Основные положения кристаллографии и минералогии. Характеристика почвообразования

История науки о кристаллах, их структуре и свойствах. Основные понятия кристаллографии, пирамиды роста и симметрия кристаллов. Физические свойства минералов. Факторы почвообразования, происхождение и характеристика почвенных, грунтовых, артезианских вод.

Рубрика Геология, гидрология и геодезия
Вид контрольная работа
Язык русский
Дата добавления 25.02.2013
Размер файла 49,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Основные положения кристаллографии и минералогии

1.1 Кристаллография

Кристаллография -- наука о кристаллах, их структуре, возникновении и свойствах. Она тесно связана с минералогией, физикой твёрдых тел и химией. Исторически кристаллография возникла в рамках минералогии, как наука, описывающая идеальные кристаллы.

История науки

Истоки кристаллографии можно усмотреть ещё в античности, когда греки предприняли первые попытки описания кристаллов. При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов.

· 1611 год -- трактат «О шестиугольных снежинках» немецкого астронома и математика И. Кеплера. Кеплера иногда называют ранним предшественником структурной кристаллографии.

· Как самостоятельная дисциплина кристаллография была изложена французским минералогом Жаном Батистом Луи Роме-де-Лилем (Rome de l'Isle) в 1772 году в сочинении «Опыт кристаллографии». Позднее Жан Батист Луи Роме-де-Лилем переработав и расширив это сочинение, опубликовал его в 1783 году под названием «Кристаллография, или описание форм, присущих всем телам минерального царства».

· Ренэ-Жюст Гаюи нашёл весьма важный закон о рациональности разрезов по осям, который имеет значение для всего строения кристалла. Независимо друг от друга он и шведский химик Торберн Бергман выяснили, что из всех кристаллов известковых шпатов можно вырубить кристалл основной формы, тем самым открыли существование плоскостей спайности.

· В 1830-е Иоганн Гессель и независимо в 1869 Аксель Гадолин доказали, что в кристаллографии возможны лишь 32 вида симметрии, подразделённые в 6 сингонний.

Первым в России предпринял точные кристаллографические исследования Н. И. Кокшаров, а получил полную классификацию кристаллографической группы Е. С. Фёдоров.

Основные понятия кристаллографии

Для описания симметрии многогранников и кристаллических решеток в кристаллографии установлена следующая иерархия терминов:

· Три категории симметрии.

· Семь сингоний.

· Шесть кристаллических (кристаллографических) систем.

· 14 решёток Браве.

· 32 класса или вида симметрии.

· 230 пространственных групп.

Кроме того, используются термины:

· Простая форма.

· Индексы грани.

· Кристаллическая решётка.

· Обратная решётка.

· Кристаллическая структура.

· Элементарная ячейка.

· Полиморфизм кристаллов.

Пирамиды роста -- пирамиды, основаниями которых служат грани кристалла, а общей вершиной -- начальная точка роста.

Реальный кристалл во многих случаях целесообразно рассматривать как совокупность пирамид роста, поскольку очень часто физические свойства пирамид роста с основаниями, принадлежащим к различным простым формам, оказываются различными. Это подтверждается существованием у многих природных кристаллов структуры песочных часов, случаями закономерной оптической аномалии у кристаллов кубической системы и пр.

Симметрия кристаллов (др.-греч. ухммефсЯб «соразмерность», от мефсЭщ -- «меряю») - это закономерная повторяемость в пространстве одинаковых граней, ребер и углов фигуры, которая может совмещаться сама с собой в результате одного или нескольких отражений. Для описания симметрии пользуется воображаемыми образами -- точками, прямыми, плоскостями, называемыми элементами симметрии.

Плоскость симметрии (P) -- это воображаемая плоскость, которая делит фигуру на две симметрично равные части, расположенные друг относительно друга как предмет и его зеркальное отражение. Ось симметрии (L) -- прямая линия, при вращении вокруг которой повторяются равные части фигуры, то есть она самосовмещается. Число совмещений при повороте на 360° определяет порядок оси симметрии (n). Центр симметрии (С) -- точка внутри кристалла, в которой пересекаются и делятся пополам все линии, соединяющие соответственные точки на его поверхности.

