпаты, изоморфный ряд которых формируется при смешивании альбитовой и анортитовой молекул. В природных условиях чаще всего вырастают не вполне правильные кристаллические формы, имеющие некоторые дефекты, но при любых изъянах углы между соответствующими гранями кристаллов одного и того же вещества остаются одинаковыми и постоянными. Этот закон постоянства гранных углов дает возможность устанавливать идеальную форму кристаллов и точно диагностировать мельчайшие минеральные зерна. Разная степень симметрии кристаллов объясняется различными комбинациями плоскостей, осей центров и симметрии в них.

Таких комбинаций может быть 32, и называются они классами (или видами) симметрии. Последние объединяются в 7 систем, или сингоний: кубическую, тетрагональную, гексагональную, ромбическую, тригональную, моноклинную и триклинную. Кубические кристаллы обладают высшей симметрией: их простейший элемент -куб, они изотропны. Кристаллы гексагональной, тетрагональной и тригональной сингоний характеризуются средней симметрией.

Они имеют столбчатый, шестоватый, игольчатый, листоватый, таблитчатый, пластинчатый габитус (облик) и шести-, четырех- и трехгранные сечения (соответственно), перпендикулярные длинной оси. Анизотропность выражается в различии основных свойств по длинным и коротким осям. Ромбическая, моноклинная и триклинная сингонии относятся к низшей группе симметрии. Им свойственны весьма разнообразные формы с анизотропными свойствами. У ромбических кристаллов сечение, перпендикулярное длинной оси, имеет форму ромба. Природные минеральные формы (скопления).

Природные скопления минеральных зерен, или кристаллов, принято называть минеральными агрегатами. Они могут быть моно- и полиминеральными, т.е. состоять из одного или нескольких минералов. Форма минеральных агрегатов зависит от их состава и условий формирования. Группа кристаллов, наросших на общем основании, образует друзу. Друза сориентированными в одном направлении мелкими сросшимися кристаллами называется щеткой. Эти формы образуются при кристаллизации минералов в пустотах горных пород (кварц, кальцит, гипс). Тот же генезис имеют секреции -минеральные образования, частично или полностью выполняющие полости и растущие от периферии к центру. Секреции могут образовывать как аморфные (халцедон), так и кристаллические (кварц, кальцит) минералы. Крупные секреции именуют жеодами, мелкие миндалинами. Желваковые образования, возникшие в рыхлых осадочных образованиях на дне древних и современных водоемов как результат стяжения минерального вещества вокруг инородных центров кристаллизации, именуются конкрециями.

Конкреции растут от центра к периферии, по строению могут быть радиально- лучистыми и концентрическими. Их формы и размеры весьма различны. Мельчайшими конкрециями являются оолиты (кальцит, арагонит, фосфорит, кремень, сидирит, железо-марганцевые конкреции (жмк) дна современного океана). В пустотах, в том числе и в пещерах, широко распространены натечные формы. Они могут иметь самый различный размер и состав (кальцит, малахит, глинистые минералы, лед и т.д.). Это прежде всего сталактиты, сталагмиты и сталагнаты, почковидные и гроздевидные образования пещер. При быстрой кристаллизации в мелких трещинах и глине солей, выпадающих из подземных вод, образуются тонкие ветвистые древовидные образования дендриты. Наиболее часто обнаруживаются дендриты амородной меди, железистых и марганцевых соединений и т.п.

минерал кристалл горный порода

2. Генезис минералов

2.1 Экзогенный процесс

Экзогенный процесс образования минералов свойствен поверхности и самой верхней части земной коры. Минералы здесь образуются как в континентальных, так и в морских условиях, в тесном контакте и взаимодействии между собой земной коры, атмосферы, гидросферы и биосферы.

В сложных процессах минералообразования принимают участие кислород, углекислота из воздуха атмосферы, различного состава водные растворы, живые растительные и животные организмы, их остатки и продукты жизнедеятельности, колебания температур, солнечная энергия.

