Принятие решений на основе метода анализа иерархий

Иерархическое представление проблемы, шкала отношений и матрицы парных сравнений. Собственные векторы и собственные значения матриц. Оценка однородности суждений. Синтез приоритетов на иерархии и оценка ее однородности. Учет мнений нескольких экспертов.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 12.02.2011
Размер файла 8,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Курсовая работа

на тему Принятие решений на основе метода анализа иерархий

по дисциплине Анализ принятия решений в экономике

Киев 2011

Введение

Метод анализа иерархий предполагает декомпозицию проблемы на все более простые составляющие части и обработку суждений лица, принимающего решение. В результате определяется относительная значимость исследуемых альтернатив для всех критериев, находящихся в иерархии. Относительная значимость выражается численно в виде векторов приоритетов. Полученные таким образом значения векторов являются оценками в шкале отношений и соответствуют так называемым жестким оценкам.

Можно выделить ряд модификаций МАИ, которые определяются характером связей между критериями и альтернативами, расположенными на самом нижнем уровне иерархии, а также методом сравнения альтернатив.

По характеру связей между критериями и альтернативами определяется два типа иерархий. К первому типу относятся такие, у которых каждый критерий, имеющий связь с альтернативами, связан со всеми рассматриваемыми альтернативами (тип иерархий с одинаковыми числом и функциональным составом альтернатив под критериями). Ко второму типу иерархий принадлежат такие, у которых каждый критерий, имеющий связь с альтернативами, связан не со всеми рассматриваемыми альтернативами (тип иерархий с различными числом и функциональным составом альтернатив под критериями).

В МАИ имеется три метода сравнения альтернатив: попарное сравнение; сравнение альтернатив относительно стандартов и сравнение альтернатив копированием.

Ниже рассматриваются методология МАИ и отличительные особенности его модификаций.

1. Иерархическое представление проблемы, шкала отношений и матрицы парных сравнений

1.1 Иерархическое представление проблемы

В первой модификации метода рассматривается иерархия с одинаковыми числом и функциональным составом альтернатив под критериями и метод попарного сравнения элементов иерархии. Построение иерархии начинается с очерчивания проблемы исследования. Далее строится собственно иерархия, включающая цель, расположенную в ее вершине, промежуточные уровни (например, критерии) и альтернативы, формирующие самый нижний иерархический уровень.

Верхний индекс у элементов указывает уровень иерархии, а нижний индекс -- их порядковый номер. Существует несколько альтернативных способов графического отображения иерархии.

Первый вариант -- конкретизация (декомпозиция) заданного множества элементов (в частности, критериев). Второй вариант противоположен первому и предполагает синтез более общих элементов из заданных частных. Третий вариант -- упорядочение предварительно заданного множества элементов на основе их попарного сравнения.

Шкала отношений

Для установления относительной важности элементов иерархии используется шкала отношений (табл. 1). Данная шкала позволяет ЛПР ставить в соответствие степеням предпочтения одного сравниваемого объекта перед другим некоторые числа.

Таблица 1. Шкала отношений (степени значимости действий)

Степень значимости

Определение

Объяснение

1

Одинаковая значимость

Два действия вносят одинаковый вклад в достижение цели

3

Некоторое преобладание значимости одного действия над другим (слабая значимость)

Существуют соображения в пользу предпочтения одного из действий, однако эти соображения недостаточно убедительны

5

Существенная или сильная значимость

Имеются надежные данные или логические суждения для того, чтобы показать предпочтительность одного из действий

7

Очевидная или очень сильная значимость

Убедительное свидетельство в пользу одного действия перед другим

9

Абсолютная значимость

Свидетельства в пользу предпочтения одного действия другому в высшей степени убедительны

2,4,6,8

Промежуточные значения между двумя соседними суждениями

Ситуация, когда необходимо компромиссное решение

Обратные величины приведен-ных выше ненулевых величин

Если действию i при сравнении с действием j приписывается одно из определенных выше ненулевых чисел, то действию j при сравнении с действием i приписывается обратное значение

Если согласованность была постулирована при получении N числовых значений для образования матрицы