Вид симметрии

Категория

Низшая

Средняя

Высшая

Сингония

Триклинная

Моноклинная

Ромбическая

Тетрагональная

Тригональная

Гексагональная

Кубическая

Примитивный

L1

L4

L3

L6

4L33L2

Центральный

C

L4PC

L3C = Li3

L6PC

4L33L23PC

Планальный

P

L22P

L44P

L33P

L66P

3Li44L36P

Аксиальный

L2

3L2

L44L2

L33L2

L66L2

3L44L36L2

План-аксиальный

L2PC

3L23PC

L44L25PC

L33L23PC = Li33L23P

L66L27PC

3L44L36L29PC

«Инверсионно-примитивный»

Li4

Li6 =L3+^ P

«Инверсионно-планальный»

Li42L22P

Li63L23P

1.2 Минералогия

Минералогия -- наука о минералах -- природных химических соединениях.

Минералогия изучает состав, свойства, структуры и условия образования минералов. Минералогия -- одна из древнейших геологических наук. Первые описания минералов появились у древнегреческих философов. В дальнейшем развитию минералогии способствовало горное дело. В настоящее время интенсивно развиваются генетическая и экспериментальная минералогия.

В минералогии активно используются достижения физики, химии и других естественных наук. Так, минералогическое изучение метеоритов и образцов с других планет позволило узнать много нового об истории Солнечной системы и процессах формирования планет. Изучением минерального состава и минералов комет, метеоров, и других небесных тел, а также астрономической спектроскопией астероидов, комет и пыли околозвёздной среды в целом, занимается молодая наука на стыке минералогии, физики и астрономии -- астроминералогия (astromineralogy).

В рамках минералогии сформировались, а затем выделились в самостоятельные науки кристаллография, петрография, учение о полезных ископаемых, геохимия и кристаллохимия. В последние десятилетия усилиями в основном российских минералогов развивается новое направление генетической минералогии -- онтогения минералов.

Главной международной организацией минералогов является Международная минералогическая ассоциация (The International Mineralogical Association, IMA). Она объединяет минералогические ассоциации различных стран. Минералогов России объединяет Российское минералогическое общество, входящее в состав Европейского минералогического союза.

Физические свойства минералов

Строго говоря, свойства описываются не только физические, но и химические.

В мире насчитывается более 3,5 тысяч минеральных видов. Для того, чтобы отличать их друг от друга используются описания, согласно свойствам.

Особо необходимо выделять диагностические свойства: набор для каждого минерала, позволяющий его однозначно определить.

Оптические свойства.

1. Цвет.

Описывается цвет минерала в куске. Описание цвета должно состоять более, чем из одного слова и содержать описание как гаммы (зеленый, синий...), так и оттенков (темный, светлый, голубоватый...). Примеры: «свинцово-серый; голубовато-зеленый, болотно-зеленый; ярко-оранжевый»

Кроме этого, используется:

Цвет в порошке (цвет черты)

Используется полоска неглазурованного фарфора («бисквит»). По ней надо провести образцом.

Описать цвет получившейся черты.

Если образец более твёрдый, чем бисквит, останется царапина, в этом случае в описании указывается: «черты не оставляет»/«черты нет».

Цвет черты может быть белым, и на белом фарфоре не заметным.

2. Блеск.

Блеск- характеристика отражения света образцом.

Используется описательная характеристика: сопоставление блеска образца с блеском хорошо известных объектов.

Повысить блеск искусственно нельзя, а понизить - легко (поцарапать, заляпать и т.п.). Поэтому при описании минерала необходимо указывать его самый яркий наблюдаемый блеск.

Отсутствовать блеск не может: идеально черное тело - физическая абстракция.

3. Прозрачность.

Прозрачность - характеристика прохождения света сквозь образец.

Используется описательная характеристика: четырехступенчатая градация.