Многообразие условий в экзогенном процессе можно разделить на три основных вида минералообразования:

1) Разрушение одних и создание других минералов

2) Выпадение из водных растворов

3) Биогенное формирование

Первый вид - разрушение одних и создание других минералов происходит на поверхности земной коры в результате процесса выветривания. Магматические минералы, как и магматические горные породы, на поверхности Земли в течение миллионов лет, т.е. в пределах геологического времени, распадаются на составные части , и из продуктов их разрушения формируются новые минералы, устойчивые в данных условиях. Характерными для таких условий являются глинистые минералы, которые широко распространены на земной поверхности, а также минералы, относящиеся к оксидам, карбонатам и сульфатам.

В качестве примера можно назвать следующие минералы: из глинистых - каолинит Al4 [Si4O10] (OH)8; оксидов - кварц; карбонатов - кальцит; сульфатов - гипс.

Второй вид выпадение минералов из водных растворов (моря, океаны, озера, реки, подземные воды и вновь созданные водохранилища). В образовании минералов исключительная роль принадлежит воде. Водный раствор служит минералообразующей средой, поэтому воду иногда образно называют универсальным катализатором.

Проблема воды в минералах - важная составная часть общей проблемы формирования в эволюции вещества земной коры во времени и пространстве. Диапазон минералообразования огромен от гигантских залежей галита, гипса, боратов.

Возникших в неглубоких водоёмах, до крохотных кристаллов на поверхности окисляющихся руд и громадных подземных пещер с гипсовыми и кальцитовыми сталактитами и сталагмитами, массивными колоннами. Натечные образования делают пещеры очень красивыми.

Все природные воды содержат в растворённом виде соли, иногда в очень большом количестве, вплоть до полного насыщения. Так, в воде океанов присутствуют хлориды и сульфаты натрия, калия, магния, кальция (до 35 г\л), в соляных озёрах - хлориды и сульфаты магния и частично натрия и калия, в речной, озёрной воде и водохранилищах - в основном углекислые соли.

Выпадение солей из растворов происходит в периоды интенсивного испарения воды, а также при температурных изменениях в водном растворе. Таким путём формируются минералы: гипс CaSO4*2 H2O, галит NaCl, мирабилит Na2SO4 *10 H2O.

Минералы, рождающиеся в водной среде (или за счёт водной среды), имеют различную деятельность жизни. Это зависит от условий их обитания. Образуясь в водной среде и попав в сухие условия, они могут сохраняться многие годы.

Попав снова в водную среду, они растворяются, но в последствии могут вновь родиться, как минералы, но при этом утрачивают первоначальные признаки и приобретают новые.

Минералы, которые быстро рождаются в водной среде и также легко растворяются в ней, называют сезонными. Этим термином подчёркивается их недолговечность, временное бытие.

Среди сезонных минералов можно выделить следующие минеральные виды:

1) Связанные с осаждением вещества из холодных и термальных водных растворов

2) Являющиеся следствием реакций замещения в сухом виде

3) Сублимированные (путём возгонки) вещества, переходящие при нагревании непосредственно из твёрдого в газообразное состояние.

В природе преобладают первые. Это преимущественно сульфаты железа и алюминия. В их структуре вода присутствует как в молекулярной форме, так и в виде гидроксильных групп. Обилие молекулярной воды предопределяет неустойчивость этих минералов вследствие обезвоживания даже при комнатных температурах.

В состав большинства сезонных минералов входит сера, которая даёт ряд соединений с кислородом, водородом, металлами. Среди сезонных минералов красивые кристаллы достаточно редки, исключение составляет сера. В других случаях сезонные минералы представлены рыхлыми, зернистыми или порошковыми массами. Нередки случаи, когда они имеют форму нитевидных кристаллов тонких волосоподобных кристаллов, вытянутых вдоль одной из кристаллографических солей.

Третий вид минералообразования биогенное формирование. Минералы формируются в процессе жизнедеятельности животных и растительных организмов, особенно обильно населяющих мелководные участки морей и других водоёмов.

