Океанические впадины

Океанические впадины: общее понятие, виды, особенности строения. Глубоководные желоба Земли. Вулканические процессы океанических впадин. Горные породы, из которых состоит ложе мирового океана. Роль и место океанических впадин в формировании климата.

Рубрика География и экономическая география
Вид доклад
Язык русский
Дата добавления 26.01.2012
Размер файла 22,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Океанические впадины

Крупнейшие впадины, занятые океанами, впадины окраинных морей, развивающиеся в океанических условиях, межгорные впадины, формирующиеся между подводными хребтами и поднятиями, и глубоководные желоба. Они сложно взаимодействуют друг с другом и со смежными океаническими поднятиями, нередко имеют смешанное строение и не всегда выражены в чистом виде. Типичными представителями впадин окраинных морей являются впадины Охотского, Японского, Восточного, и Южно-Китайского морей, образующих гирлянду вдоль восточной окраины Евразии. Наиболее ярко глубоководные котловины и впадины представлены в Тихом океане. Это Гватемальская, Панамская, Перуанская и Чилийская котловины, котловина БеллинсгаузенаРазличают 4 типа океанических впадин. 1. Глубоководные желоба, расположенные по периферии океанов, наиболее широко распространены в Тихом океане, ограниченно - в Индийском, локально - в Атлантическом океане и Средиземном море; обычно параллельны окаймляющим их островным дугам и молодым прибрежным горным сооружениям; имеют резко асимметричный поперечный профиль. Со стороны океана к ним примыкает глубоководная равнина, с противоположной стороны - островная гряда или высокий горный хребет. Превышение вершин гор над днищем желобов может достигать рекордных земных значений - 17 км. Такие желоба типичны для талассократонных побережий. 2. Впадины окраинных морей, окаймляющих Тихий океан, имеют асимметричное строение. В отличие от желобов 1-го типа, к этим впадинам со стороны океана примыкает островная дуга, а с противоположной - глубоководная равнина. Формируются в квазикратонных р-нах. 3. Поперечные, или ответвляющиеся, желоба пересекают океанические хребты, плато и структуры материков. Имеют поперечное, диагональное или кулисообразное плановое строение, симметрично построены и прямолинейны. 4. Параллельные промежуточные впадины расположены параллельно желобам 1-го и 2-го типов, имеют сдвоенные островные дуги или погружённые хребты. Промежуточная впадина расположена между внутренней вулканической и внешней невулканической островными дугами.

Глубоководные желоба

В окраинных частях океанов обнаружены особые формы рельефа дна -- глубоководные желоба. Это сравнительно узкие впадины с крутыми, отвесными склонами, тянущиеся на сотни и тысячи километров. Глубина таких впадин очень велика. Глубоководные желоба имеют почти ровное дно. Именно в них находятся самые большие глубины океанов. Обычно желоба расположены с океанической стороны островных дуг, повторяя их изгиб, или протягиваются вдоль материков. Глубоководные желоба -- это переходная зона между материком и океаном.

Образование желобов связано с движением литосфер-ных плит. Океаническая плита изгибается и как бы «ныряет» под континентальную. При этом край океанической плиты, погружаясь в мантию, образует желоб. Районы глубоководных желобов находятся в зонах проявления вулканизма и высокой сейсмичности. Это объясняется тем, что желоба примыкают к краям литосферных плит.

По мнению большинства ученых, глубоководные желоба считаются краевыми прогибами и именно там идет интенсивное накопление осадков разрушенных горных пород.

Самый глубокий на Земле -- Марианский желоб. Его глубина достигает 11022 м. Он был обнаружен в 50-е годы экспедицией на советском исследовательском судне «Витязь». Исследования этой экспедиции имели очень большое значение для изучения желобов.