Повысить прозрачность искусственно очень сложно, а понизить - легко (поцарапать, заляпать и т.п.). Поэтому при описании минерала необходимо указывать его самую лучшую прозрачность.

При прочих равных условиях более мелкозернистые агрегаты выглядят менее прозрачными.

Механические свойства

Твердость - сопротивление, оказываемое кристаллом царапающему, сверлящему, шлифующему или давящему предмету.

Испытываемый материал либо царапает эталон и его твёрдость выше, либо царапается эталоном и его твёрдость ниже эталона. Для определения относительной твёрдости минералов используется Шкала Мооса.

Используется относительная характеристика: десятиступенчатая градация, от самого мягкого минерала до самого твердого (в известной части Вселенной, по крайней мере).

Большинство минералов широко распространены, и нет необходимости таскать с собой всю шкалу. Для большинства эталонов подобраны аналоги (приведены в скобках).

Если образец имеет твердость между двумя эталонами, ему сопоставляется дробная твердость. (например, образец царапается кварцем, но сам царапает полевой шпат: его твердость будет составлять 6,5)

4. Излом

Излом - сколы минерала вдоль произвольных направлений.

· Ровный или ступенчатый Характерны для минералов со спайностью.

· Раковистый По форме похож на створку раковины. Характерен для аморфных и подобных им агрегатов (опал, стекло, кварц).

· Занозистый характерен для минералов с игольчатым строением

· Землистый Характерен для глинистых минералов

· Зернистый по виду похож на наждачную бумагу или кусок сахара.

· Неровный

5. Спайность

Спайность - способность кристаллов минерала раскалываться вдоль определенных направлений.

Используется двойная характеристика: пятиступенчатая градация по степени совершенства и указание количества направлений.

По количеству направлений:

· В одном направлении (слюды и т.д.)

· В двух направлениях (и тогда следует указать угол между плоскостями спайности)

· В трех, четырех или шести направлениях (и тогда следует указать фигуру - простую форму, которую ограничивают эти направления. Пример: галит: спайность совершенная, в 3 направлениях по граням куба)

По степени совершенства.

· Весьма совершенная - идеально ровные сколы, зачастую расколоть кристалл можно просто руками (например, слюды).

· Совершенная - видны закономерные довольно ровные сколы, раскалывать образец приходится молотком.

· Средняя различима слабо, требуется навык, а лучше - шлиф и микроскоп.

· Несовершенная видна только под микроскопом.

· Весьма несовершенная аналог выражения «спайности нет». Ведь если долго и упорно колоть один и тот же кристалл, одинаковые направления сколов возникнут, как гласит теория вероятности.

Особые свойства.

В отличие от перечисленных выше, присущи не всем минералам, и по умолчанию, если их нет, в описании не указываются.

Если же они есть, они всегда являются диагностическими для данного минерала.

Полихромная окраска - оптическое свойство, при котором в пределах одного кристалла цвет изменяется в иную хроматическую гамму. В общем, следует относить к экзотическому проявлению цвета... Характерно для галогенидов: флюорита(зеленый-белый-фиолетовый), галита (прозрачный- синий)

Иризация - способность минерала давать отраженный свет иной хроматической окраски. Примеры: лабрадор (синяя иризация), беломорит и т. д.

Двулучепреломление - прозрачных минералов «раздваивать» линии при просмотре сквозь них. Пример: исландский шпат (разновидность кальцита).

Флюоресценция - способность минералов светиться в ультрафиолетовом свете. Пример: галогениды, в частности - флюорит.

Магнитность - Способность отклонять магнитную стрелку. Хорошей магнитностью обладают: магнетит, пирротин, самородное железо, ферроплатина, разновидности ильменита.

Ковкость (пластичность) - способность пластично деформироваться. Хорошей ковкостью обладают: самородные металлы, некоторые их оксиды и сульфиды, глинистые минералы и т.д..

Растворимость в воде (вкус) - для минералов класса галоидных соединений это, зачастую единственный способ отличить один от другого.

