Необратимые изменения океанов

Непостоянство постоянных течений. Схема циркуляции вод океана. Тропические ураганы, теории возникновения, схема строения, штормовая катушка. Смерчи и вихри. Каньоны под морем, области распространения, процесс образования гайота. Световые эффекты в океане.

Рубрика География и экономическая география
Вид курсовая работа
Язык русский
Дата добавления 25.08.2010
Размер файла 548,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

НЕПОСТОЯНСТВО ПОСТОЯННЫХ ТЕЧЕНИЙ

В последние десятилетия изменились старые представления о Гольфстриме, как о «реке в океане». В верхних слоях Гольфстрим представляет собой сложную систему струйных течений и круговоротов. Течение живо реагирует на изменения гидрологических процессов если не всего Атлантического океана, то по крайней мере большей части его.

ЧЕЛОВЕК И СТИХИЯ, 1973 ГОД

Летом 1513 года флотилия испанского конкистадора Понсе де Леона стояла на якоре вблизи южной оконечности полуострова Флорида. Был полный штиль. Казалось, ничто не предвещало опасности. Вдруг какая-то сила сорвала с якоря один из кораблей и потащила его в открытый океан. По флотилии объявили аврал. Суда поспешили вслед удаляющемуся кораблю. При штиле лишь через несколько часов удалось настичь беглеца. И тут-то моряки заметили, что они плывут среди воды удивительного темно-синего цвета, которая резко отличается от зелено-голубоватой океанской.

Так было открыто одно из крупнейших течений Атлантики и всего Мирового океана. Позднее оно получило название Гольфстрим, то есть «река залива», поскольку основная его ветвь выходит из Мексиканского залива и, подобно могучей реке, наискось пересекает Атлантику, достигая побережья Норвегии. Расход воды в «русле» течения составляет примерно 70 миллионов кубометров в секунду -- в 50 раз больше, чем расход всех рек земного шара. Естественно, что такой поток издавна привлекал внимание мореплавателей, пытавшихся понять его причину и использовать его в своих целях.

В начале XVIII столетия генеральный почтмейстер британских колоний в Америке Бенджамин Франклин обратил внимание на то, что английские пакетботы доставляют почту из Европы в Новый Свет с большим опозданием. Дело заключалось в том, что капитаны пакетботов не желали слушать американских китобоев, которые советовали избегать сильного встречного течения у берегов Америки. Тогда Франклин, успешно совмещавший руководство почтовым ведомством тринадцати североамериканских колоний с изучением физических и природных явлений, обратился к рыбакам и китобоям. По его просьбе известный в те времена капитан Фольджер из Нанкета, регулярно промышлявший китов вблизи берегов Гренландии и хорошо знавший Северную Атлантику, составил карту течения. Сопоставив эту карту с донесениями с других судов, Франклин сумел проследить особенности струи на большей части океана и в 1 770 году опубликовал генеральную схему Гольфстрима.

На этой схеме Гольфстрим, берущий начало из Мексиканского залива, огибал полуостров Флорида, прижимаясь к восточному берегу Северной Америки, достигал мыса Хаттерас и круто поворачивал на северо-восток в открытый океан. На всем своем протяжении, вплоть до центральной части Северной Атлантики, Гольфстрим изображался как непрерывный поток, своего рода река в жидких берегах. Таким он представлялся на морских картах до самого последнего времени.

В виде сплошных струй показаны и другие постоянные течения Мирового океана.

Представление о циркуляции вод в океане как о движении постоянных потоков сложилось на основании изучения обрывочных данных о сносе судов. Эти сведения обобщались и осреднялись за длительные промежутки времени -- вплоть до десятилетий, что в итоге дало возможность выявить крупные циркуляционные системы в океане и изучить картину переноса поверхностных вод.

Более детальные исследования течений в Мировом океане начали проводиться после того, как океанологи стали понимать влияние неравномерности распределения солнечной энергии на поверхности Земли. Наша планета получает и поглощает теплоту неравномерно: ее поступление в низких широтах больше, чем в высоких, ее поглощение поверхностью суши отличается от поглощения поверхностью океана.

Все это создает неравномерность в распределении плотности океанской воды, способствует возникновению и движению атмосферных образований, циклонов, пассатных и муссонных ветров. Этот мощный природный механизм дает импульс водным массам и постоянно снабжает их энергией, необходимой для движения. Это перемещение водных масс зависит, кроме того, от отклоняющей сил вращения Земли (изменяющейся по значению от экватора к полюсу), очертания берегов океана, рельефа дна.

Рис. 30. Схема циркуляции вод океана: 1 -- береговая линия, ограничивающая площадь Мирового океана, занимаемую им на данной географической широте; 2 -- направления основных потоков; 3 -- главные океанические фронты.

Совокупность всех действующих сил и создает сложную картину движения водных масс в океане. Для того чтобы охарактеризовать основные потоки в океане, учеными была разработана схема идеального океана, отражающая его основные размеры в широтном и меридиональном направлениях (рис. 30). При этом наглядно отразились: вытянутость океанов по меридиану; наибольшая ширина океанов в тропиках; сближение океанских берегов к северу; наличие сплошного водного кольца между 35 -- 40° южной широты и Антарктидой. Расчеты течений проводились с помощью метода, учитывающего разность плотностей вод, действие ветра, влияние рельефа дна. Полученная в итоге картина отражает особенности поверхностных океанских течений.

На всей акватории от 60 -- 70° северной широты до 35 -- 40° южной воды переносятся в широтном направлении: с востока на запад в тропиках и с запада на восток в умеренных широтах. При встрече с берегами материков потоки разветвляются и создают круговое обращение вод. На экваторе формируется система антициклонических круговоротов, которая связывает обращение вод северного и южного полушарий. На всем пространстве между 35 -- 40° южной широты и Антарктидой нет сколько-нибудь значительных массивов суши. Здесь господствуют сильные и устойчивые западные ветры, которые приводят к интенсивному переносу вод в восточном направлении. Создается самое мощное во всем Мировом океане циркуляционное течение, соединяющее обращение вод трех океанов. В арктическом бассейне в соответствии с особенностями его конфигурации и наличием полярного центра высокого давления в атмосфере образуется своя циркуляционная система.

Таким образом, круговорот вод в отдельных районах Мирового океана является неотъемлемой частью движения вод, естественным процессом, замыкающим их потоки.