Глубоководные желоба Земли

Название желоба

Глубина, м

Океан

Марианский желоб

11022

Тихий

Тонга (Океания)

10882

Тихий

Филиппинский желоб

10265

Тихий

Кермадек (Океания)

10047

Тихий

Идзу-Огасавара

9810

Тихий

Курило-Камчатский желоб

9783

Тихий

Желоб Пуэрто-Рико

8742

Атлантический

Японский желоб

8412

Тихий

Южно-Сандвичев желоб

8264

Атлантический

Чилийский желоб

8180

Тихий

Алеутский желоб

7855

Тихий

Зондский желоб

7729

Индийский

Центральноамериканский желоб

6639

Тихий

Перуанский желоб

6601

Тихий

Из каких горных пород состоит ложе океана

Интерес к изучению дна открытого океана повысился особенно после того, как было установлено, что скорость распространения упругих волн землетрясений различна под материками и под океанами. Скажем, произошло землетрясение на Памире. От места его возникновения во все стороны в земной коре побежали упругие волны, подобные тем, которые появляются в воде, если в неё бросить камень. Во Владивостоке особые чувствительные приборы через несколько минут запишут на ленте лёгкое дрожание. Но вот произошло землетрясение на Гавайских островах. Расстояние от Владивостока до Гавайских островов -- примерно то же самое, что и до Памира, а волны пробегают его значительно скорее. В чём здесь дело?

Известно, что скорость распространения упругих волн тем больше, чем плотнее и тяжелее среда, в которой они распространяются. Значит, дно океана сложено иными породами, чем материк? Но этот вывод нужно ещё проверить.

В земной коре встречаются два основных типа кристаллических пород. Один из них -- относительно лёгкие породы со средним удельным весом 2,7, примером которых служат граниты. Другой -- более тяжёлые породы, богатые окислами железа и магния (удельный вес -- около 3,1); к ним относятся базальт, габбро и др.

На всём громадном пространстве центральной и восточной частей Тихого океана ни на островах, ни на дне не было обнаружено лёгких пород. Может быть, там их вообще нет? Нужно было найти способ, дающий исчерпывающий ответ на этот вопрос. Таким способом оказалось определение силы тяжести.

Знаете ли вы, что килограммовая гиря не везде весит килограмм? Точные пружинные весы покажут различие (правда, выражается оно в миллиграммах) в её весе на экваторе и у полюсов, на равнине и в горах. Дело в том, что тела притягиваются к центру Земли тем сильнее, чем они к нему ближе. А ведь земной шар несколько сплюснут. Поэтому полюсы на 20 километров ближе к центру Земли, чем экватор, и сила тяжести там больше. Если же подняться с гирей на вершину высокой горы, то окажется, что там сила тяжести меньше. Во-первых, мы отдалимся от центра Земли, а во-вторых, горы сложены из более лёгких пород, обладающих сравнительно слабым притяжением.

Вулканы океанических впадин

Океанические впадины занимают 71% поверхности Земли. В них расположены десятки тысяч подводных вулканических гор и сотни вулканических о-вов. Для них характерно развитие так называемых "океанических" базальтов, отличающихся от континентальных. Это либо океанические толеитовые, либо щелочные натровые базальты. В океанических базальтовых толеитах высокое содержание железа и низкое калия. Магма их выплавляется на гл. около 40 км, а щелочных базальтов -- на гл. 40 -- 70 км.

В общей эволюции океанического вулканизма происходила с течением времени смена толеитовых базальтов щелочными. Толеитовые базальты распространены в основаниях океанических о-вов и подводных влк., в срединных океанических хр. Щелочные базальты образуют вершины океанических о-вов и подводных влк. Большинство влк. в океанических впадинах приурочено к разломным зонам.

Согласно современным представлениям о перемещениях литосферных плит, считается, что в срединно-океанических хр. происходит раз движение литосферы в связи с поднятием глубинных расплавов. Базальтовые лавы образуют новую литосферу и земную кору дна океанов. Она постепенно сдвигается в стороны от срединных хр. на периферию океанических впадин. Там происходит поддвигание плит океанической литосферы под островные дуги либо под активные края континентов. Таким образом, имеется взаимосвязь между вулканическими процессами, происходящими при поднятии базальтовой магмы в срединно-океанических рифтах и образованием андезитовой магмы в зонах поддвига. Эти процессы особенно развиты в Тихом океане.