Например, морские водоросли и простейшие морские организмы поглощают углекислый кальций и при отмирании оставляют минеральные накопления в виде кальцита CaCO3 и арагонита CaCO3. Диатомовые водоросли, морские губки используют для своих скелетов кремнезём. Таким же путём возникает минерал опал. Морские, а иногда речные или озёрные моллюски в своих раковинах создают жемчуг (минерал кальцит с примесью органического вещества с изумительно красивой игрой цветов в радужных тонах). Железопоглощающие бактерии создают накопления гидроксида железа (минерал - лимонит - источник формирования бурых железняков).

2.2 Эндогенный процесс

Эндогенный процесс связан с условиями существования глубинных слоёв земной коры. Минералы формируются из магмы - силикатного огненно - жидкого расплава. В целом эндогенный процесс можно разделить на три вида минералообразования:

1) Магмагенный

2) Гидротермальный

3) Пневматолитовый

Магмагенное образование минералов связано непосредственно с магмой. По мере понижения температуры магмы при подъёме её к поверхности Земли возникают:

- Дифференциация расплава

- Кристаллизация и затвердение.

Всё это происходит при наличии в расплаве и окружающих породах высоких температур и давления. Таким путём образуется около 370 минералов, это главным образом силикаты полевых шпатов. Слюд, а также некоторые рудные минералы.

Гидротермальное образование минералов: при остывании магмы образуется ювенильная (магматическая) вода, чрезвычайно насыщенная различными компонентами. Эти водные растворы растекаются по трещинам пород.

Окружающих массив остывающей магмы при постепенно снижающихся температурах и давлении, что приводит к последовательному осаждению из растворов различных минералов. Таким путём образуются кальцит, барит, флюорит, самородные элементы (серебро, золото, ртуть), сульфиды (пирит) и другие.

Пневматолическое образование минералов: при остывании магмы идёт бурное выделение газовых компонентов, таких. Как сероводород H2S, фтористый водород HF, а также выпадают бор В, фосфор Р, сера S и другие. Далее в условиях более низких температур они образуют, иногда минуя жидкое состояние, кристаллические минералы: самородную серу, боросодержащие минералы и некоторые другие.

Эндогенные минералы являются породообразующими в магматических горных породах. Много их входит и в состав горных осадочных пород, куда они попадают после разрушения магматических горных пород в процессе выветривания.

2.3 Метаморфический процесс

Метаморфический процесс: минералы эндогенного и экзогенного генезиса на некоторой глубине в земной коре в какой - то период времени могут попасть под воздействие повышенных давлений, температур (как правило, не выше температуры их плавления), под влиянием горячих вод и газов. Возникают новые термодинамические условия, не свойственные условиям существования этих минералов.

Минералы в новых условиях начинают видоизменяться: одни разрушаются, другие перекристаллизовываются, третьи дают новые минеральные образования. Так возникают метаморфические минералы, в большинстве силикатного состава.

Примером могут служить минералы - кварц, тальк, хлорит.

2.4 Парагенезис

Парагенезис (от греч. «пара» - возле, подле), или природная ассоциация, - это совместное нахождение минералов в природе. Обусловленное общностью процесса их образования при сходных физико-химических и геологических условиях. Минералы находятся в горных породах и месторождениях в виде комплексов, взаимосвязанных единым процессом образования. Эти комплексы выдерживаются с большим постоянством.

Несомненно, что парагенетические ассоциации отражают рассмотренную нами последовательность выделения кристаллических фаз сначала из магматического расплава, затем из пегматитового остатка, газов и растворов, а также осаждения минералов из водных бассейнов на земной поверхности.

В хромитовых месторождениях Южного Урала, имеющих магматическое происхождение, встречаются также оливин и платина. Для Дашкесанского контактного месторождения на Кавказе характерны магнетит, пирит, халькопирит.

В пегматитовых месторождениях Свердловского района наблюдается парагенезис дымчатого кварца, ортоклаза, топаза, турмалина. Подобные сообщества минералов находят и во многих других районах земного шара со сходными условиями образования.

Садонское месторождение на Кавказе серебро - свинцово - цинковое. Уже давно известно, что минералы серебра, свинца и цинка особенно часто встречаются совместно (например, Алтай). Эта весьма характерная тесная ассоциация получила название полиметаллических руд.