Запах - характерный чесночный запах после механического воздействия на образец отличает арсениды. Кроме того, кристаллы нашатыря обладают характерным запахом.

Реакция с соляной кислотой - позволяет быстро отличить минералы класса карбонатов, в т.ч. и друг от друга, по условиям реакции.

Удельный вес (плотность) - особым свойством, строго говоря, не является, но вследствие того, что «на глаз» определяется с трудом, может относиться к особым. Указывается в случае очень больших или наоборот, очень маленьких величин. Примеры: барит, галенит.

2. Факторы почвообразования

К факторам почвообразования относятся: почвообразующие породы, растительные и животные организмы, климат, рельеф, возраст, вода (почвенная и грунтовая), хозяйственная деятельность человека.

Почвообразующие породы.

Почвообразующие породы -- субстрат, на котором образуются почвы; они состоят из различных минеральных компонентов, в той или иной степени участвующих в почвообразовании. Минеральное вещество составляет 60-90% всего веса почвы. От характера материнских пород зависят физические свойства почвы -- водный и тепловой ее режимы, скорость передвижения веществ в почве, минералогический и химический состав, первоначальное содержание элементов питания для растений.

От характера материнских пород в большой мере зависит и тип почв. Например, в условиях лесной зоны, как правило, формируются почвы подзолистого типа. Если в пределах этой зоны почвообразующие породы содержат повышенное количество карбонатов калия, формируются почвы подзолистого типа. Если в пределах этой зоны почвообразующие породы содержат повышенное количество карбонатов кальция, формируются почвы, значительно отличающиеся от подзолистых.

Растительность.

Органические соединения почвы формируются в результате жизнедеятельности растений, животных и микроорганизмов. Основная роль при этом принадлежит растительности. Зеленые растения являются практически единственными создателями первичных органических веществ. Поглощая из атмосферы углекислый газ, из почвы -- воду и минеральные вещества, используя энергию солнечного света, они создают сложные органические соединения, богатые энергией. Наибольшее количество органических веществ дают лесные сообщества, особенно в условиях влажных тропиков. Меньше органического вещества создается в условиях тундры, пустынь, болотистой местности и т.п.

В процессе отмирания, как целых растений, так и отдельных их частей органические вещества поступают в почву (корневой и наземный спад). Количество годового спада колеблется в значительных пределах: во влажных тропических лесах он достигает 250 ц/га, в арктических тундрах -- менее 10 ц/га, а в пустынях -- 5--6 ц/га. На поверхности почвы органическое вещество под воздействием животных, бактерий, грибов, а также физических и химических агентов разлагается с образованием почвенного гумуса. Зольные вещества пополняют минеральную часть почвы. Неразложившийся растительный материал образует так называемую лесную подстилку (в лесах) или войлок (в степях и лугах). Эти образования оказывают влияние на газообмен почвы, проницаемость осадков, на тепловой режим верхнего слоя почвы, почвенную фауну и жизнедеятельность микроорганизмов.

Растительность оказывает влияние на структуру и характер органических веществ почвы, ее влажность. Степень и характер влияния растительности как почвообразующего фактора зависит от видового состава растений, густоты их стояния, химизма и многих других факторов.

Животные организмы.

Основная функция животных организмов в почве -- преобразование органических веществ. В почвообразовании принимают участие как почвенные, так и наземные животные. В почвенной среде животные представлены главным образом беспозвоночными и простейшими. Некоторое значение имеют также позвоночные (например, кроты и др.), постоянно живущие в почве. Почвенные животные делятся на две группы: биофагов, питающихся живыми организмами или тканями животных организмов, и сапрофагов, использующих в пищу органическое вещество. Главную массу почвенных животных составляют сапрофаги (нематоды, дождевые черви и др.). На 1 га почвы приходится более 1 млн. простейших, на 1 м -- десятки червей, нематод и других сапрофагов. Огромная масса сапрофагов, поедая мертвые растительные остатки, выбрасывает в почву экскременты. Согласно подсчетам Ч. Дарвина, почвенная масса в течение нескольких лет полностью проходит через пищеварительный тракт червей. Сапрофаги влияют на формирование почвенного профиля, содержание гумуса, структуру почвы.