Марианская впадина хранит секреты климата

океаническая впадина глубоководный желоб

Океанические впадины играют решающую роль в формировании климата. К такому выводу пришли ученые после анализа данных, полученных с глубоководного батискафа, исследовавшего Марианскую впадину -- самое недоступное место на планете. Спуск робота-батискафа был осуществлен в конце 2010 года. Это был первый этап исследования, призванного определить роль Мирового океана в круговороте углерода, самого интенсивного биохимического процесса на планете.

Марианская впадина, известная также как Бездна Челенджера, -- это самое глубокое место в океане. Она расположена в Тихом океане, тянется вдоль Марианских островов на 1500 километров, имеет крутые (семь-девять градусов) склоны и плоское дно шириной один-пять километров. Лишь однажды пилотируемый глубоководный аппарат достиг ее дна. 23 января 1960 года лейтенант ВМС США Дон Уолш и щвейцарский исследователь Жак Пикар опустились до отметки 10 915 метров на батискафе "Триест".

Учитывая огромные сложности, связанные с исследованием этих глубин (давление более 1100 атмосфер, мрак и температуры, близкие к нулю, а также сложная последующая реабилитация экипажа батискафа), сегодня исследования проводятся с помощью оснащенных по последнему слову техники роботов. В конце уходящего 2010 года международная команда исследователей под руководством Рони Глада из Копенгагенского университета осуществила погружение такого батискафа и опубликовала первые результаты экспедиции.

Ученые пришли к выводу, что океанические впадины действуют как поглотители двуокиси углерода (СО2 -- самой распространенной формы углерода в биосфере), причем гораздо более активные, чем считалось ранее, и играют не последнюю роль в формировании климата. "Мы хотели определить, сколько органического материала откладывается на дне и поедается ли этот материал бактериями, или распадается, или складируется. Выяснилось, что океанические впадины -- это своеобразные ловушки органического вещества, которое подвергается там интенсивной переработке бактериями. Там больше бактерий, чем на глубинах шесть тысяч метров на абиссальных равнинах (глубоководные океанические равнины), которые ранее считались главными утилизаторами органики", -- сказал Глад ВВС.

Причем эта способность непропорционально велика по сравнению с площадью поверхности, занимаемой впадинами. "Хотя эти впадины занимают только около двух процентов от поверхности океана, мы думаем, что их роль в круговороте углерода очень велика, в том смысле, что они, вероятно, аккумулируют гораздо больше углерода благодаря тому, что функционируют как ловушки, то есть в их глубинах аккумулируется больше органической материи, чем в других частях океана", -- сказал Глад.

Океанические впадины действуют как поглотители двуокиси углерода подобно тому, как это делают на поверхности планеты леса. Такие ловушки могут действовать в направлении, обратном глобальному потеплению, и способствовать поддержанию экосистемы планеты в равновесии. "Чем больше углерода захватывает Мировой океан, тем больше кислорода в атмосфере", -- сказал Глад.

В данном исследовании участвуют Институт морской микробиологии Макса Планка в Бремене, японское Агентство морской геологии и технологии (JAMSTEC) и Копенгагенский университет. Робот-батискаф достиг дна впадины через три часа после старта. Для измерения накопленного углерода впервые были созданы и применены сложные глубоководные приборы. Чтобы выдержать давление почти 11-километрового столба воды, все датчики были сделаны из титановых сплавов. На следующем этапе ученые намереваются установить, сколько углерода аккумулируется во впадинах по сравнению с другими частями океанического дна.

Океанические впадины не впервые удивляют ученых. В 2008 году интернациональная экспедиция под руководством британского Университета Абердина обнаружила на глубине более семи тысяч метров неизвестные виды глубоководных рыб, креветок и прочих ракообразных. Экспедиция специалистов исследовала океанский разлом вблизи побережья Чили и Перу в юго-восточной части Тихого океана, где глубина доходит до 7500 метров. Тогда возникло три вопроса: чем эти виды питаются, как выдерживают колоссальное давление и как размножаются. Судя по всему, первый вопрос решен -- органикой, которую океанические глубины "засасывают", как космические черные дыры.