Правомочность этой шкалы доказана теоретически при сравнении со многими другими шкалами [2]. При использовании указанной шкалы ЛПР, сравнивая два объекта в смысле достижения цели, расположенной на вышележащем уровне иерархии, должен поставить в соответствие этому сравнению число в интервале от 1 до 9 или обратное значение чисел. В тех случаях, когда трудно различить столько промежуточных градаций от абсолютного до слабого предпочтения или этого не требуется в конкретной задаче, может использоваться шкала с меньшим числом градаций. В пределе шкала имеет две оценки:

1 -- объекты равнозначны;

2 -- предпочтение одного объекта над другим.

1.2 Матрицы парных сравнений

После построения иерархии устанавливается метод сравнения ее элементов. Если принимается метод попарного сравнения, то строится множество матриц парных сравнений. Для этого в иерархии выделяют элементы двух типов: элементы-«родители» и элементы-«потомки». Элементы-«потомки» воздействуют на соответствующие элементы вышестоящего уровня иерархии, являющиеся по отношению к первым элементами-«родителями». Матрицы парных сравнений строятся для всех элементов-«потомков», относящихся к соответствующему элементу-«родителю». Элементами-«родителями» могут являться элементы, принадлежащие любому иерархическому уровню, кроме последнего, на котором расположены, как правило, альтернативы. Парные сравнения проводятся в терминах доминирования одного элемента над другим. Полученные суждения выражаются в целых числах с учетом девятибалльной шкалы (см. табл. 1).

Заполнение квадратных матриц парных сравнений осуществляется по следующему правилу. Если элемент E1 доминирует над элементом Е2, то клетка матрицы, соответствующая строке Е1 и столбцу E2, заполняется целым числом, а клетка, соответствующая строке E2 и столбцу Е1, заполняется обратным к нему числом. Если элемент Е2 доминирует над Е1, то целое число ставится в клетку, соответствующую строке Е2 и столбцу Е1, а дробь проставляется в клетку, соответствующую строке Е1 и столбцу Е2. Если элементы Е1 и Е2 равнопредпочтительны, то в обе позиции матрицы ставятся единицы.

Для получения каждой матрицы эксперт или ЛПР выносит n(n - 1)/2 суждений (здесь п -- порядок матрицы парных сравнений).

Рассмотрим в общем виде пример формирования матрицы парных сравнений.

Пусть Е1,E2, ..., Еп -- множество из п элементов (альтернатив) и v1, v2, …, vn -- соответственно их веса, или интенсивности. Сравним попарно вес, или интенсивность, каждого элемента с весом, или интенсивностью, любого другого элемента множества по отношению к общему для них свойству или цели (по отношению к элементу-«родителю»). В этом случае матрица парных сравнений [Е] имеет следующий вид:

Матрица парных сравнений обладает свойством обратной симметрии, т. е.

aij=1/aji,

где aij=vi / vj

При проведении попарных сравнений следует отвечать на следующие вопросы: какой из двух сравниваемых элементов важнее или имеет большее воздействие, какой более вероятен и какой предпочтительнее.

При сравнении критериев обычно спрашивают, какой из критериев более важен; при сравнении альтернатив по отношению к критерию -- какая из альтернатив более предпочтительна или более вероятна.

2. Собственные векторы и собственные значения матриц. Оценка однородности суждений

2.1 Собственные векторы и значения матриц

Ранжирование элементов, анализируемых с использованием матрицы парных сравнений [E], осуществляется на основании главных собственных векторов, получаемых в результате обработки матриц.

Вычисление главного собственного вектора W положительной квадратной матрицы [E] проводится на основании равенства

EW=лmaxW, (1)

где лmax -- максимальное собственное значение матрицы [Е].

Для положительной квадратной матрицы [Е] правый собственный вектор W, соответствующий максимальному собственному значению лmax, с точностью до постоянного сомножителя С можно вычислить по формуле

где е={1,1,1, ....l}Т - единичный вектор;

k = 1, 2, 3, ... -- показатель степени;

С-- константа;

Т -- знак транспонирования.