Скорость поверхностных течений в соответствии с интенсивностью и устойчивостью ветров в целом повышается в направлении от полюсов к экватору. Такая картина постоянных поверхностных течений, полученная расчетным путем для идеального океана, очень схожа с картиной реальных потоков в Атлантическом и Тихом океанах. Здесь можно проследить теплые течения Гольфстрим и Куросио I (см. рис. 30), Зеленого Мыса и Мексиканское II, Бразильское и Во-сточноавстралийское III, холодные Лабрадорское и Алеутское IV, Бенгальское и Перуанское V. Исключение составляет Индийский океан, где «отсутствие» северной части приводит к тому, что перенос вод осуществляется в основном в широтном направлении.

При большом различии факторов, определяющих движение вод во внутренних морях, здесь также наблюдаются кольцеобразные течения, однако циркуляционные системы морей отличаются значительным разнообразием и сложностью. К тому же они менее устойчивы (их изменчивость связана с переменой ветра). При относительно ограниченных размерах морей даже сравнительно небольшое изменение преобладающих ветров приводит к существенной перестройке общей системы обращения вод. В морях северного полушария (Черном, Каспийском, Балтийском, Охотском) наблюдается циклоническое (против часовой стрелки) вращение вод. Однако в Аральском море преобладает антициклонический круговорот, что объясняется особенностями ветрового режима бассейна.

На фоне выявленных общих закономерностей циркуляции вод в океане заметны отклонения, связанные с местными условиями и внутригодовой изменчивостью. В 30-х годах были установлены сезонные колебания Гольфстрима, однако общего представления о пространственной стабильности течений это открытие не поколебало.

Рис. 31. Фактическое положение основной струи Гольфстрима в конце апреля -- начале мая 1975 года по данным судовой и авиатемпературной съемки: 1 -- антициклонические вихри (по часовой стрелке); 2 -- фактические границы основного потока; 3 -- среднее положение максимума течения в апреле; 4 -- циклонические вихри (против часовой стрелки)

В конце 40-х -- начале 50-х годов изобретены электромагнитные измерители течений, разработаны приборы, позволяющие измерять тепловое излучение поверхности моря с низко летящего самолета. Новая техника позволила рисовать почти «мгновенные» картины всего течения. Развитие расчетных методов дало возможность оценить влияние изменений поступления солнечной радиации к поверхности Земли и ветровой активности от сезона к сезону. Были построены расчетные карты поверхностных течений Мирового океана для всех четырех сезонов, которые неплохо совпадали с результатами имеющихся наблюдений.

Было установлено, что все основные известные круговороты и течения океана существуют во все сезоны. Однако они различаются по пространственному положению и скоростям. Так, зимой в Атлантическом океане круговороты тропической и экваториальной зон имеют гораздо большую протяженность (от Африки до Южной Америки), а северный тропический циклонический круговорот располагается значительно севернее (на 10°) северной широты. В летний сезон в Атлантике заметно усиливается Мексиканское течение. Увеличивается как ширина и протяженность потока (зимой он просматривается к востоку от 20° западной долготы, летом -- на 40° западной долготы), так и скорость течений (от 50 сантиметров в секунду зимой до 70 сантиметров в секунду летом). Усиливается также Северное Пассатное и особенно Канарское течение, струи которого в летний сезон проникают в Гвинейский залив, подпитывая Гвинейское течение. Более мощным становится и Южное Пассатное течение, что особенно заметно в восточной части океана вблизи экватора.

Похожие изменения течений происходят и в Тихом океане.

Использование новых приборов и технических средств -- авиационных и космических -- позволило глубже изучить структуру крупных океанских течений. В частности, выяснилось, что эти потоки представляют собой далеко не «реку в жидких берегах», как думали раньше. Оказалось, что течения состоят из ряда перемежающихся струй, движущихся с различной скоростью. В потоке Гольфстрима была измерена скорость: она составила 2,7 метра в секунду, или 5,2 узла. Это самое сильное течение, измеренное в открытом океане. Кроме того, обнаружилось, что по обеим сторонам основного потока имеются узкие противотечения, но со стороны океана противотечение более устойчиво и скорости здесь могут достигать 2 узлов.

Выяснилась и еще одна интересная особенность Гольфстрима в западной части Атлантики. Отрываясь от мыса Хаттерас, Гольфстрим течет узким потоком, который изгибается в пространстве, образуя излучины (подобно речным меандрам). Меандры, увеличиваясь в размерах, перемещаются вместе с течением, а иногда отрываются от него и движутся самостоятельно.

Оторвавшиеся меандры образуют вихри. Слева от генерального потока вихри вращаются по часовой стрелке, справа -- против. Скорость течения в этих завихрениях составляет 0,3 -- 2,0 узла (рис. 31). При этом внутри Циклонических вихрей, проникающих в область теплого океана к югу от основной ветви течения, вода холодная, а внутри антициклонов, вторгающихся в холодную область к северу от течений, -- теплая.

Наблюдения последних лет показали, что, например, в поле Гольфстрима образуются по пять -- восемь пар циклонов и антициклонов в год. Особенно хорошо развитые циклоны Гольфстрима имеют диаметр до 200 километров и захватывают слой водных масс почти до ложа океана (2500 -- 3000 метров). Циклоны Гольфстрима дрейфуют в основном на юго-запад со скоростью до 3 миль в сутки.

Наблюдения показывают, что этот дрейф не просто перенос движения: вихрь «тащит» с собой всю составляющую его водную массу. Отдельные циклоны Гольфстрима живут два года и более, постепенно теряя свою энергию в результате перемешивания с окружающей водой, и могут отходить от Гольфстрима на расстояние свыше 1000 километров. Как правило, эти циклоны исчезают около восточного берега полуострова Флорида.

Антициклонические кольца, отделяющиеся от Гольфстрима с северной стороны, обычно смещаются на запад-юго-запад со скоростью до 3 миль в сутки. Каждое кольцо существует около года, по истечении этого времени вихревая система, достигая мыса Хаттерас, снова вливается в Гольфстрим. Однако отдельные вихри движутся на юго-восток и, пересекая основную ветвь Гольфстрима, попадают в Саргассово море. При этом температура воды в центре этих образований уже ниже температуры окружающих теплых океанских вод.

В последнее время кольцеобразные течения обнаружены и в других акваториях. Океанологи Советского Союза и Японии исследуют их в районе течения Куросио, полагая, что они должны определять погоду в этом районе и воздействовать на биологические процессы, важные для рыболовства. Отмечено, что биологические сообщества в кольцеобразных течениях весьма своеобразны по сравнению с сообществами в соседних областях океана.