Главные черты строения океанических впадин

Представим себе, что каким-то чудом воды океанов вдруг исчезли и нашему взору открылись просторы океанских пучин. Мы увидели бы там странный и необычный мир, непохожий на все то, что окружает нас на суше.

Современные карты Мирового океана, составленные учеными, показывают действительную картину подводного рельефа.

Острова-материки высоко поднимаются над ложем океанов, лежащим ниже их на 5--6 км. Характерные для большинства материков равнины полого спускаются за береговую линию морей и океанов и тянутся там еще на несколько десятков, а во многих местах (например, в Арктике) на несколько сотен километров в виде так называемой материковой отмели.

Поверхность материковых отмелей очень полого наклонена в сторону океана. Ученые полагают, что равнины эти имеют то же самое происхождение, что и равнины материковой суши. Они образовались при выравнивании сложного рельефа суши реками, а также за счет выветривания, но потом оказались затоплены водами океана. Материковые ледники -- эти огромные запасники воды -- сильно подтаяли, и воды океана «вышли из берегов», затопив прибрежные равнины древней суши. Следы былого рельефа суши еще и сейчас можно видеть на материковой отмели в виде характерных холмов ледникового происхождения, остатков речных долин, древних береговых обрывов. В разных местах Земли глубины материковых отмелей неодинаковы. Они зависят от деформации материковых окраин, вызванных тектоническими движениями. Обычно материковая отмель резко обрывается и сменяется круто падающим вниз материковым склоном.

Поперечный профиль Индийского океана, захватывающий материковый склон (слева), океаническую кору и рифтовую зону 1. Рыхлые породы осадочного чехла. 2. Уплотненные породы осадочного чехла. 3. Гранитные породы материковой коры. 4. Базальтовые породы океанического дна. 5--7. Глубинные породы верхней мантии.

Высота материковых склонов достигает 4--5 км; они очень круты и по наклону мало чем отличаются от высоких горных хребтов суши. Местами материковые склоны переходят в почти отвесные уступы. Поверхность склонов сложная: ступени и уступы расчленены множеством подводных каньонов. Часто здесь продолжаются горные хребты и долины суши. Встречаются и замкнутые котловины, которые отделяют от открытого океана подводные или выступающие над водой горные хребты. Вершины таких хребтов часто образуют гирлянды островов -- островные дуги, очень характерные для Тихого океана.

Ширина материковых склонов из-за их крутого падения обычно невелика -- около 50--100 км, но, если склон раздроблен на ряд ступеней, котловин и островные дуги, он образует широкую (до 1000 км) переходную зону. У подножия материковых склонов во многих местах тянутся глубокие и узкие океанические желоба. Здесь и находятся самые большие глубины океана, достигающие свыше 10 км.

В центральных частях океана глубины обычно не превышают 6,5 км. В области материковых склонов происходят землетрясения. Края материков в этих районах поднимаются или опускаются, трескаются, выгибаются. Особенно много землетрясений связано с островными дугами и глубоководными желобами, в которых располагается множество вулканов. По побережью Тихого океана вулканы образуют знаменитое тихоокеанское «огненное кольцо». Вздрагивающие от подземных толчков берега Тихого океана таят в себе много опасностей для жителей этих мест.

Схема последовательного развития разлома, или рифтовой зоны. 1. Базальтовый слой, или океаническая земная кора. 2--3. Породы верхней мантии.

Толчки океанского дна вызывают гигантские волны -- цунами, обрушивающиеся на берег. От подножия материковых склонов и за глубокими рвами океанических желобов начинаются просторы океанского ложа. Его поверхность сложно расчленена. Она то холмиста, то местами более или менее выровнена и даже идеально плоска. Местами она разделена системами поднятий на отдельные котловины. На ложе океана множество подводных вулканических гор да и бесчисленные холмы, по-видимому, также вулканического происхождения. Во многих местах равнины океанского ложа прорезают трещины -- тектонические разломы.