Соликамское месторождение солей включает галит, сильвин, гипс. Подобные же минералы известны в других местах распространения химических осадков.

Парагенетические связи помогают при поиске полезных ископаемых. Понятно, что при поисках хромита и платины необходимо исследовать магматические породы; руды свинца, серебра, цинка надо искать в гидротермальных жилах; руды олова, вольфрама, золота среди кислых магматических пород (гранитов).

Коренное золото ищут преимущественно в кварцевых жилах. Знание парагенезиса минералов облегчает задачу поисковиков полезных ископаемых по их спутникам. Например, спутник алмаза пироп помог открытию коренных месторождений алмазов в Якутии.

3. Причины и условия образования минералов

Под генезисом понимают способ и условия формирования минералов в природе. Определить генезис отдельного минерала удается далеко не всегда. Обычно генезис минерала связывают с генезисом породы, которую он слагает. В этом плане мы вправе выделять минералы магматических, метаморфических и осадочных пород. Магматические горные породы, как и слагающие их минералы, формируются из магматического расплава при застывании магмы в недрах (интрузивные) и на поверхности (эффузивные) Земли.

Магматические породы в основном слагаются силикатами и по содержанию кремнекислоты делятся на: кислые (более 65% SiO2), кварц-полевошпатовые породы группы гранита- липарита; средние (65-52% SiO2) бескварцевые породы, состоящие из натриево-кальциевых плагиоклазов с содержанием 15-30% темноцветных минералов(роговая обманка, авгит, биотит), представленные группой диорита андезита; основные (52-54 % SiO2) группа габбро-базальта (долерита), состоящая изосновных плагиоклазов и цветных минералов, среди которых наитипичны пироксены.

Ультраосновные (менее 45-40 % SiO2) бесполевошпатовые породысложены преимущественно магнезиально-железистыми силикатами (оливином ипироксином). Сюда относятся породы группы перидотита пикрита. Изверженные породы формируются на глубине в главную стадию кристаллизации.

По мере их формирования происходит постепенное объединение расплава и обогащение другими элементами. В результате формируется “остаточный” расплав, состав и свойства которого отличны от начального. При кристаллизации остаточного расплава образуются особые породы, получившие название пегматитов.

Пегматиты слагают жилы и характеризуются крупным кристаллом. Наиболее распространены пегматиты гранитного состава, т.е. богатые кварцем и полевым шпатом. Процесс сопровождается выделением летучих компонентов. Насчитывается около 180 минералов пегматитового происхождения, но главнейшими являются кварц, полевые шпаты и слюда. Щелочные пегматиты отличаются отсутствием кварца. Минералы пегматитов образуют группу минералов пегматитового генезиса.

При взаимодействии паров и газов между собой или с ранее возникшими минералами образуются минералы пневматолитового генезиса. Пневматолитовый процесс осуществляется, если расплав, насыщенный летучими компонентами, кристаллизуется при пониженном давлении, когда происходит сухая перегонка вещества, т.е. летучие переходят в твердое состояние, минуя жидкую фазу.

По минеральному составу пневматолитовые жильные тела бывают разными, но наиболее характерны для них касситерит, гематит, молибденит. Пневматолитовый процесс сопровождает вулканизм, когда пары воды, CO2, H2S, SO2, HСl, HF и др. газы реагируют друг с другом и газами атмосферы и создают минералы, накапливающиеся в вулканических трещинах и кратерах (сера, железный блеск, нашатырь и др.).

Гидротермальные минералы выделяются из горячих водных растворов или образуются при воздействии этих растворов на боковые породы. Выделяют высоко-, средне- и низкотемпературные гидротермальные образования. Высокотемпературные (300-400 °С) жилы обычно сложены грейзенами породами, буквально нашпигованными кварцем, сульфидами, флюоритом и др.