Циркумполярное течение, движущееся вокруг Антарктиды, оказалось, также порождает кольцеобразные независимые холодные системы. Однако их размеры уступают тем, что наблюдаются вблизи Гольфстрима. Например, обнаруженное кольцевое течение южнее мыса Горн имеет диаметр примерно 50 миль, а скорость движения воды составляет приблизительно 2 узла. Специалисты объясняют это тем, что скорость самого Циркумполярного течения меньше, чем скорость Гольфстрима.

Очевидно, кольцеобразные крупномасштабные течения свойственны всем районам Мирового океана, где есть мощные потоки водных масс. Природа их образования до конца не выяснена. Одни океанологи предполагают, что толчок к началу процесса образования петель Гольфстрима дает ветер вблизи восточных берегов Америки. Другие связывают меандрирование течения с разницей плотности вод основного потока Гольфстрима и окружающих водных масс Атлантики. Существует еще несколько точек зрения на причины этого явления. Но в любом случае очевидно, что понятие «постоянные течения в океане» весьма относительно: потоки водных масс, как и потоки в атмосфере, обладают неустойчивостью, только гораздо большей.

Это стало еще более ясно после анализа результатов экспериментов, проведенных в Атлантическом океане океанологами СССР и США в 70-х годах. В этих экспериментах, получивших названия Полигон-70, Моде-73, Полимоде-77, проводились длительные (до года) наблюдения за течениями на различных глубинах в сотнях точек тропической Атлантики в районе Бермудских островов. Такое одновременное измерение течений на большой акватории океана позволило обнаружить мощные вихре-образные возмущения в поле скорости течения, перемещавшиеся через область наблюдений.

Эти вихри имеют в поперечнике приблизительно 200 километров, проникают в океан на значительную глубину, и скорость их перемещения на запад составляет 2 -- 6 километров в сутки. Однако в отличие от фронтальных вихрей Гольфстрима, возникающих при меандрировании основной струи, вновь обнаруженные вихри составляют сплошное поле располагающихся примерно в шахматном порядке циклонов и антициклонов. При этом два соседних вихря имеют общую область максимальных скоростей течений, а поступательное движение вихря осуществляется не посредством переноса самих водных масс (как это наблюдается у фронтальных вихрей), а путем перемещения вихреобразного возмущения поля скорости. При этом сами частицы остаются на месте.

Такие вихревые движения получили название синоптических вихрей открытого океана. Это название указывает на их подобие перемещающимся атмосферным циклонам и антициклонам. Как и атмосферные образования, синоптические вихри -- типичное природное явление Мирового океана. Они были обнаружены в экваториальной зоне Тихого океана, в Тихом и Индийском океанах к востоку и западу от Австралии, в районе Гавайских островов, в проливе Дрейка, в Арктическом бассейне, вблизи южной оконечности Африки и в ряде других районов океана.

Как и атмосферные образования, синоптические вихри океана ведут свое происхождение от неустойчивости крупномасштабных течений. Потоки воздуха в атмосфере и потоки воды в океане обладают некоторым «излишком» энергии по сравнению с той, которая необходима для их движения. Этот излишек энергии при движении потока в переслоенной среде (плотность воды или воздуха неодинакова по горизонтали и по вертикали) под влиянием сил Кориолиса и в результате неустойчивости движения дает толчок образованию волнообразных синоптических вихрей. Он же их «подпитывает». Синоптические вихри в атмосфере существуют примерно неделю, постепенно распадаясь. Вихри в океане живут значительно дольше (плотность воды гораздо больше плотности воздуха) -- до нескольких месяцев и играют в его жизни существенную роль.

Открытие синоптических вихрей имеет большое значение для понимания и объяснения многих крупномасштабных явлений в океане. С участием вихрей происходят переносы веществ и энергии в океане. Без их изучения невозможно понимание физики океанской циркуляции, а значит, и создание достаточно близкой к природе физической модели крупномасштабного взаимодействия атмосферы и океана. Такая модель в свою очередь необходима для создания надежных методов долгосрочного прогноза погоды.

Распространение звука в океане существенно зависит от распределения в нем плотности воды, что во многом определяется расположением и перемещением циклонических и антициклонических вихрей. В центральных частях циклонических вихрей наблюдается апвеллинг, и эти области характеризуются значительно большей биологической продуктивностью.

Наконец, система циркуляции синоптических вихрей и есть то реальное поле течений, которое воздействует на находящееся в океане судно. Отсюда ясна важность исследования вихрей для океанской навигации. Проходя районы с постоянными течениями, нанесенными на гидрометеорологические карты, судоводители должны знать, что вследствие изменчивости направлений и скоростей течений фактический снос судна на течении может сильно отличаться от предполагаемого.

К сожалению, фронтальные и синоптические вихри еще слабо изучены, и методов прогноза их образования и перемещения пока не разработано.

ТРОПИЧЕСКИЕ УРАГАНЫ

Первый удар полной силы. Дом разваливается. Я вглянул на барометр, который показывал 674,5 мм, уронил его в воду, и меня выдуло ветром наружу, в море.

...Я пришел в себя на дереве и увидел, что застрял в ветвях пальмы на высоте 20 футов над землей.

Дж. Лузин. Ураган 2 сентября 1935 г. в Лонг Кей, Флорида

«Вы легко можете представить мое удивление, огорчение,... когда я увидел ужасающее положение острова Барбадос и разрушающую силу урагана. Крепчайшие здания и целые кварталы домов, большинство которых было из камня и отличалось своей солидностью, уступали ярости ветра и были сорваны до основания. Целые форты на крепости были уничтожены, и многие тяжелые пушки перенесены с них более чем на 100 футов. Если бы я сам не видел это, ничто не заставило бы меня поверить этому. Более шести тысяч людей погибло, и все жилища были полностью разрушены». К этому свидетельству адмирала Роднея, бывшего в то время командующим английским флотом и очевидца «Великого урагана» в Вест-Индии в 1780 году, можно добавить лишь то, что общее число человеческих жертв тогда составило более двадцати ты-. сяч. Десятки судов со всем экипажем пошли ко дну, полностью были опустошены острова Барбадос, Сент-Люсия, Доминика, Сент-Винсент, Пуэрто-Рико.

В некоторых тропических областях земного шара жители островов и прибрежий временами терпят страшные бедствия, причиняемые циклонами небольшого диаметра, скорость ветра в которых в отдельных случаях превышает 120 метров в секунду, а количество осадков, выпадающих за сутки, достигает 1000 -- 12000 миллиметров.

Все циклоны, зарождающиеся в тропиках, можно подразделить на четыре группы:

тропическое возмущение -- область слабой циклонической циркуляции;

тропическая депрессия -- слабый тропический циклон с явно выраженной приземной циркуляцией; наибольшая скорость установившегося ветра не превышает 12,5 метра в секунду;

тропический шторм -- циклон, наибольшая скорость установившегося ветра в котором достигает 33 метров в секунду;

тропический ураган -- циклон, скорость ветра в котором превышает 33 метра в секунду.