Самыми многочисленными представителями наземного животного мира, участвующими в почвообразовании, являются мелкие грызуны (мыши-полевки и др.).

Растительные и животные остатки, попадая в почву, подвергаются сложным изменениям. Определенная их часть распадается до углекислоты, воды и простых солей (процесс минерализации), другие переходят в новые сложные органические вещества самой почвы.

Микроорганизмы.

Огромное значение в осуществлении этих процессов в почве имеют микроорганизмы (бактерии, актиномицеты, низшие грибы, одноклеточные водоросли, вирусы и др.), весьма разнообразные как по своему составу, так и по биологической деятельности. Микроорганизмы в почве исчисляются миллиардами на 1 га. Они принимают участие в биотическом круговороте веществ, разлагают сложные органические и минеральные вещества на более простые. Последние утилизируются как самими микроорганизмами, так и высшими растениями. Органическое вещество почвы, образовавшееся в ней при разной степени разложения растительных и животных остатков, получило название гумус или перегной.

Климат.

К числу важнейших факторов почвообразования относится климат. С ним связаны тепловой и водяной режимы почвы, от которых зависят биологические и физико-химические почвенные процессы. Под тепловым режимом понимают совокупность процессов теплообмена в системе «приземный слой воздуха -- почва -- почвообразующая порода». Тепловой режим обуславливает процессы переноса и аккумуляции тепла в почве. Характер теплового режима определяется главным образом соотношением поглощения радиационной (лучистой) энергии Солнца и теплового излучения почвы. Он зависит от окраски почвы, характера поверхности, теплоемкости, влажности и других факторов. Заметное влияние на тепловой режим почвы оказывает растительность.

Водный режим.

Водный режим почвы в основном определяется количеством атмосферных осадков и испаряемостью, распределением осадков в течение года, их формой (при ливневых дождях вода не успевает проникнуть в почву, стекает в виде поверхностного стока).

Климатические условия.

Климатические условия оказывают косвенное влияние и на такие факторы почвообразования, как почвообразующие породы, растительный и животный мир и др. С климатом связано распространение основных типов почв.

Рельеф.

Рельеф -- один из факторов перераспределения по земной поверхности тепла и воды. С изменением высоты местности меняются водный и тепловой режимы почвы. Рельефом обусловлена поясность почвенного покрова в горах. С особенностями рельефа связан характер влияния на почву грунтовых, талых и дождевых вод, миграция водорастворимых веществ.

Время.

К числу факторов почвообразования относится время -- необходимое условие для любого процесса в природе. Абсолютный возраст почв Восточно-европейской равнины, Западной Сибири, Северной Америки и Западной Европы, определенный радиоуглеродным методом, -- от нескольких сотен до нескольких тысяч лет. Наконец, существенным фактором почвообразования, особенно в последнее время, является хозяйственная деятельность человека.

2.1 Почвенные воды, грунтовые воды, артезианские воды

кристалл минерал почвообразование грунтовый вода

Почвенные и грунтовые воды.

Почвенные воды -- иначе грунтовые (Grundwasser, groundwater), подпочвенные, колодезные (eaux phr й atiques), подземные (eaux souterraines, acqua di centro) и т. п. Так называется вода, скопившаяся в грунте на известной глубине от поверхности, питающая обыкновенные колодцы и вытекающая, в виде родников и ключей, в оврагах и долинах. Обыкновенно она залегает не сплошным водным слоем, а пропитывает собою какую-нибудь горную породу (песок, суглинок, лёсс и т. п.), всю или часть, образуя так называемый водоносный слой, или ярус, большей частью непрерывный на значительной площади.

Мощность водоносного горизонта и степень насыщенности водой крайне разнообразны и иногда достигают значительной величины. Так, по левую сторону Рейна, у Страсбурга, находится насыщенная водой площадь около 20 км шириной и в 10 м мощностью (Добрэ). Весь Лондон и окрестности потребляют воду исключительно из местного непрерывного водоносного горизонта, дающего миллионы ведер в сутки (Прествич), и т. п.