Околожильные формации, обычно средне- и низкотемпературные, почти всегда обогащены серицитом, карбонатами, хлоритом, реже пиритом и др. Вулканические минералы по своей сути являются минералами эффузивных образований, формирование которых осуществлялось через аппараты вулканических извержений. Такие минералы возникают за счет вулканических паров и газов, кристаллизации лавы на глубине и при излиянии ее на поверхность при быстром охлаждении в результате гидротермальных процессов. Набор минералов весьма разнообразен: это породообразующие оливин, авгит, роговая обманка, полевые шпаты, нефелин; возгоны серы, нашатыря, реальгара. Особенно широк спектр поствулканических гидротермальных минералов, выполняющих пустоты и трещины (цеолиты, кварц, кальцит, халцедон, опал, барит и др.).

Метаморфические горные породы образуются как результат сложных преобразований в составе и строении минералов и горных пород в связи с воздействием на них высоких температур и давлений. С региональным метаморфизмом, свойственным обширным платформенным территориям, связано понятие “ступень метаморфизма”, определяющее глубину процесса. Каждой ступени соответствует парагенез минералов, образованных в определенном диапазоне температур и давлений.

Для низкой и очень низкой ступеней метаморфизма типичны голубые сланцы, основным минералом которых является голубая роговая обманка глаукофан, серпентниты, филлиты, альбитофиры и некоторые другие породы, формирующие зеленокаменную метаморфическую фацию. На средней ступени метаморфизации формируются фации кристаллических сланцев, гнейсов, амфиболитов, а при частичном плавлении амфиболитов мигматиты породы, по минеральному составу очень близкие к гранитам.

Основными минералами перечисленных породы являются кварц, полевые шпаты, биотит, хлорит, гранаты, амфиболиты, пироксены, эпидот. На высшей ступени регионального метаморфизма возникают гранулиты (кварц, ортоклаз, плакиоклаз + гранат, силлиманит, пироксен, нередко гранат), а на контакте земной коры и мантии эклогиты плотные тяжелые породы, сложенные пироксеном и гранатом (пиропом).

Динамометаморфизм (дислокационный) рождает милониты породы, состоящие из тонкозернистого агрегата того набора минералов, который формировал исходную породу. Из новообразований в милонитах обнаруживаются хлорит, тальк, слюда. При уплотнении милониты приобретают сланцеватую текстуру и превращаются в бластомилонит. В бластомилонитах все минеральные зерна приплюснуты. При ударном метаморфизме, вызванном падением метеоритов, возникают породы, объединяемые в группу импактитов.

Среди импактитов различают неперемещенные продукты слабого (катаклазиты) и более сильного (ударные брекчии) дробления. Если процесс преобразования более глубок, в породах начинается плавление и образование стекла. В этом случае формируются псевдотахилиты (неперемещенные) и тагамиты (перемещенные).

Смешанные и перемещенные продукты дробления и плавления называют зювитами. Основными минеральными новообразованиями в импактных являются стекло (продукт плавления материнских пород), микролиты плагиоклаза, пироксена, биотита, а также гипербарические полиморфные модификации SiO2 коэсит и стишовит; алмаз и лонсдейлит (еще более высокобарная модификация углерода).

При контактном метаморфизме метаморфизму подвергаются породы в зоне контакта с внедрившейся интрузией. Наиболее распространенной метаморфической породой контактовых зон являются роговики, нередко содержащие кордиерит и андалузит (вблизи контакта), а также биотит, хлорит, мусковит (дальше от контакта в сторону вмещающей породы). В случае значительного выноса растворов и газов из магмы и привноса веществ из вмещающей породы в магму следует говорить о контактово-метасоматическом процессе. Очевидно, что в результате гидротермальных и пневматолитовых реакций возникают новые минералы. Метасоматоз легко растворимых известняков создает новую породу скарн.

При метасоматозе в известняках образуются магнетит, железный блеск, касситерит, кобальтин, сфалерит, молибденит, пирротин, арсенопирит, шпипель, корунд, гранаты, серпентин, графит, магнезит, флагопит, пироксены, амфиболы, эпидот, хлориты, апатит и многие другие минералы. Именно скарны являются кладовой промышленных скоплений железа, вольфрама, олова, цинка, многих драгоценных камней.

