Компьютерное моделирование химико-технологических процессов

Раскрытие понятий компьютерного моделирования и компьютерной модели. Рассмотрение операций над моделями и функций компьютера. Описание видов математических моделей, жизненного цикла моделируемой системы и областей применения вычислительного эксперимента.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 01.12.2015
Размер файла 28,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системы для изучения оригинала или воспроизведения его каких-либо свойств. Модель - результат отображения одной структуры на другую.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов- заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Возможности моделирования, то есть перенос результатов, полученных в ходе построения и исследования модели, на оригинал основаны на том, что модель в определенном смысле отображает (воспроизводит, моделирует, описывает, имитирует) некоторые интересующие исследователя черты объекта. Моделирование как форма отражения действительности широко распространено, и достаточно полная классификация возможных видов моделирования крайне затруднительна, хотя бы в силу многозначности понятия «модель», широко используемого не только в науке и технике, но и в искусстве, и в повседневной жизни.

Применительно к естественным и техническим наукам принято различать следующие виды моделирования:

- концептуальное моделирование, при котором совокупность уже известных фактов или представлений относительно исследуемого объекта или системы истолковывается с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков;

- физическое моделирование, при котором модель и моделируемый объект представляют собой реальные объекты или процессы единой или различной физической природы, причем между процессами в объекте-оригинале и в модели выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений;

- структурно-функциональное моделирование, при котором моделями являются схемы (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специальными правилами их объединения и преобразования;

- математическое (логико-математическое) моделирование, при котором моделирование, включая построение модели, осуществляется средствами математики и логики;

- имитационное (программное) моделирование, при котором логико-математическая модель исследуемого объекта представляет собой алгоритм функционирования объекта, реализованный в виде программного комплекса для компьютера.

Разумеется, перечисленные выше виды моделирования не являются взаимоисключающими и могут применяться при исследовании сложных объектов либо одновременно, либо в некоторой комбинации. Кроме того, в некотором смысле концептуальное и, скажем, структурно-функциональное моделирование неразличимы между собой, так как те же блок-схемы, конечно же, являются специальными знаками с установленными операциями над ними.

Традиционно под моделированием на ЭВМ понималось лишь имитационное моделирование. Можно, однако, увидеть, что и при других видах моделирования компьютер может быть весьма полезен, за исключением разве физического моделирования, где компьютер вообще-то тоже может использоваться, но, скорее, для целей управления процессом моделирования. Например при математическом моделировании выполнение одного из основных этапов - построение математических моделей по экспериментальным данным - в настоящее время просто немыслимо без компьютера. В последние годы, благодаря развитию графического интерфейса и графических пакетов, широкое развитие получило компьютерное, структурно- функциональное моделирование, о котором подробно поговорим ниже. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта.

В настоящее время под компьютерной моделью чаще всего понимают: - условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно- функциональными;

- отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов, воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило случайных, факторов. Такие модели мы будем далее называть имитационными моделями.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели. Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Основные функции компьютера при моделировании:

- выполнять роль вспомогательного средства для решения задач, решаемых обычными вычислительными средствами, алгоритмами, технологиями;

- выполнять роль средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;

- выполнять роль средства конструирования компьютерных обучающе- моделирующих сред;

- выполнять роль средства моделирования для получения новых знаний;

- выполнять роль «обучения» новых моделей (самообучающиеся модели).

Разновидностью компьютерного моделирования является вычислительный эксперимент. Компьютерное моделирование, вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем.

Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений) получим физико-математическую модель системы или математическую модель физической системы. В частности, физиологическая система - система кровообращения человека, подчиняется некоторым законам термодинамики и описав эту систему на физическом (термодинамическом) языке получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то получим математическую модель системы кровообращения. Эту модель можно назвать физиолого-физико-математической моделью или физико-математической моделью.

Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные. Познавательная модель - форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью. Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.

Инструментальная модель - является средством построения, исследования и/или использования прагматических и/или познавательных моделей.

Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню, «глубине» моделирования модели бывают эмпирические - на основе эмпирических фактов, зависимостей, теоретические - на основе математических описаний и смешанные, полуэмпирические - использующие эмпирические зависимости и математические описания.

Основными требованиями к модели являются:

- наглядность построения;

- обозримость основных свойств и отношений;

- доступность ее для исследования или воспроизведения;

- простота исследования, воспроизведения;

- сохранение информации, содержавшиеся в оригинале (с точностью рассматриваемых при построении модели гипотез) и получение новой информации.