Вычисления собственного вектора W по выражению (2) производятся до достижения заданной точности:

где l -- номер итерации, такой, что l = 1 соответствует k = 1; l = 2, k = 2; l = 3, k = 4 и т. д.;

о -- допустимая погрешность.

С достаточной для практики точностью можно принять = 0,01 независимо от порядка матрицы.

Максимальное собственное значение вычисляется по формуле:

лmax=eT[E]W

Динамические предпочтения и приоритеты

Задача прогнозирования экспертных предпочтений связана с получением оценок приоритетности альтернатив в форме зависимостей от времени. Для этого исходные экспертные оценки должны содержать информацию об изменении предпочтительности одной альтернативы перед другой на некотором временном отрезке. Следовательно, оценка предпочтительности может быть задана не константой, а функцией. Подбор таких функций можно осуществить, либо предоставив в распоряжение эксперта некоторую функциональную шкалу [2], либо путем аппроксимации экспертных оценок, полученных в различные моменты времени. Пример функциональной шкалы показан в табл. 2, где функции предпочтительности содержат параметры, подбор которых позволяет более или менее точно описать изменяющиеся суждения и установить область допустимых значений функций в пределах девятибалльной шкалы (см. табл. 2).

Таблица 2. Динамические суждения

Вид функции

Описание функции

Примечание

const

Для всех t l const 9

Постоянство предпочтений

a1(t)+a2

Линейная функция от t на некотором отрезке, обратная функция - гипербола

Линейное возрастание предпочтения одной альтернативы перед другой во времени

b1ln(t+1)+b2

Логарифмический рост

Быстрое возрастание предпочтения одной альтернативы перед другой до некоторого t, после которого следует медленное возрастание

Экспоненциальный рост или убывание (с2<0), в последнем случае обратная величина - S-образная логистическая кривая

Медленное увеличение или уменьшение предпочтения во времени, за которым следует быстрое увеличение (уменьшение)

d1t2+d2t+d3

Парабола с максимумом или минимумом в зависимости оттого, отрицательно или положительно d1.

Возрастание до максимума, а затем убывание (или наоборот)

f1tnsin(t+f2)+f3

Колебательная функция

Колебания предпочтений во времени с возрастающей (п>0) или убывающей (n?0) амплитудой

Катастрофы

Функции, имеющие разрывы, которые следует указать

Крайне резкие изменения интенсивности предпочтений

Эти функции отражают интуитивные чувства лица, принимающего решения об изменении в тренде: постоянном, линейном, логарифмическом и экспоненциальном, возрастающем до максимума и убывающем или опускающемся до минимума и возрастающем, колебательном и, наконец, допускающем катастрофические изменения.

Для динамических задач матрица парных сравнений содержит функции времени в качестве элементов, поэтому максимальное собственное число лmax, также собственный вектор W также будут зависеть от времени, т. е.

Здесь A(t) -- матрица парных сравнений объектов, содержащая информацию об изменении предпочтительности одной альтернативы перед другой на некотором промежутке времени, которая задана функцией из табл. 2.2.

Если порядок матрицы парных сравнений не превышает четырех, для уравнения (2.4) можно получить аналитическое решение [2]. Альтернативным способом является получение A(t) и W(t) численными методами. Для этого необходимо иметь в распоряжении информацию о предпочтениях экспертов за определенный период времени. При накапливании такой информации в компьютерной системе становятся возможными прогнозирование предпочтений и оценка ближайших последствий принимаемых решений.

Оценка однородности суждений

В практических задачах количественная (кардинальная) и транзитивная (порядковая) однородность (согласованность) нарушается, поскольку человеческие ощущения нельзя выразить точной формулой. Для улучшения однородности в числовых суждениях, какая бы величина aij ни была взята для сравнения i-го элемента с j-м, aij приписывается значение обратной величины, т. е. аij = 1/aij. Отсюда следует, что если один элемент в а раз предпочтительнее другого, то последний только в 1/а раз предпочтительнее первого.