Вблизи подножия материковых склонов поверхность ложа океана из-за толщи накапливающихся там осадков часто бывает приподнята, так что постепенно сливается с нижней частью склона. Если у подножия материкового склона лежит глубоководный желоб, то вдоль него по краю ложа океана тянется, как правило, широкий краевой вал. Это образование тектоническое -- своеобразная реакция океанского ложа на прогибание желоба.

Из поднятий, разделяющих ложе океана на отдельные котловины, наиболее значительны срединно-океанические хребты. Впервые их обнаружили в Атлантическом и Индийском океанах, а затем оказалось, что они соединяются в одну общую планетарную систему и протягиваются из Северного Ледовитого океана через Атлантический и Индийский в Тихий. Эта горная система, опоясывающая весь земной шар, достигает в длину 60 тыс. км. Ничего подобного срединно-океаническим хребтам на суше нет -- ведь все горные системы материков, как бы велики они ни были, все же разобщены между собой впадинами океанов.

Срединно-океанические хребты -- величественные горные образования шириной в несколько сотен километров и высотой около 2--3 км. Они состоят из нескольких параллельных горных гряд. Их склоны опускаются к ложу океана широкими ступенями.

В самой высокой центральной части вдоль гребней тело хребта прорезают глубокие так называемые рифтовые ущелья. По их названию всю осевую зону срединно-океанических хребтов называют рифтовой. Рифтовые ущелья и рифтовые зоны в геологическом отношении необычайно интересны. Здесь исключительно высока сейсмическая активность; каждый день бывает до 100 землетрясений. Из недр Земли выходит сильный поток тепла, широко развита вулканическая деятельность. В стенках рифтового ущелья и на гребнях прилегающих к нему рифтовых гряд обнажаются глубинные породы Земли. Предполагают, что срединно-океанические хребты образовались там, где глубинные породы мантии поднимались вверх под влиянием радиоактивного разогрева. Они выжимались вверх сквозь трещины земной коры, раздвигая ее в стороны, -- отсюда горизонтальное смещение окружающих материков и поднятие горных гряд в рифтовой зоне.

На океанском ложе встречаются узкие, вытянутые, с крутыми склонами и ровными вершинами плато. Они имеют глыбовую структуру -- это поднятые вверх блоки земной коры, которые почти не подвержены землетрясениям. К ним относятся: хребет Ломоносова в Северном Ледовитом океане, хребет Наска в Тихом и т. д.

Есть еще одна разновидность подводных хребтов -- вулканические хребты. Они образованы цепочками подводных вулканов, сидящих на общем цоколе и сомкнувшихся своими склонами. Например, Гавайский подводный хребет в Тихом океане. Он тянется на несколько тысяч километров из центральной части океана почти до Командорских островов. Вершины южной части этого хребта выступают над водой в виде Гавайских островов.

На ложе океана встречаются и так называемые валы -- широкие массивные поднятия с сильно пологими склонами. Очень часто на поверхности валов располагаются конусообразные подводные горы. Как правило, это действующие или потухшие вулканы; обычно они увенчаны огромными коралловыми постройками, выступающими над поверхностью океана в виде коралловых островов -- атоллов. Если даже потухший вулкан, прогибая своим весом земную кору, будет опускаться, непрерывно растущие кораллы поддержат существование острова. Разве что резкое похолодание вод убьет кораллы или опускание вулкана окажется столь быстрым, что они не «угонятся» за ним. В просторах океанов (особенно в Тихом) разбросано множество атоллов. Это острова Туамоту, Тубуаи, Каролинские, Маршалловы, Эллис, Гилберта, Феникс и множество одиночных атоллов. Большая часть этих островов вытянута цепочками, -- значит, их вулканические основания располагаются вдоль подводных валов. Система валов делит ложе Тихого океана на несколько крупных котловин: Северо-Западную, Северо-Восточную, Марианскую, Центральную, Южную, Беллинсгаузена, Чилийскую, Панамскую.