Поверхность грунтовых вод редко бывает горизонтальной; чаще она волниста, образует всевозможные мульды, выпуклины. Циркуляция вод, в общем, слаба, хотя при особо благоприятных условиях (ноздреватости, трещинах в водоносной породе) возможны быстрые подземные течения, как сплошные, так и жильные. Вообще же режим грунтовых вод вполне зависит от физико-географических условий местности.

I. Происхождение почвенных. вод -- вопрос до сих пор темный, несмотря на то, что им занимались очень многие исследователи со времен глубочайшей древности (Фалес, Аристотель, Лукреций, Сенека, Декарт и мн. др.). Воззрения древних и средневековых исследователей можно свести к двум главным. По одному (меньшинств.) -- происхождение подземных вод, ключей, рек и т. п. приписывалось атмосферным осадкам и их просачиванию; по другому, более распространенному мнению, представителем которого является Сенека, подземные, а частью и поверхностные воды считались результатом деятельности сил внутренних, вулканических. Благодаря этим силам, по Сенеке, вода циркулирует в земле по особым ходам, как кровь по нашим жилам; периодичность некоторых источников и речных половодий он сравнивал с периодичностью таких болезней, как лихорадка, подагра. Взгляды Сенеки господствовали до 17 стол. С развитием научной мысли они заменяются теорией просачивания, которая была научно обоснована впервые Мариоттом, а затем Дальтоном, Гагеном и др. По этой теории, часть атмосферных осадков испаряется с поверхности, другая стекает в реки и моря, а третья (по Делессу около 50%) просачивается вглубь, образуя здесь водоносные горизонты, бассейны и проч. Эти подземные воды, в свою очередь, выходят наружу в виде источников, ключей и т. п. Таким образом, в природе совершается постоянный круговорот воды.

Это представление является господствующим до семидесятых годов 19 столетия, когда Фольгер и Новак, почти одновременно, воскресили старые теории Сенеки и Декарта, дав им научное основание. Фольгер (1877) утверждал, что ни одна капля дождевой воды не может просочиться глубоко в землю; никакой самый сильный дождь не в состоянии промочить на значительную глубину никакой, даже песчаной, почвы; вода проникает в грунт лишь в парообразном состоянии, конденсируясь здесь в жидкость под влиянием температурных и других условий.

Новак (1878), опираясь на теорию Фольгера, развил свою теллурическую, чрезвычайно близкую к декартовской. По его мнению, из морей и других крупных бассейнов вода по трещинам проникает в недра, откуда, под влиянием температуры, подымается в парообразном виде вверх. В подтверждение этого, он указывает на некоторые источники на самих верширах гор, каковы, напр., Hexenbrunnen на Броккене, Ochsenkopf на Фихтельгебирге, источники Синая, Арарата и др.; он предполагает, что моря Каспийское и Мертвое, испаряющие (по его вычислениям) воды меньше, чем они получают, должны избыток отдавать глубоким горизонтам земной коры. Теория Фольгера встретила противников (Ганн, Вольни) и сторонников; число последних заметно растет. Исследования Мора, Зонтага, Ярца и др. над просачиванием воды сквозь различные горные породы говорят в пользу теории Фольгера.

У нас, в России, заслуживают внимания наблюдения и опыты Близнина (1887--93) и Головкинского (1895; наблюдения над влажностью почв и опыты, с почвенными лизиметрами).

Кроме того, существует немало установленных фактов, которые стоят, по-видимому, в противоречии с теорией просачивания.

1). Почти всеми исследователями влажности почв констатирован на известной глубине (1 -- 3 метра) так наз. мертвый горизонт, т. е. слой грунта почти предельно сухой в течение круглого года; он наблюдался в подпочвах не только глинистых и суглинистых (Измаильский, Высоцкий, Близнин), но и в песчаных (Любославский).