В случаях, когда минералы возникают посредством кристаллизации из магматического расплава или при участии летучих или гидротермальных продуктов дифференциации магмы, что происходит при магматическом, пегматитовом, пневматолитовом, гидротермальном и контактово-метасоматическом процессах, об их генезисе можно говорить как о магматогенном или эндогенном.

С экзогенными процессами связано гипергенное (супергенное), т.е. экзогенное происхождение минералов.

Осадочные горные породы формируются на поверхности Земли (или чуть глубже) из продуктов выветривания, жизнедеятельности организмов посредством осадки солей из перенасыщенных растворов. Особую группу осадочных пород составляют каустобиолиты - горючие полезные ископаемые, в образовании которых задействованы органические вещества, кислород, водород, азот атмосферы и гидросферы и лучистая энергия Солнца.

Осадочные породы покрывают около 75% поверхности континентов, и подавляющая их часть результат литогенеза морских осадков. В обломочных породах концентрируются преимущественно продукты физического выветривания, набор минералов в которых весьма разнообразен. В песчаных и алевритовых породах преобладают устойчивые кварц, полевые шпаты, а также гранат, циркон, эпидот, циозит и др. минералы. Глинистые породы сложены глинистыми минералами (каолинит, иллит, гидрослюда, монтмориллонит и др.), являющими собой продукты преимущественно химического выветриваания.

Процессы окисления, каолинизации, гидратации, гидролиза и пр. обеспечивают разнообразие минералов в корах выветривания различного типа. В водоемах аридных зон посредством осадки формируются залежи хлоридных, сульфатных, гидрокарбонатных и пр. солей. Биогенные процессы обеспечивают накопление на дне водоемов с нормальной соленостью мощных толщ пород, сложенных кальцитом, арагонитом, опалом; в специфических морских обстановках образуются железо-марганцевые, баритовые конкреции, глаукониты и прочие минеральные образования. При вторичном изменении осадочных пород возникают диагенетические минералы. Посредством диагенеза могут образовываться кальцит, доломит, кремень в известняковых толщах, гипс - в ангидритах и наоборот - ангидрит в гипсовых пластах, слюды - в глинах и т.д.

Таким образом, о происхождении минерала проще судить, если известно, с какой породой он связан. Совместное нахождение минералов в природе, обусловленное их близким происхождением, именуется парагенезисом. Минералы сходного генезиса составляют парагенетический ряд.

Например: с пиритом встречаются золото, сидерит, лимонит, гетит, гематит, ярозит, галенит, халькопирит, сфалерит, кварц. Этот набор минералов может относиться к различным, но связанным между собой процессам. Учение о парагенезисе основа современной минералогии. По парагенетическим рядам можно осуществлять научное прогнозирование поисков полезных ископаемых и выяснять общие закономерности происхождения и распространения минералов.

В горных породах возможно определить возрастные соотношения и генерации минералов. Естественно, что если минерал выделился в трещинах другого, нарос на его поверхность, замещает или цементирует его, этот минерал образовался позже. Хорошо окристаллизованные минералы обычно более ранние по сравнению с теми, которые заполняют промежутки между ними и хуже огранены.

Реликты, уцелевшие от растворения и замещения, естественно, тоже являются ранними. Один и тот же минерал может выделяться в разные моменты остывания магмы. Так возникает несколько генераций одного и того же минерала. Одноименные минералы разных генераций отличаются деталями химического состава и парагенезисом. Минералы, характерные для определенного типа генезиса, называют типоморфными. Например, киноварь минерал низкотемпературных жил, гранат минерал зоны глубокого метаморфизма. Типоморфные признаки позволяют судить о генерации минерала.

К примеру, высокотемпературный касситерит пегматитов обычно темный, почти черный, кристаллы его короткопризматические, почти дипирамидальные; содержит до 5% (Nb, Ta)2 O5. Касситерит более низкотемпературных гидротермальных жил чаще всего бурого и светло-бурого цвета, кристаллы его удлиненные, обычная примесь - вольфрам. “Деревянистый” оловянный камень, еще более низкотемпературная генерация касситерита, скрытокристалличен и образует натечные формы.