Проблема моделирования состоит из трех задач:

- построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей);

- исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей);

- использование модели (конструктивная и конкретизируемая задача).

Свойства модели:

- конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

- упрощенность: модель отображает только существенные стороны объекта;

- приблизительность: действительность отображается моделью грубо или приблизительно;

- адекватность: модель успешно описывает моделируемую систему;

- информативность: модель должна содержать достаточную информацию о системе

- в рамках гипотез, принятых при построении модели.

Математическая модель М описывающая систему S (x1, x2, ..., xn; R), имеет вид:

М = (z1, z2, ..., zm; Q),

где zi ? Z, i = 1, 2, ..., n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы и Z - множеством описаний, представлений элементов и подмножеств X, соответственно.

Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С.

Модель М называется статической, если среди xi нет временного параметра t. Статическая модель в каждый момент времени дает лишь «фотографию» системы, ее срез.

Модель - динамическая, если среди xi есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.

Модель является дискретной, если она описывает поведение системы только в дискретные моменты времени.

Модель - непрерывная, если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.

Модель называется имитационной, если она предназначена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров xi модели М.

Модель - детерминированная, если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).

Можно говорить о различных режимах использования моделей - об имитационном режиме, о стохастическом режиме и т.д.

Жизненный цикл моделируемой системы

компьютерный модель математический вычислительный

1. Сбор информации об объекте, выдвижение гипотез, предмодельный анализ;

2. Проектирование структуры и состава моделей (подмоделей);

3. Построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;

4. Исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;

5. Исследование адекватности, устойчивости, чувствительности модели;

6. Оценка средств моделирования (затраченных ресурсов);

7. Интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;

8. Генерация отчетов и проектных (народно-хозяйственных) решений;

9. Уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью моделирования.

Операции над моделями

Основными операциями используемыми над моделями являются:

1.Линеаризация. Пусть

М = М(X, Y, A),

где X - множество входов, Y - выходов, А - состояний системы. Схематически можно это изобразить: X ? A ? Y.

Если X, Y, A - линейные пространства (множества), и, соответственно над ними определены линейные операторы, то система (модель) называется линейной. Другие системы (модели) - нелинейные. Нелинейные системы трудно поддаются исследованию, поэтому их часто линеаризуют - сводят к линейным каким-то образом.

2.Идентификация. Пусть

М = М(X, Y, A), A = {ai}, ai = (ai1, ai2, ..., aik)

- вектор состояния объекта (системы). Если вектор ai зависит от некоторых неизвестных параметров, то задача идентификации (модели, параметров модели) состоит в определении по некоторым дополнительным условиям, например, экспериментальным данным, характеризующим состояние системы в некоторых случаях. Идентификация - решение задачи построения по результатам наблюдений математических моделей, описывающих адекватно поведение реальной системы.

3.Агрегирование. Операция состоит в преобразовании (сведении) модели к модели (моделям) меньшей размерности (X, Y, A).

4.Декомпозиция. Операция состоит в разделении системы (модели) на подсистемы (подмодели) с сохранением структур и принадлежности одних элементов и подсистем другим.

5.Сборка. Операция состоит в преобразовании системы, модели, реализующей поставленную цель из заданных или определяемых подмоделей (структурно связанных и устойчивых).

6.Макетирование. Эта операция состоит в апробации, исследовании структурной связности, сложности, устойчивости с помощью макетов или подмоделей упрощенного вида, у которых функциональная часть упрощена (хотя вход и выход подмоделей сохранены).

7.Экспертиза, экспертное оценивание. Операция или процедура использования опыта, знаний, интуиции, интеллекта экспертов для исследования или моделирования плохо структурируемых, плохо формализуемых подсистем исследуемой системы.

8.Вычислительный эксперимент. Это эксперимент, осуществляемый с помощью модели на ЭВМ с целью распределения, прогноза тех или иных состояний системы, реакции на те или иные входные сигналы. Прибором эксперимента здесь является компьютер (и модель!).

Вычислительный эксперимент

Увеличив в сотни миллионов раз скорость выполнения арифметических и логических операций и повысив тем самым производительность интеллектуального труда человека, ЭВМ вызвали коренные изменения в области переработки информации. По существу, это явилось своего рода «информационной революцией».

Первые крупные научные задачи, для решения которых успешно использовались ЭВМ, а точнее, для решения которых они и создавались, были связаны с овладением ядерной энергией и освоением космического пространства.