2). Отсутствие прямой связи между осадками и колебанием уровня П. вод.

3). Весьма часто констатировались грунтовые воды в породах глинистых, водонепроницаемых.

4) Чрезвычайно резкий и быстрый (в один -- два дня) подъем уровня почвенных вод весной.

5). Существование грунтовых вод, часто довольно обильных и на незначительной глубине, в знойных, сухих пустынях.

6). Химический состав почвенных вод, зависящий обыкновенно от состава водоносной горной породы, а не вышележащих.

7). Часто наблюдавшаяся прямая зависимость колебания грунтовых вод от геотермических условий, влажности и давления воздуха. Это и многое др., заставляет нас признать теорию Фольгера вероятной.

II. Режим грунтовых вод. Во всяком случае, каково бы ни было происхождение грунтовых вод, в их жизни играют важную роль почти все физико-географические условия данной местности, каковы климат, геологическое строение, рельеф, растения, животные и пр.

Климатические факторы. Атмосферные осадки обыкновенно прямо не влияют на колебание уровня грунтовых вод. Как показывают почти все наблюдения, несмотря на то что летом выпадает максимум осадков, уровень грунтовых вод идет неуклонно к минимуму. По данным берлинской метеорологической станции, за 15 лет, наблюдалось полное несоответствие в ритмах колебаний тех и других.

Артезианские воды

Артезианские воды - [от назв. франц. провинции Артуа (лат. Artesium), где эти воды издавна использовались], подземные воды, заключённые между водоупорными слоями и находящиеся под гидравлическим давлением. Залегают главным образом в доантропогеновых отложениях, в пределах крупных геологических структур, образуя артезианские бассейны.

Вскрытые искусственным путём артезианские воды поднимаются выше кровли водоносного пласта. При достаточном напоре они изливаются на поверхность земли, а иногда даже фонтанируют. Линия, соединяющая отметки установившегося напорного уровня в скважинах, образует пьезометрический уровень.

В отличие от грунтовых вод, участвующих в современном водообмене с поверхностью земли, многие артезианские воды являются древними и их химический состав обычно отражает условия формирования.

Первоначально артезианские воды связывали с мульдообразными структурами. Однако условия, при которых образуются эти воды, весьма разнообразны; часто артезианские воды можно встретить при флексурообразном асимметричном моноклинальном залегании пластов. Во многих районах они приурочены к сложной системе трещин и разломов.

В пределах артезианского бассейна различают три области: питания, напора и разгрузки. В области питания водоносный горизонт обычно приподнят и дренирован, поэтому воды здесь имеют свободную поверхность; в области напора уровень, до которого может подняться вода, располагается выше кровли водоносного горизонта. Расстояние по вертикали от кровли водоносного горизонта до этого уровня называются напором.

В отличие от области питания, где мощность водоносного горизонта изменяется в зависимости от метеорологических факторов, в области напора мощность артезианского горизонта постоянна во времени.

На границе между областью питания и областью напора, в связи с количеством поступающей атмосферной воды, в различные сезоны может происходить временный переход воды со свободной поверхностью в воды напорные.

В области разгрузки воды выходят на земную поверхность в виде восходящих источников. При наличии нескольких водоносных горизонтов каждый из них может иметь свой уровень, определяемый условиями питания и стока воды.

Когда синклинальное залегание слоев соответствует понижениям рельефа, напоры в нижних горизонтах повышаются; при повышениях рельефа пьезометрические уровни нижних горизонтов располагаются на более низких отметках. Если, благодаря скважине или колодцу, два водоносных горизонта сообщаются, то при обращенном рельефе артезианская вода из верхнего горизонта перетекает в нижний.

Различают артезианский бассейн и артезианский склон. В артезианском бассейне область питания располагается рядом с областью напора; далее по направлению подземного стока располагается область разгрузки напорного горизонта. В артезианском склоне последняя находится рядом с областью питания.