В Японии тропические ураганы называют «тайфунами», на Филиппинах -- «бэгвиз», в Австралии -- «вилли-вилли». Все эти названия в переводе на русский язык означают «большой ветер» или «сильный ветер».

Существует несколько теорий возникновения тропических ураганов.

Согласно конвективной теории ураганы возникают благодаря развитию интенсивных конвективных вертикальных токов воздуха над наиболее нагретыми частями океана, удаленными от экватора на такое расстояние, при котором отклоняющая сила вращения Земли способна сообщить вихревое движение массам воздуха. Часто возникающая в этих районах неустойчивая термическая стратификация атмосферы способствует интенсивному подъему воздуха, пересыщенного водяным паром. В момент конденсации пара выделяется огромное количество скрытой теплоты парообразования, которая переходит в кинетическую энергию циклона.

В центральной части циклона под действием центробежного выбрасывания воздуха при малом его притоке в приземном слое давление быстро падает. Первоначально слабая депрессия атмосферного давления углубляется, и уже через несколько дней мощный циклон начинает двигаться к западу, все более увеличивая свою глубину и скорость движения. Возрастает и сила ветра в нем. Циклон развивается в тропический ураган.

Согласно же фронтальной теории возникновение ураганов объясняется взаимодействием воздушных масс северного и южного полушарий на тропическом фронте в зоне встречи пассатов. Здесь вследствие интенсивного нагрева поверхности океана наблюдается значительный контраст температур нижних и верхних слоев атмосферы, что создает большую неустойчивость воздушных масс.

И, наконец, теория восточной волны объясняет зарождение ураганов прохождением длинной (до 2000 километров протяженностью) волны атмосферного давления. Эта волна, перемещаясь с востока на запад, теряет свою устойчивость и превращается в вихрь.

Но так или иначе, в развитии любого циклона до интенсивности тропического урагана прослеживаются четыре стадии:

формирование -- неустойчивая погода, шквалистые ветры различных направлений; намечается центр циклона, сила ветра не превышает 7 баллов;

молодой циклон -- дальнейшее падение давления, образование вокруг центра пояса ураганных ветров, в центре погода со слабым ветром или штилем («глаз урагана»);

зрелый ураган -- прекращение падения давления и усиления ветра; площадь, занятая ураганом, увеличивается до максимума; симметрия урагана нарушается, плохая погода в правой его половине на большей площади, чем в левой;

разрушение урагана -- как правило, после поворота урагана через полярный курс к востоку. Его интенсивность ослабевает, «глаз урагана» исчезает и ураган принимает черты обычного нетропического циклона. Точно так же ураганы затухают и при переходе на сушу, когда прекращается приток влаги и увеличивается трение воздуха о подстилающую поверхность.

Средняя продолжительность существования тропического урагана колеблется от 6 до 9 дней. Наиболее долго существуют ураганы, зарождающиеся вблизи берегов Африки и в районе островов Зеленого Мыса, дважды пересекающие Атлантический океан и уходящие далеко на север. Их длительность составляет 3 или 4 недели. Иногда тропические ураганы переходят в обычные циклоны, и тогда длительность их существования громадна.

Так, ураган 1900 года, погубивший 8 сентября в Галвестоне (США) 6000 человек, начался 27 августа в середине Атлантики, пересек Карибское море, Мексиканский залив и ушел в глубь континента. В районе Великих Озер он преобразовался в обычный ураган, но, сохраняя силу, пересек Северную Америку, Атлантический океан, Европу и ушел далеко в Сибирь. Время существования этого урагана равнялось 27 дням.

У поверхности земли ураган обычно представляет собой почти круговую область штормовых и ураганных ветров диаметром до 500, а в отдельных случаях -- до 1000 километров. Наибольшая скорость ветра, иногда превышающая 80 метров в секунду, встречается в кольце на расстоянии 30 километров от центра низкого давления. Однако в некоторых случаях разрушительные ветры охватывают и более широкую зону. Для Тихого океана средние размеры зон разрушения, сопровождающих тайфун, достигают 40 -- 80 километров при общих размерах урагана до 1500 километров.

Скорость поступательного движения ураганов и тайфунов весьма различна. Иногда они стоят на месте, правда, недолго или движутся со скоростью нескольких километров в час. Скорость 50 -- 60 километров в час можно считать средней, максимальное продвижение составляет 150 -- 200 километров в час.

Рис. 32. Схема строения тропического урагана

Скорость вихревых ветров внутри урагана, особенно в его стенках, значительно больше. К сожалению, инструментально измерить ее не удается: при ветрах скоростью 50 -- 60 метров в секунду все измерительные приборы ломаются. По произведенным разрушениям среднюю скорость ветра в урагане можно оценить значением 70 -- 80 метров в секунду, а в исключительных случаях -- 200 метров в секунду.

Удивительной особенностью тропических вихрей является высокая воронка (до 10 -- 14 километров) с крутыми боками, вращающимися с громадной скоростью. На рис. 32,а наверху схематически показаны направления вращения воздуха, посередине дан разрез урагана с хорошо видной центральной воронкой («глазом бури»), движение воздуха в которой направлено книзу. На рис. 32,6 дан разрез воронки урагана, наблюдавшегося в 1882 году в Маниле. До высоты 8 километров бока у воронки весьма крутые, выше -- более пологие. Ширина воронки у земли составляет примерно 20 километров, на высоте 6000 метров -- 100 километров. Воронка открывается кверху, почти безоблачна, и ветров в ней нет или они очень слабые. Зато стенки воронки представляют собой зону наиболее сильного вращения, наиболее сильных ветров. Они по существу и представляют собой то, что мы называем ураганом. За пределами стенок ветер хотя и сохраняется, но скорость его резко падает -- ураган проходит. Уменьшается и высота грозового облака.

Вот как живописно рассказывает о центральной части тайфуна наблюдатель с самолета, пересекающего ураган: «Мы находимся в стене тайфуна, в зоне максимальных ветров, в зоне конвергенции -- сходимости воздушных потоков, где скомканные, косые, сдавленные ветры безумно рвутся к гигантской воронке депрессии и не могут преодолеть таинственную границу стены.

И вдруг, когда кажется, что «Боинг» захвачен последним взрывом безумия стихий, наступает внезапная тишина.

Это глаз,

Это зона самого низкого давления, и температура самая высокая...