В дальнейшем, развиваясь и совершенствуясь при решении разнообразных актуальных задач, этот стиль теоретического анализа трансформировался в новую современную технологию и методологию проведения теоретических исследований, которая получила название вычислительного эксперимента. Основой вычислительного эксперимента является математическое моделирование, теоретической базой - прикладная математика, а технической - мощные электронные вычислительные машины.

Использование вычислительного эксперимента как средства решения сложных прикладных проблем имеет в случае каждой конкретной задачи и каждого конкретного научного коллектива свои специфические особенности. Тем не менее, всегда четко просматриваются общие характерные основные черты, позволяющие говорить о единой структуре этого процесса. В настоящее время технологический цикл вычислительного эксперимента принято подразделять на ряд этапов. И хотя такое деление условно, тем не менее, оно позволяет лучше понять существо этого метода.

Во-первых, для исследуемого объекта строится модель. Сначала физическая, фиксирующая разделение всех действующих в рассматриваемом явлении факторов на главные, которые учитываются, и второстепенные, которые на данном этапе исследования отбрасываются. Одновременно формулируются допущения, или рамки применимости модели, в которых будут справедливы полученные на ее основе результаты. Эта модель записывается в математических терминах, как правило, в виде дифференциальных, интегральных или смешанных уравнений.

Работа по конструированию математической модели чаще всего проводится объединенными усилиями физиков (химиков, биологов, медиков, экономистов), т.е. специалистов, хорошо знающих данную предметную область, и математиков, представляющих себе уровень развития соответствующего раздела прикладной математики и способных оценить возможность решения возникающей математической задачи. Вычислительный эксперимент не отвергает традиционных классических методов анализа, скорее напротив, предполагает их самое активное использование. Кроме того, на долю математиков выпадает и предварительное исследование математической модели - корректно ли поставлена задача, имеет ли она решение, единственно ли оно и т.д. Однако, для актуальных сложных задач, которые представляет современная наука и техника, подобное исследование удается выполнить лишь в исключительных случаях.

Поэтому к решению задач, имеющих прикладной характер, зачастую приступают, не имея детального исследования ее математических свойств или изучив их лишь на частных упрощенных вариантах исходной постановки задачи.

Второй этап вычислительного эксперимента связан с разработкой метода расчета сформулированной математической задачи, или, вычислительного алгоритма. Фактически он представляет собой совокупность цепочек алгебраических формул, по которым ведутся вычисления, и логических условий, позволяющих установить нужную последовательность применения этих формул.

Как правило, для одной и той же математической задачи можно предложить большое число вычислительных алгоритмов. Однако из этого следует, что среди разнообразия алгоритмов не все одинаковы по своим качествам. Есть алгоритмы хорошие и плохие, и необходимо уметь отличать одни от других, не тратя времени и труда на программирование и расчеты.

Для этого, нужно сформулировать критерии для оценки качества вычислительных алгоритмов. Эти вопросы и составляют предмет теории численных методов - раздела вычислительной математики, который стал особенно интенсивно развиваться с появлением ЭВМ.

Общая цель этой теории - построение эффективных вычислительных методов, которые позволяют получить решение поставленной задачи с заданной точностью за минимальное количество действий (арифметических, логических), т.е. с минимальными затратами машинного времени.

Вычислительный эксперимент имеет «многовариантный» характер, т.е. решение любой прикладной задачи зависит от многочисленных входных параметров. Получить решение соответствующей математической задачи в виде формулы, содержащей явную зависимость от параметров, для реальных задач, не удается. При использовании методов вычислительного эксперимента каждый конкретный расчет проводится при фиксированных значениях параметров. Проектируя оптимальную установку, т.е. определяя в «пространстве параметров» точку, соответствующую оптимальному режиму, приходится проводить большое число расчетов однотипных вариантов задачи, отличающихся значениями некоторых параметров. Поэтому необходимо, чтобы на один вариант задачи затрачивалось как можно меньше машинного времени.

Третий этап вычислительного эксперимента - создание программы для реализации разработанного алгоритма на ЭВМ. В самом начале формулы алгоритма разбивались на отдельные операции: сложить, разделить, сравнить два числа по величине и т.д., и каждая операция программировалась отдельно.

Поэтому развитие программирования шло по линии упрощения процесса общения человека с машиной, приближения форм этого общения к естественным. Так появились машинные языки, с помощью которых вести диалог с ЭВМ стало существенно легче. Каждый из языков был ориентирован на свой тип машин, на свой класс математических задач.