Есть еще одна замечательная особенность строения океанского ложа -- так называемые зоны разломов. Это узкие и необычайно длинные полосы сложно раздробленного дна: то крутые сбросовые уступы, то гребни и желоба, то просто сложно расчлененный рельеф. Они тянутся на сотни и тысячи километров. Зоны разлома говорят о том, что когда-то отдельные глыбы или плиты смещались относительно друг друга; в результате в земной коре образовались швы. Смещения могли быть как в горизонтальном направлении, местами на сотни километров, так и в вертикальном -- на сотни и даже на две-три тысячи метров. Сейчас считают, что главной причиной образования зон разломов послужило неравномерное раздвижение земной коры в сторону от рифтовых зон срединно-океанических хребтов.

Размещено на Allbest.ru


Подобные документы

  • Геологическое строение и рельеф дна Тихого океана. Подводные окраины материков. Срединно-океанические хребты и ложе океана. Распределение солености вод, климат и течения. Фитопланктон Тихого океана, его животный мир, богатые месторождения минералов.

    реферат [4,5 M], добавлен 19.03.2016

  • Тихий океан, его площадь, границы, географическое положение. Ложе океана, срединно-океанические хребты и переходные от океана к материкам зоны, острова. Климат и гидрологические условия Тихого океана. Особенности его животного и растительного мира.

    реферат [1,3 M], добавлен 13.04.2010

  • Ориентировочное время и источники образования Тихого океана. Ложе, срединно-океанические хребты и переходные зоны. Климат и гидрологические условия, особенности животного и растительного мира океана, влияние на них разных течений. Явление Эль-Ниньо.

    реферат [29,0 K], добавлен 14.04.2010

  • Жидкие, газообразные, растворенные и твердые минеральные ресурсы. Самые крупные нефтегазоносные бассейны на шельфе Атлантического океана. Энергетический потенциал океанических течений. Фитопланктон и зоопланктон. Освоение ресурсов Мирового океана.

    реферат [24,0 K], добавлен 16.04.2013

  • Основные черты рельефа дна Мирового океана. Ресурсы Мирового океана. Континентальный шельф, склон, континентальное подножье. Жидкая руда. Кладовые океанического дна. Глубоководные рудные осадки гидротермального происхождения. Недра морского дна.

    курсовая работа [947,3 K], добавлен 16.12.2015

  • Изучение внутреннего строения Земли. Внутреннее строение, физические свойства и химический состав Земли. Движение земной коры. Вулканы и землетрясения. Внешние процессы, преображающие поверхность Земли. Минералы и горные породы. Рельеф земного шара.

    реферат [2,4 M], добавлен 15.08.2010

  • Система срединно-океанических хребтов. История формирования Индийского океана. Рельеф дна океана. Моря Индийского океана. Крупные материковые острова. Температурные характеристики вод. Циркуляция поверхностных вод. Солёность воды и водный баланс.

    презентация [1,2 M], добавлен 27.01.2016

  • Роль Мирового океана в жизни Земли. Влияние океана на климат, почву, растительный и животный мир суши. Характерные свойства воды — соленость и температура. Процесс образования льда. Особенности энергии волн, приливно-отливных движений воды, течений.

    презентация [2,5 M], добавлен 25.11.2014

  • Характеристика географического положения второго по величине океана Земли – Атлантического. Особенности климата, геологического строения и рельефа дна. История открытия океана. Органический мир, хозяйственная деятельность, добыча полезных ископаемых.

    презентация [1,4 M], добавлен 28.11.2012

  • Процесс образования осадочных пород в мировом океане. Роль климата, рельефа, морских животных и растительных организмов в формировании осадков. Характер жизнедеятельности организмов и их распределение в водах Мирового океана. Развитие биосферы Земли.

    контрольная работа [632,9 K], добавлен 07.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.