Это пропасть, бездна в атмосфере, куда, словно на призыв пророка, устремляются фантастические орды миллионов кубометров воздуха, снедаемые нетерпением и головокружением, отягченные жарой, завывающие и кружащиеся, поднимающие океан в волнах и пене, словно дорожную пыль, отбрасываемые назад, сталкивающиеся с другими толпами, охваченными тем же мистическим безумием материи...

Вокруг тянется стена, крепость, которую словно возвели, чтобы сделать нас пленниками этой полной магического очарования страны...»

А вот выдержка из книги П. А. Молэна «Охотники за тайфунами» (1967 год):

«Не следует думать, что тайфун четко разграничен, что он выглядит, как вертящийся и растирающий землю в порошок мельничный жернов или как вращающаяся колонна. У него нет отчетливых границ -- это масса со смутными очертаниями высотой в два раза выше Эвереста, с кратером в центре, которого никогда не может позабыть тот, кто видел его хоть один раз. Это мир неистовых сил, мир неотвратимой гибели, мир с энергией, равной энергии трех атомных бомб в секунду».

И действительно, энергия тропических ураганов огромна. Подсчеты ученых показали, что в пределах среднего по размерам урагана ежедневно выделяется до 16 триллионов киловатт-часов энергии. Этой энергии достаточно для снабжения электричеством всей территории США в течение полугода. Интересно сравнение энергии урагана с энергией атомной бомбы. Установлено, что кинетической энергии среднего урагана соответствует энергия примерно тысячи атомных бомб, подобных сброшенной на Нагасаки. Небольшая буря с дождем освобождает энергию, эквивалентную энергии трех атомных бомб в секунду. Большой ураган ежедневно расходует энергию, равную энергии взрыва 13 тысяч мегатонных ядерных бомб. И основным источником этой энергии является освобождение теплоты при конденсации водяного пара!

Естественно, при такой громадной энергии и такой огромной скорости ветра волнение на поверхности моря достигает катастрофических величин: известны случаи наблюдения волн высотой более 20 метров.

В центре циклона -- в «глазе бури» -- при ветровом затишье образуется сильная толчея, представляющая для судов опасность, не меньшую, чем волнение на периферии урагана.

Более четырех тысяч лет на различных судах и плавучих средствах человек выходит в океан. И каждый год люди испытывают на себе гигантскую силу ураганов, каждый год гибнут десятки судов самых различных типов и размеров. Сколько всего судов не выдержало страшного давления несущихся с огромной скоростью воздушных масс и разрушающих волн, мы не узнаем никогда.

Но вот лишь несколько ярких примеров.

Упомянутый «Великий ураган» 1780 года на Антильских островах застал врасплох английский и французский флоты. У одних только французов погибло 40 судов, на которых, кроме экипажей, находилось несколько тысяч солдат. Это век XVIII.

Но и в наш XX век, когда размеры судов позволяют им выдержать любой шторм, а скорость дает возможность избежать встречи с ураганом, недостаточное внимание судоводителей к шторму грозит жестокой расплатой.

В конце второй мировой войны командующий американским флотом, сконцентрировавшимся у берегов Японии, не придал значения предупреждениям синоптиков о приближающемся тайфуне. В итоге два миноносца и несколько более мелких судов вместе с экипажами пошли ко дну. Ряд крупных судов получил серьезные повреждения. Флот был разбросан по океану. Военная операция сорвалась.

Но ураган страшен не только в открытом море. При его выходе на сушу с моря на берег обрушиваются громадные волны. Вступая в мелководье, ураган оказывает на воду чрезвычайно сильное давление, буквально выжимая ее перед собой. Образуется длинный водяной вал, который движется с большой скоростью перед ураганом и с меньшей -- по его сторонам. Передняя волна сопровождается ветрами, ливнями, грозами. Боковые волны уходят в стороны от урагана и иногда обрушиваются на берег при полном затишье, предупреждая о близости урагана.

Сильные ураганы образуют длинные волны неветрового происхождения еще в открытом море. При приближении такой волны к берегу уровень воды сначала растет медленно, постепенно. В определенный момент происходит скачок: уровень резко поднимается, и вода обрушивается на сушу. Этот скачок вызывается волной, идущей перед центром урагана и достигающей наибольшей высоты. В некотором роде такая волна может служить предвестником урагана.

Так, в воскресенье 30 июля 1961 года тысячи людей заполнили токийские пляжи; стояла безоблачная погода, легкий ветер смягчал жару. Внезапно огромные волны обрушились на берег, на людей. Шестьдесят два человека погибло, сто сорок получили ранения. Эти волны оказались предвестниками тайфуна, зародившегося днем раньше в 1500 километрах от японских берегов.

Высота длинной ураганной волны зависит от силы урагана, от того, какая часть урагана -- центр или периферия -- проходит в данном месте, от географических условий района и может составлять 12 -- 14 метров.

Так, в Бенгальском заливе длинные ураганные волны достигают огромных размеров, особенно тогда, когда наступление штормовой волны совпадает с приливом. В этих случаях высота волны превышает 11 метров и ураган сопровождается жестокими разрушениями. Рекордным в этом смысле был ураган 7 октября 1737 года в дельте Ганга. Штормовая волна с Бенгальского залива достигла двенадцатиметровой высоты. В этот день погибли примерно триста тысяч человек, было уничтожено более двенадцати тысяч судов и различных лодок.

Длинные волны наибольших размеров, порождаемые тропическими ураганами, наблюдаются вдоль западного побережья Тихого океана. Максимальная зарегистрированная высота такой волны (14 метров) отмечалась 30 июля 1905 года у Маршалловых островов. Наибольшая волна у берегов Австралии (12 -- 13 метров) наблюдалась при урагане 5 марта 1899 года. Этот ураган пришел с востока и пересек Большой Барьерный риф в его северной части. Ширина его пути была примерно 120 километров.

В районе Атлантического океана очень большие ураганные волны бывают на побережье Мексиканского залива, где ураганы вообще нередкое явление. Так, небольшой город Индиана, расположенный в США к северу от мексиканской границы, дважды подвергался ударам таких волн. Первая волна 16 сентября 1875 года с ураганным ветром скоростью до 100 миль в час унесла 176 человеческих жизней и смыла три четверти города. Его восстановили, но 19 августа 1886 года он был снова уничтожен. Город подвергся колоссальным разрушениям: ни один дом не остался неповрежденным, а те, которые стояли, были опасны для жизни. Город был покинут жителями и больше не восстанавливался.

Кроме прямых разрушений, ураганные волны оказывают сильное воздействие на береговую зону, глубины в прибрежной зоне. Размываются берега и проливы, образуются песчаные косы и отмели, появляются новые лагуны и даже большие заливы.