Программное обеспечение (или математическое обеспечение) современной ЭВМ представляет собой сложную систему, включающую языки, трансляторы, операционные системы, библиотеки стандартных программ и пр. Это обеспечение составляет неотъемлемую часть ЭВМ, часто по стоимости превышающую стоимость собственно оборудования.

Четвертый этап - собственно проведение расчетов на машине. На этом этапе проявляется сходство вычислительного эксперимента с реальным. Если в лаборатории экспериментатор с помощью специально построенной установки задает исследует реальную физическую модель, то специалисты по вычислительному эксперименту с помощью ЭВМ исследуют математическую.

ЭВМ в процессе расчета может выдавать любую информацию, представляющую интерес для исследователя. Точность этой информации определяется достоверностью самой модели. По этой причине в серьезных прикладных исследованиях полномасштабным (или, как говорят, производственным) расчетам предшествуют тестовые расчеты.

Они необходимы для того, чтобы «отладить» программу, т.е. отыскать и исправить все ошибки и опечатки, допущенные при создании алгоритма и его программной реализации. В предварительных расчетах тестируется также сама математическая модель, выясняется, насколько хорошо она описывает изучаемый класс явлений, ее адекватность реальности. Для этого проводится «обсчет» некоторых контрольных экспериментов, по которым имеются достаточно надежные измерения. Сопоставление этих данных с результатами расчетов позволяет уточнить математическую модель, повысить правильность предсказаний на ее основе.

После проведения этой работы в вычислительном эксперименте наступают фаза прогноза - с помощью математического моделирования предсказывается поведение исследуемого объекта в условиях, где эксперименты пока не проводились или где они вообще невозможны.

Пятый этап вычислительного эксперимента - обработка результатов расчетов, их всесторонний анализ и выводы. Эти выводы бывают в основном двух типов: проявляется необходимость уточнения модели или результаты, пройдя проверку на адекватность передаются заказчику. Однако чаще эти две стороны пересекаются - выясняются какие- либо необычные формы протекания изучаемого процесса, неожиданные режимы работы проектируемой установки. Математическая модель модифицируется (усложняется) и начинается новый цикл вычислительного эксперимента.

Существенной чертой многих современных математических моделей в физике, химии, биологии и пр. является нелинейность, выражающаяся в нелинейности соответствующих уравнений.

Важное свойство линейных задач, облегчающее их исследование и решение, состоит в том, что для них выполнен принцип суперпозиции. Это означает, что сумма двух решений линейного уравнения вновь является решением, и, кроме того, решение, умноженное на любое число, также удовлетворяет уравнению. Как следствие сумма любого числа решений линейной задачи есть решение. Это дает возможность строить решение общей линейной задачи в виде суммы частных, простых, хорошо изученных решений.

Для нелинейных уравнений принцип суперпозиции несправедлив, и вся техника построения решений и виде сумм, столь хорошо развитая для линейного случая, уже не работает. Пользуясь геометрическими образами, можно сказать, что решение линейной задачи в некотором смысле подобно прямой линии - по любому ее отрезку без труда восстанавливается вся линия. Если кривая имеет достаточно замысловатый вид, то представить ее ход нельзя иначе, как решая соответствующее ей уравнение.

Итак, нелинейные задачи представляют большую трудность для изучения и решения. Аналитические методы здесь работают только в единичных случаях. В этой ситуации приходится полагаться лишь на вычислительные методы. Между тем математические модели, порождаемые современными задачами науки и техники, как правило, нелинейны. Это обстоятельство является еще одной причиной того, что вычислительный эксперимент становится практически единственным средством проведения теоретических исследований в прикладных задачах.

Еще один аспект: в технике в свое время был широко распространен метод проектирования исходя из достигнутого. Это означает, что конструктор, создавая, например, новую турбину или котел тепловой электростанции, исходил из опыта своих предшественников. Немного увеличив мощность или другие параметры, он мог достаточно надежно предсказать, как будет работать проектируемое им устройство.

С математической точки зрения при небольших изменениях параметров нелинейность задачи чувствуется слабо, имеется определенное подобие установок новой и старой, что и использует конструктор. Однако когда создаются установки, параметры которых заметно (в несколько раз) отличаются от имеющихся прототипов, подобие исчезает и без предварительного математического моделирования выполнение исходной задачи невозможно. Еще более яркий пример - создание устройств с совершенно новыми принципами и идеями.