Заключение

История развития (генезис) горных пород и минералов представляет исключительную ценность при оценке месторождений полезных ископаемых, так как им определяется строение и иногда даже состав полезного ископаемого, условия залегания и нередко мощность месторождения, предопределяются приемы эксплуатации и пр.

Не все минералы или горные породы имеют значение полезных ископаемых, многие еще до сих пор не нашли себе применения в народном хозяйстве.

Однако мы наблюдаем, что по мере развития наук, особенно химии, металлургии и других, все большее и большее количество минеральных тел земной коры переходит в разряд полезных ископаемых. В конечном счете одни раньше, другие позже, но все минералы и горные породы найдут себе то или иное применение в народном хозяйстве, а так называемые «пустые породы» исчезнут.

Список использованной литературы

1. Попов Г.М., Шафрановский И.И. Кристаллография. М.: ГОСГЕО - ЛТЕХИЗДАТ, 1955г.

2. Булах А.Г. Минералогия с основами кристаллографии. М., 1989.

3. Руденко С.А., Иванов М.А., Романов В.А. К дискуссии о происхождении письменных гранитов в пегматитовых жилах // Проблемы кристаллохимии и генезиса минералов. Л.: Наука, 1983. С. 148-156.

Размещено на Allbest.ru


Подобные документы

  • Изучение механических свойств пород и явлений, происходящих в породах в процессе разработки месторождений полезных ископаемых. Классификация минералов по химическому составу и генезису. Кристаллическая решетка минералов. Структура и текстура горных пород.

    презентация [1,6 M], добавлен 24.10.2014

  • Внутреннее строение Земли. Неровности земной поверхности. Горные породы: механические сочетания разных минералов. Классификация горных пород по происхождению. Свойства горных пород. Полезные ископаемые - горные породы и минералы, используемые человеком.

    презентация [6,3 M], добавлен 23.10.2010

  • Способы определения плотности горных пород. Механические свойства, твердость и абразивность. Основные характеристики магнитных и акустических свойств горной породы. Характеристика электромагнитных свойств, их роль в разведке полезных ископаемых.

    контрольная работа [101,4 K], добавлен 14.06.2016

  • Классификация горных пород по происхождению. Особенности строения и образования магматических, метаморфических и осадочных горных пород. Процесс диагенеза. Осадочная оболочка Земли. Известняки, доломиты и мергели. Текстура обломочных пород. Глины-пелиты.

    презентация [949,2 K], добавлен 13.11.2011

  • Образование магматических, осадочных и метаморфических горных пород. Основные виды горных пород и их классификация по группам. Отличие горной породы от минерала. Процесс образования глинистых пород. Породы химического происхождения. Порода горного шпата.

    презентация [1,2 M], добавлен 10.12.2011

  • Исследование особенностей осадочных и метафорических горных пород. Характеристика роли газов в образовании магмы. Изучение химического и минералогического состава магматических горных пород. Описания основных видов и текстур магматических горных пород.

    лекция [15,3 K], добавлен 13.10.2013

  • Промышленная классификация месторождений полезных ископаемых. Приёмы оконтуривания тел полезных ископаемых. Управление качеством руды. Методы подсчёта запасов месторождений полезных ископаемых. Оценка точности подсчета запасов, формы учета их движения.

    реферат [25,0 K], добавлен 19.12.2011

  • Физические свойства минералов и их использование в качестве диагностических признаков. Понятие о горных породах и основные принципы их классификации. Охрана природы при разработке месторождений полезных ископаемых. Составление геологических разрезов.

    контрольная работа [843,1 K], добавлен 16.12.2015

  • Понятие метаморфизма как процесса твердофазного минерального и структурного изменения горных пород. Классификация метаморфических пород по типу исходной породы. Основные типы метаморфизма, факторы их определяющие. Описание некоторых типичных минералов.

    презентация [10,4 M], добавлен 20.04.2016

  • Характеристика основных условий образования глинистых горных пород. Особенности их классификации: элювиальные и водно-осадочные генетические группы глин. Анализ химического, минерального состава, структуры, текстуры и общих свойств глинистых горных пород.

    курсовая работа [35,7 K], добавлен 29.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.