Во время урагана 1938 года в восточных штатах США во многих местах береговая линия передвинулась на десятки, а иногда и на сотни метров, значительно изменился рельеф морского дна и берега. Песчаная коса на западе Род-Айленда была разделена на несколько островов, у острова Лонг-Айленд появились новые заливы, а некоторые старые заливы углубились. Во многих местах на берегу песчаные дюны высотой до 6 метров были срезаны до уровня океана.

Особенно большие изменения ураганы вызывают в коралловых рифах. Это связано со строением рифов. Верхняя часть рифа толщиной до 2 метров, которая подвергается действию обычных ветровых волн, состоит из наиболее массивных и устойчивых кораллов и гидроидов. Ниже этой зоны растут более хрупкие ветвистые группы, образующие пустоты, полости, проходы. Обычные волны разбиваются о верхнюю часть рифа, почти не проникая в пещерную зону.

Длинные ураганные волны имеют значительно большие размеры, чем обычные волны, и основная сила их удара приходится на нижнюю хрупкую часть рифа. Под ударами таких волн рушатся отдельные части основания рифа и его верхний монолит трескается на глыбы. В итоге на многих рифах образуются новые проливы, появляются и исчезают островки. Разрушение таких островков тем более опасно для судоходства, что, исчезая с поверхности моря, они остаются на глубине 5 -- 10 метров, поднимаясь острыми гребнями со дна почти до самой поверхности.

Но не только ветер и волны представляют опасность во время тропических ураганов: как правило, ураганы сопровождаются грозами и ливнями. В зоне ураганных ветров, окружающих «глаз бури», почти не переставая, сверкают молнии, причем особенно сильна грозовая деятельность в тыловой части урагана. Поэтому для жителей районов, подверженных тропическим ураганам, сильная гроза при прохождении бури является признаком ее скорого ослабления. Иногда в урагане наблюдаются шаровые молнии, с треском разрывающиеся вблизи земной поверхности.

Количество осадков, выпадающих при прохождении урагана, зависит от физических свойств воздуха, втянутого в ураган, от его интенсивности и вертикальной протяженности. В отдельных случаях тропические ураганы сопровождаются исключительно сильными ливнями, дающими миллионы и миллиарды тонн воды.

Так, на остров Пуэрто-Рико во время урагана, пронесшегося над ним 8 августа 1899 года, за 6 часов выпало 2,6 миллиарда тонн воды. Возможно, самое большое количество осадков зарегистрировано в июле 1911 года при прохождении тайфуна через Филиппинские острова, когда в Багио за 24 часа выпало 1168 миллиметров, а всего за 4 дня выпало 2233 миллиметра осадков, что составило 2,2 миллиона тонн воды на квадратный километр. В результате возникшего наводнения погибли тысячи человек.

Из-за своего разрушающего действия ураганы издавна привлекали внимание моряков, ученых, жителей побережий. Поэтому сохранились достаточно полные описания многих катастрофических ураганов, затронувших побережья или мореплавателей. Только с 1700 по 1956 годы история насчитывает более 50 ураганов и тайфунов, сопровождавшихся большими разрушениями и человеческими жертвами.

Начиная с 1956 года по решению Всемирной метеорологической организации каждому тропическому циклону, достигающему интенсивности шторма, присваивается женское имя согласно заранее утвержденному списку, насчитывающему 86 имен. Имена составляются по английскому алфавиту, начиная с 1 января, и по названию тайфуна или урагана можно судить о времени его прохождения. С конца 70-х годов «дискриминация» мужчин в этом деле была отменена, и ныне тропическим вихрям присваиваются и мужские имена.

Одновременно с систематизацией ураганов начали проводиться их интенсивные исследования: была создана сеть радиозондовых станций на тропических островах и побережьях, на удаленных территориях начали устанавливать автоматические метеостанции, а в открытом море -- метеостанции-автоматы лодочного типа или на буях. Большого эффекта достигли разведка и слежение за ураганами с помощью самолетов. Еще большие результаты дает использование метеорологических спутников для изучения и предсказания тропических циклонов.

В общем предсказание ураганов сводится к трем задачам: предсказанию возникновения тропического циклона, определению времени его перехода в ураган и прогнозу пути его перемещения. Третья задача является практически самой важной.

Рис. 33. Штормовая картушка

В начале своего пути ураган, как правило, перемещается на запад параллельно экватору. Трудность прогноза его траектории заключается в том, что надо заранее указать, где ураган повернет на полярный курс и каковы будут его направление и скорость в дальнейшем.

Гидрометеорологические службы многих стран составляют прогнозы развития и движения этих атмосферных образований и передают их по радио или средствами факсимильной связи. Получив такие прогнозы, судоводителям необходимо проанализировать фактическую обстановку в море, сопоставить прогноз передвижения урагана с курсом судна и реальными возможностями плавания данного судна в условиях урагана.

Рис 34. Основные пути движения тропических ураганов

Но поскольку тропические ураганы возникают над открытым океаном и даже в зрелой стадии занимают небольшую площадь, они иногда остаются незамеченными службами погоды. На этот случай необходимо знать основные признаки приближения тропического циклона, они состоят в следующем:

появляется зыбь, направление которой не совпадает с направлением ветра;

нарушается свойственный тропическим широтам правильный суточный ход давления, и оно начинает быстро падать;

появляются перистые нитеобразные или перисто-кучевые облака, идущие с той стороны, откуда приближается циклон;

устанавливаются удушливая погода, затишье, наблюдаются зловещие красные закаты и восходы; часто в красный цвет окрашивается все небо.

Из всех этих признаков наиболее постоянным и надежным является нарушение правильного суточного хода давления, остальные признаки могут и отсутствовать.

Для того чтобы определить направление, в котором находится центр урагана, следует стать спиной к ветру; в этом случае центр циклона окажется на 45 -- 90° влево в северном полушарии и на столько же градусов вправо -- в южном.

Еще более точно можно определить направление на центр тропического циклона с помощью штормовой картушки, представляющей собой целлулоидный планшет (или кальку) с начерченной на нем схемой направления ветра (рис. 33). Картушку накладывают на навигационную карту так, чтобы ее меридиональная ось была параллельна меридиану на карте, а на место судна пришлась бы та точка внешней окружности, на которой один из векторов ветра совпадал бы с направлением истинного ветра, наблюдаемого на судне. Направление от места судна к центру картушки и показывает направление в центр циклона.