Каждый крупный артезианский бассейн заключает в себе воды различного химического состава: от высокоминерализованных рассолов хлоридного типа до пресных слабоминерализованных вод гидрокарбонатного типа. Первые обычно залегают в глубоких частях бассейна, вторые -- в верхних пластах.

Пресные воды верхних водоносных пластов образуются в результате инфильтрации атмосферных осадков и процессов выщелачивания горных пород. Глубокие высокоминерализованные артезианские воды связаны с измененными водами древних морских бассейнов, находившихся в различные геологические эпохи на территории современных артезианских бассейнов.

Список используемой литературы

1. Шафрановский И.И. Кристаллография в СССР: 1917--1991 / Отв. ред. Н.П. Юшкин. -СПб., 1996.

2. Булах А.Г. Общая минералогия, Спб, 2004, 356 с. Булах А.Г. Общая минералогия, Спб, 2002.

3. Практическое руководство по общей геологии. Под ред. Н.В. Короновского. М.: «Академия», 2004г., 160 с.

4. Каменский Г.Н., Толстихина М.М., Толстихин Н.И., Гидрогеология СССР, М., 1959.

Размещено на Allbest.ru


Подобные документы

  • Основные сведения о строении, свойствах и росте кристаллов. Учение о кристаллографических символах. Симметрия пространственных решеток. Характеристика горных пород. Предмет современной минералогии как науки. Процессы образования минералов в природе.

    курс лекций [852,6 K], добавлен 05.05.2012

  • Исследование основных законов геометрической кристаллографии. Характеристика строения кристаллов по типу пространственной решётки. Закономерные сростки кристаллов. Простые формы кристаллов высшей категории и кубической сингонии. Комбинации простых форм.

    реферат [2,3 M], добавлен 01.07.2016

  • Названия видов симметрии кристаллов по номенклатуре Федорова и Грота (по общим формам). Примеры расположения осей кристаллической решетки при триклинной, моноклинной, ромбической, тригональной, тетрагональной, гексагональной и кубической сингонии.

    презентация [4,4 M], добавлен 12.05.2015

  • Основы учения о факторах почвообразования. Горные породы, из которых формируется почва: магматические, метаморфические и осадочные. Выветривание как совокупность сложных и разнообразных процессов изменения горных пород и слагающих их минералов.

    презентация [2,7 M], добавлен 23.06.2011

  • Предмет, цели и задачи минералогии как науки о минералах, их составе, строении, свойствах, условиях образования и изменения. Типы минералов и особенности их происхождения. Порядок организации разведочных работ поиска месторождений, их основные этапы.

    реферат [30,1 K], добавлен 22.01.2015

  • Понятие почвообразовательного процесса и его основные факторы. Роль климата и рельефа в формировании почв. Характеристика почвы Камчатской провинции (генезис, свойства, распространение). Факторы, влияющие на формирование современного рельефа Камчатки.

    контрольная работа [33,9 K], добавлен 22.08.2010

  • Кристаллическая структура и химический состав как важнейшие характеристики минералов. Осадочное происхождение минералов. Классификация диагностических свойств минералов. Характеристика природных сульфатов. Особенности и причины образования пегматитов.

    контрольная работа [2,2 M], добавлен 07.10.2013

  • Классификация, химический состав и кристаллическая структура минералов, изоморфизм и полиморфизм. Физические процессы, определяющие рост кристаллов. Эволюционные закономерности построения минералов, их значение для познания биологической эволюции.

    реферат [2,2 M], добавлен 30.08.2009

  • Морфология минералов, их свойства, зависимость состава и структуры. Развитие минералогии, связь с другими науками о Земле. Формы минералов в природе. Габитус природных и искусственных минералов, их удельная плотность и хрупкость. Шкала твёрдости Мооса.

    презентация [2,0 M], добавлен 25.01.2015

  • Изучение физических и химических свойств минералов сфалерита и кварца. Определение твердости по Моопсу; спайность, цвет, магнитность кристаллов; характеристика излома, цвет черты. Диагностика в полевых условиях на растворимость в воде; реакция с HCl.

    лабораторная работа [317,7 K], добавлен 09.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.