При нарушении однородности ранг матрицы отличен от единицы и она будет иметь несколько собственных значений. Однако при небольших отклонениях суждений от однородности одно из собственных значений будет существенно больше остальных и приблизительно равно порядку матрицы. Таким образом, для оценки однородности суждений эксперта необходимо использовать отклонение величины максимального собственного значения лmax от порядка матрицы п.

Однородность суждений оценивается индексом однородности (ИО) или отношением однородности (OO) в соответствии со следующими выражениями:

где М(ИО) -- среднее значение (математическое ожидание) индекса однородности случайным образом составленной матрицы парных сравнений [E], которое основано на экспериментальных данных (табл. 3), полученных в работе [2].

Таблица 3. Среднее значение индекса однородности в зависимости от порядка матрицы

Порядок матрицы (п)

М(ИО)

Порядок матрицы (и)

М(ИО)

Порядок матрицы (п)

М(ИО)

1

0,00

6

1,24

11

1,51

2

0,00

7

1,32

12

1,48

3

0,58

8

1,41

13

1,56

4

0,90

9

1,45

14

1,57

5

1,12

10

1.49

15

1,59

В качестве допустимого используется значение OO ? 0,10. Если для матрицы парных сравнений отношение однородности OO > 0,10, то это свидетельствует о существенном нарушении логичности суждений, допущенном экспертом при заполнении матрицы, поэтому эксперту предлагается пересмотреть данные, использованные для построения матрицы, чтобы улучшить однородность.

3. Синтез приоритетов на иерархии и оценка ее однородности

3.1 Иерархический синтез

Иерархический синтез используется для взвешивания собственных векторов матриц парных сравнений альтернатив весами критериев (элементов), имеющихся в иерархии, а также для вычисления суммы по всем соответствующим взвешенным компонентам собственных векторов нижележащего уровня иерархии. Ниже рассматривается алгоритм иерархического синтеза с учетом обозначений, принятых в предыдущей иерархии (см. рис. 1). Ш а г 1. Определяются векторы приоритетов альтернатив относительно элементов Eij предпоследнего уровня иерархии (i = S). Здесь через Eij обозначены элементы иерархии, причем верхний индекс i указывает уровень иерархии, а нижний индекс j -- порядковый номер элемента на уровне. Вычисление множества векторов приоритетов альтернатив WAS относительно уровня иерархии S осуществляется по итерационному алгоритму, реализованному на основе соотношений (2) и (3) по исходным данным, зафиксированным в матрицах попарных сравнений. В результате определяется множество векторов:

Ш а г 2. Аналогичным образом обрабатываются матрицы попарных сравнений собственно элементов Eij. Данные матрицы построены таким образом, чтобы определить предпочтительность элементов определенного иерархического уровня относительно элементов вышележащего уровня, с которыми они непосредственно связаны. Например, для вычисления векторов приоритетов элементов третьего иерархического уровня (см. рис. 1) обрабатываются следующие три матрицы попарных сравнений:

В матрицах через vj обозначен вес, или интенсивность, Еj-го элемента.

В результате обработки матриц попарных сравнений определяется множество векторов приоритетов элементов:

Полученные значения векторов используются впоследствии при определении векторов приоритетов альтернатив относительно всех элементов иерархии.

Шаг 3. Осуществляется собственно иерархический синтез, заключающийся в последовательном определении векторов приоритетов альтернатив относительно элементов Еij находящихся на всех иерархических уровнях, кроме предпоследнего, содержащего элементы ЕSj. Вычисление векторов приоритетов проводится в направлении от нижних уровней к верхним с учетом конкретных связей между элементами, принадлежащими различным уровням. Вычисление проводится путем перемножения соответствующих векторов и матриц.

Общий вид выражения для вычисления векторов приоритетов альтернатив определяется следующим образом:

где -- вектор приоритетов альтернатив относительно элемента E1i-1, определяющий j-й столбец матрицы;

-- вектор приоритетов элементов E1i-1, E2i-1,..., Eni-1, связанных с элементом Ej вышележащего уровня иерархии.

Ниже приведен конкретный пример по вычислению векторов приоритетов альтернатив относительно элементов третьего (E3j), второго (Е2j) и первого (Е1j) уровней иерархии с учетом конкретных связей между элементами иерархии (см. рис. 2.1).