На картушке нанесены три окружности. Считается, что место судна приходится на внутреннюю окружность, если давление падает со скоростью не менее 2,7 миллибара в час. Картушка помогает определить направление на центр циклона, но расстояние до него с помощью картушки установить нельзя. Для того чтобы с наибольшей вероятностью избежать встречи с тропическим ураганом, капитанам судов необходимо тщательно следить за синоптической обстановкой над океаном, пользуясь обычными сводками погоды и сопоставляя их с собственными наблюдениями.

Защита от ураганов на море сводится в основном к уклонению судов от наиболее опасных зон ураганов. Способы расхождения с циклонами для отдельных районов и сезонов достаточно подробно изложены в лоциях, однако существует и ряд наиболее общих правил:

если судно находится прямо на пути циклона, оно должно идти так, чтобы ветер был справа, то есть идти правым галсом;

если судно находится в правой передней части циклона, оно должно привестись к ветру и, следуя в бейдевинд правого галса, по возможности удалиться от его центра;

если судно находится в левой передней части циклона, оно должно стремиться уйти от центра урагана, следуя курсом бакштаг правого галса.

Следуя этим правилам, нужно также иметь в виду, что:

траектория тропических циклонов в северном полушарии обычно направлена к западу, затем к северо-западу, затем к северу (рис. 34);

фактическое направление и скорость перемещения циклона могут меняться весьма резко; следует учитывать, что тропические циклоны как бы отталкиваются обширными областями высокого давления и притягиваются областями низкого давления, что и служит главной причиной их отклонений от обычных траекторий;

наиболее опасное волнение возникает в правой половине урагана, особенно в тыловой части. Это объясняется тем, что штормовые ветры в этой зоне накладываются на собственное движение урагана, и потому общее движение воздушных масс здесь более сильное, чем в левой половине урагана.

Опыт показывает, что, несмотря на меры предосторожности, не всегда удается уклониться от центра урагана на достаточно безопасное расстояние, особенно если судно находится в области развития урагана или лишено возможности свободно маневрировать. В таких случаях судно должно лечь в дрейф или штормовать, выбрав безопасное положение относительно волн и ветра.

СМЕРЧИ И ВИХРИ

9 июня в 15 -- 17 часов на территориях Ивановской, Костромской, Ярославской областей образовались небывалые смерчи... Один из них (шириной 450 м) прошел через Иваново, проделав путь в 16 км.

...Подобного рода разрушительных смерчей, да еще в таком количестве, не было в этих районах ни разу. И, судя по разрушениям, которые они причинили, можно предположить, что скорость ветра достигала 60 -- 100, порой 200 метров в секунду.

ИЗВЕСТИЯ, 13 ИЮНЯ 1984 ГОДА

«14 ноября 1878 г. парусное судно «Прекрасный Стюарт» медленно плыло по зеркальной поверхности Мексиканского залива. Стоял ясный и тихий день; вся команда вышла на палубу и наслаждалась чудесной погодой. Около полудня ветер начал дуть порывами, как бы вздыхая. Небо внезапно покрылось низкими черными угрожающими облаками. Все начали обсуждать эти явления, как вдруг перед судном поверхность моря на небольшом участке вспенилась, покрылась небольшими неправильными волнами. Немного погодя все это усилилось, волны стали выше, началось вихревое вращение. Поверхность моря вздулась, поднялась навстречу опустившемуся облаку, слилась с ним и рванулась на судно. В один момент две мачты с поднятыми парусами были сломаны и унесены за борт волной. На месте судна с белоснежными парусами осталась беспомощная развалина, болтающаяся среди волн».

Так В. Наливкин в своей книге «Ураганы, бури и смерчи» показывает это своеобразное природное явление, которое представляет собой маломасштабный атмосферный вихрь -- смерч. В разных местностях его называют по-разному: «торнадо», «тромб», «тифон».

Смерч -- это воздушное образование, возникающее в основании грозового облака. Чаще всего он образуется следующим образом: из грозового облака по направлению к земле протягивается гигантский черный «хобот», воронкообразно расширяющийся у основания облака и сужающийся книзу. Если «хобот» достигает поверхности земли, то здесь он снова расширяется, образуя воронку, содержащую пыль, песок или почву (если смерч развивается над сушей), или воду (если смерч проходит над водной поверхностью).

Образовавшийся вихрь, как правило, имеет циклоническое вращение, причем одновременно наблюдается движение воздуха по спирали вверх. В центре смерча отмечается очень низкое давление, вследствие чего он засасывает в себя все, что встречается на пути, и может поднять воду, почву, отдельные предметы, постройки, перенося их иногда на значительные расстояния.

Число смерчей значительно: только в США ежегодно их бывает 600 -- 800. Образуются они и в других областях земного шара: в Европе, Юго-Восточной Азии, Африке. Так же велико и число смерчевых облаков. Однако об их строении, образовании и даже размерах известно сравнительно немного. Многочисленные наблюдатели ограничивались самыми общими описаниями: «громадное грозовое облако», «темная тяжелая туча, нависшая над землей».

Исследование смерчей чрезвычайно затруднено из-за того, что образуются они неожиданно, захватывают небольшую территорию и быстро исчезают. Однако по описаниям удалось установить, что средние размеры смерчевого «материнского» облака сравнительно невелики: 5 -- 10 километров, реже до 15 километров в поперечнике, до 4 -- 5 километров, иногда до 10 -- 15 километров высотой. У очень больших смерчей ширина облака составляет 30 -- 40 километров, длина -- до 50 километров.

Для смерчевых облаков характерно ровное плотное, почти горизонтальное основание. Оно резко ограничено, и при развитии смерчей хорошо видны крутящиеся воронко- или трубообразные отростки. Расстояние между основанием облака и землей обычно небольшое -- несколько сотен метров. Изредка облако движется по земле, и тогда воронка смерча не образуется, заменяясь ураганными вихревыми ветрами.

Рис. 35. Смерч: I начальная стадия; II -- полное развитие

Обычный смерч состоит из трех частей: горизонтальных вихрей в материнском облаке, воронки 2, дополнительных вихрей, создающих каскад 3 и футляр 1 (рис. 35). Смерчевое облако, как и всякое другое грозовое кучево-дождевое облако, характеризуется неоднородностью и высокой турбулентностью. Многие из них к тому же имеют вихревое строение.

В результате интенсивных конвективных потоков воздуха край облака начинает сначала медленно, затем все быстрее и быстрее подниматься, закручиваясь горизонтально вокруг оси, параллельной границе облачности, -- образуется ротор небольших размеров. Этот ротор, быстро вращаясь, опускается одним концом (обычно левым по движению облака) к земле в виде воронки. Эта воронка -- основная составляющая смерча -- представляет собой спиральный вихрь, состоящий из чрезвычайно быстро вращающегося воздуха.