Применение вычислительного эксперимента

В современной науке и технике появляется все больше областей, задачи в которых можно и нужно решать методом вычислительного эксперимента, с помощью математического моделирования. Обратим внимание на некоторые из них.

Энергетическая проблема. Прогнозирование атомных и термоядерных реакторов на основе детального математического моделирования происходящих в них физических процессов. Вычислительный эксперимент тесно сопрягается с натурным экспериментом и помогает, заменяет и удешевляет весь исследовательский цикл, существенно его ускоряя.

Космическая техника. Расчет траекторий летательных аппаратов, задачи обтекания, системы автоматического проектирования.

Обработка данных натурного эксперимента, например радиолокационных данных, изображений со спутников, диагностика плазмы.

Здесь очень важной оказывается проблема повышения качества приборов, и в частности измерительной аппаратуры. Между тем в настоящее время показано, что, используя измерительный прибор среднего качества и присоединив к нему ЭВМ, можно на основе специального алгоритма получить результаты, которые дал бы измерительный прибор очень высокого качества.

Технологические процессы. Получение кристаллов и пленок, которые нужны, в том числе, и для создания вычислительной техники, для решения проблем в области элементной базы (что невозможно без математического моделирования); моделирование теплового режима конструктивных узлов перспективных ЭВМ, процессов лазерной плазмы, технологии создания материалов с заданными свойствами.

Экологические проблемы. Вопросы прогнозирования и управления экологическими системами могут решаться лишь на основе математического моделирования, поскольку эти системы существуют в «единственном экземпляре».

Гео- и астрофизические явления. Моделирование климата, долгосрочный прогноз погоды, землетрясений и цунами, моделирование развития звезд и солнечной активности, фундаментальные проблемы происхождения и развития Вселенной.

Химия. Расчет химических реакций, определение их констант, исследование химических процессов на макро- и микроуровне для развития химической технологии.

Биология. Особо следует отметить интерес к математическому моделированию в связи с изучением фундаментальных проблем этой науки (генетики, морфогенеза) и разработкой новых методов биотехнологии.

Существуют три проблемы биотехнологии, решение которых имеет огромное научное и прикладное значение:

1) оптимизация установок по производству кормового белка;

2) производство этанола, метанола - проблема горючего;

3) производство лекарств.

Современная биотехника - это новая крупномасштабная отрасль промышленности с новым рабочим телом - средой из клеток. Существует альтернатива - развитие технологии в этой области методом проб и ошибок, то есть многолетнее, без гарантии успеха или моделирование и оптимизация процессов.

Классической областью математического моделирования является физика. До недавнего времени в физике микромира (в квантовой теории поля) «вычислительный эксперимент» не применялся, так как было принято использовать метод малого параметра, каким является постоянная тонкой структуры. Однако сейчас физики-теоретики пришли к выводу, что процессы в микромире сильно нелинейны, поэтому необходимо переходить к численным методам, и для этой цели даже разрабатываются специальные компьютеры.

Анализ математических моделей с помощью вычислительного эксперимента с каждым годом завоевывает новые позиции. В 1982 г. Нобелевская премия по физике была присуждена К. Вильсону, предложившему ряд фундаментальных моделей в теории элементарных частиц и критических явлений, которые необходимо исследовать численно.

В 1979 г. Нобелевской премии по медицине была удостоена работа в области вычислительной томографии (восстановление объемного предмета по набору его сечений).

В 1982 г. Нобелевской премией по химии отмечена работа, в которой методами вычислительной томографии восстанавливалась структура вируса по данным электронной микроскопии.

Список использованной литературы

Учебно-методический комплекс по дисциплине «Моделирование технологических процессов» для студентов КазНТУ имени К.И.Сатпаева по специальности 050721 - «Химическая технология органических веществ». Составитель: Елигбаева Г.Ж. Алматы: КазНТУ, 2008. 52 с.

http://bourabai.ru/library/cm.pdf

Гартман Т. Н., Клушин Д. В. Основы компьютерного моделирования химико- технологических процессов. Учебное пособие для вузов. -М: Академика, 2006. -416с.

Барабанов Н. Н. Математическое моделирование процессов химической технологии. Учебное пособие для вузов. Барабанов Н. Н., Шариков Ю. В. Владимир 1987. 96 с.

Кафаров В. В. Математическое моделирование основных аппаратов химических производств: Учебное пособие для вузов. /Кафаров В. В., Глебов М. Б. М: Высшая школа, 1991, 400 с.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.