Если воронка не достигла земли или земля очень твердая, то она может быть и невидима. Но обычно вихрь при своем движении захватывает воду, пыль, и воронка становится хорошо видимой.

Воронка состоит из внутренней полости и стенок и по своему строению аналогична миниатюрному тропическому урагану. Однако если у урагана поперечник внутренней полости -- «глаза» бури составляет от нескольких километров до немногих десятков километров, то у смерчей он в тысячи раз меньше: от нескольких метров до немногих сотен метров.

В основных чертах эти два явления природы похожи. И ураган, и смерч заключают в себе пространство, более или менее ограниченное «стенками»; оно почти чистое, безоблачное, иногда от стенки до стенки проскакивают небольшие молнии; движение воздуха в нем резко ослабевает. Так же, как в ядре урагана, во внутренней полости воронки смерча давление резко падает -- порой на 180 -- 200 миллибар.

Такое катастрофически быстрое падение давления служит причиной своеобразного явления: полые предметы, в частности дома, другие постройки, шины автомобилей, при соприкосновении с воронкой смерча взрываются. Интересен факт ощипывания кур во время смерча: во многих случаях куры, мертвые или уцелевшие после прохождения смерча, оказывались без перьев. Как выяснилось, это происходит потому, что воздушные мешочки, в которых у кур находятся корни перьев, при резком понижении атмосферного давления взрываются изнутри, выбрасывая перья.

Внутренняя полость ураганов наблюдалась с палубы сотен судов, попадавших в нее. Она детально изучена во время полетов в ней специальных самолетов. К сожалению, все, что попадало во внутреннюю полость смерча, разрушалось, а люди погибали. Имеются лишь единичные случаи наблюдений полости смерча тогда, когда он проходил над головой наблюдателя. Из этих наблюдений и сложилось впечатление о внутреннем строении смерча как громадного пустого цилиндра, иногда наполненного хлопьями облаков и освещенного блеском молний.

Характерной частью смерча являются стенки его воронки. Это наиболее активная и разрушающая часть. Строение их весьма разнообразно, но условно стенки можно разделить на плотные, резко ограниченные, и расплывчатые с неясными границами. Плотные стенки иногда имеют толщину до нескольких метров, в то время как расплывчатые утолщаются на сотни метров. Один и тот же смерч на пути своего развития может иметь гладкие стенки, затем принять расплывчатую массивную форму, в конце снова стать узким и гладким.

Так, известный смерч Трех штатов 18 марта 1925 года, унесший в штатах Миссури, Иллинойс и Индиана до 700 человеческих жизней и причинивший ущерб в 40 миллионов долларов, в начале своего пути обладал гладкой воронкой, но основную свою дистанцию более 40 километров он прошел в виде темного крутящегося облака, движущегося по земле.

По-видимому, стенки воронки становятся расплывчатыми, когда их окружная скорость падает ниже определенного значения.

Одним из важнейших и своеобразнейших свойств смерчей является их резкое ограничение в пространстве с наличием почти гладких плотных стенок. По-видимому, ни у каких других атмосферных образований нет таких резких границ, разве только у молний, скорость движения которых еще более значительна.

О резкости границ смерчей свидетельствуют случаи, происшедшие во время их прохождения в США. Так, в штате Небраска 9 октября 1913 года смерч прошел по небольшому саду. Он вырвал с корнем большую яблоню, ствол которой имел диаметр 30 сантиметров, и разорвал ее на отдельные щепки, но оставил невредимым улей с пчелами, стоявший в одном метре от яблони.


Подобные документы

  • Течения Мирового океана. Механизм возникновения системы течений Гольфстрим. Схема циркуляции и движение течения. Скорость и температура течения, их изменение. Влияние системы на географическую оболочку. Возможное развитие изменений в системе течений.

    курсовая работа [1,4 M], добавлен 05.03.2012

  • Роль Мирового океана в жизни Земли. Влияние океана на климат, почву, растительный и животный мир суши. Характерные свойства воды — соленость и температура. Процесс образования льда. Особенности энергии волн, приливно-отливных движений воды, течений.

    презентация [2,5 M], добавлен 25.11.2014

  • Общие закономерности циркуляции течений Гольфстрима, причины возникновения и распространения. Влияние Гольфстрима на климат, значение его для жизни и хозяйственной деятельности человека, возможные позитивные и негативные последствия их воздействия.

    курсовая работа [2,3 M], добавлен 15.09.2014

  • Процесс образования осадочных пород в мировом океане. Роль климата, рельефа, морских животных и растительных организмов в формировании осадков. Характер жизнедеятельности организмов и их распределение в водах Мирового океана. Развитие биосферы Земли.

    контрольная работа [632,9 K], добавлен 07.02.2011

  • Ресурсы Атлантического океана. Распространение донных осадков в Тихом океане. Полезные ископаемые и растительный мир в Тихом океане. Физико-географические особенности Северного Ледовитого океана. Акватория Индийского океана. Почвы, климат, фауна Арктики.

    реферат [63,0 K], добавлен 12.12.2010

  • Географическое положение Индийского океана. История его исследований. Описание строения рельефа дна, климатических зон, системы течений, полезных ископаемых, растительного и животного мира океана. Важнейшие транспортные пути. Развитие морского промысла.

    презентация [6,1 M], добавлен 03.12.2010

  • Знакомство с основными особенностями географического распределения давления. Общая характеристика типов атмосферной циркуляции во внетропических широтах. Причини возникновения воздушных течений. Рассмотрение составляющих общей циркуляции атмосферы.

    курсовая работа [3,6 M], добавлен 04.02.2014

  • Краткая характеристика минеральных ресурсов океанов планеты. Причины возникновения экологических проблем. Усилия мирового сообщества по предотвращению вредного воздействия на воды Мирового океана. Энергия приливов и отливов. Ледники Антарктики и Арктики.

    курсовая работа [1,8 M], добавлен 31.03.2014

  • Ориентировочное время и источники образования Тихого океана. Ложе, срединно-океанические хребты и переходные зоны. Климат и гидрологические условия, особенности животного и растительного мира океана, влияние на них разных течений. Явление Эль-Ниньо.

    реферат [29,0 K], добавлен 14.04.2010

  • Расположение океанов и суши позднего протерозоя, среднего ордовика, в конце девона, позднего карбона, поздней перми, ранней юры и голоцена. Варианты границ и рельеф дна Южного океана. Полезные ископаемые Антарктики. История открытия и исследования океана.

    курсовая работа [8,2 M], добавлен 14.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.