Определение векторов приоритетов альтернатив для элементов второго уровня осуществляется следующим образом:

Результирующий вектор приоритетов альтернатив относительно корневой вершины иерархии Е11 вычисляется следующим образом:

Рассмотренная модификация МАИ может эффективно применяться при решении широкого класса социально-экономических и управленческих задач.

Оценка однородности иерархии

После решения задачи иерархического синтеза оценивается однородность всей иерархии с помощью суммирования показателей однородности всех уровней, приведенных путем "взвешивания" к первому иерархическому уровню, где находится корневая вершина. Число шагов алгоритма по вычислению однородности определяется конкретной иерархией.

Рассмотрим принципы вычисления индекса ИОИ и отношения ООИ однородности иерархии.

Пусть задана иерархия критериев и альтернатив (рис. 3.) и для каждого уровня определен индекс однородности и векторы приоритетов критериев следующим образом:

ИО1 -- индекс однородности для 1-го уровня;

{ИО2, ИО3} -- индексы однородности для 2-го уровня;

{ИО4, ИО5, ИО6} -- индексы однородности для 3-го уровня;

{W1} -- вектор приоритетов критериев К2 и К3 относительно критерия К1;

{W2},{W3} -- векторы приоритетов критериев К4, К5, К6 относительно критериев К2 и К3 второго уровня.

В этом случае индекс однородности рассматриваемой иерархии можно определить по формуле

где Т -- знак транспонирования.

Определение отношения однородности ООИ для всей иерархии осуществляется по формуле

ООИ = ИОИ / М(ИОИ),

где М(ИОИ) -- индекс однородности иерархии при случайном заполнении матриц попарных сравнений.

Расчет индекса однородности М(ИОИ) с учетом экспериментальных данных (см. табл. 3) выполняется по формуле, аналогичной (5):

Однородность иерархии считается удовлетворительной при значениях ООИ ? 0,10.

4. Учет мнений нескольких экспертов

Для повышения степени объективности и качества процедуры принятия решений целесообразно учитывать мнения нескольких экспертов. С этой целью проводится групповая экспертиза, причем множество экспертов может быть подразделено на несколько подмножеств в зависимости от области экспертизы [З], определяемой характером критериев, используемых в иерархии. Оценка весомости критериев и альтернатив с учетом данного подхода предполагает привлечение специалистов-управленцев, маркетологов, производственников, специалистов-теоретиков и т. п. (рис. 4).

Для агрегирования мнений экспертов принимается среднегеометрическое, вычисляемое по следующему соотношению:

(6)

где aАij -- агрегированная оценка элемента, принадлежащего i-й строке и j-му столбцу матрицы парных сравнений;

п -- число матриц парных сравнений, каждая из которых составлена одним экспертом. Логичность критерия (6) становится очевидной, если два равноценных эксперта указывают при сравнении объектов соответственно оценки а и 1/а, что при вычислении агрегированной оценки дает единицу и свидетельствует об эквивалентности сравниваемых объектов.

Осреднение суждений экспертов может быть осуществлено и на уровне собственных векторов матриц парных сравнений. При этом результаты будут эквивалентны тем, которые получены на уровне элементов матриц, если однородность составленных матриц достаточна и удовлетворяет условию OO ? 0,10. Покажем это на следующем примере.

Пусть заданы суждения двух экспертов в виде матриц попарных сравнений [A1] и [A2]:

Для этих матриц собственные векторы WАi, максимальные собственные значения лmax и оценки однородности (ИО; OO) имеют следующий вид:

для матрицы [A1]

Для матрицы [A2],

Осреднение на уровне элементов собственных векторов дает

WA= {0,184 0,117 0,699}T.

Осредняя элементы матриц [A1] [A2], получим матрицу [А3]:

Правый собственный вектор матрицы [А3] следующий:

= {0,184 0,116 0,699}T.

Сравнивая два собственных вектора Wa и определенных двумя разными способами, можно убедиться в их совпадении, даже несмотря на то, что однородность суждений эксперта, заполнившего матрицу [A2], была неудовлетворительной (OO = 0,255 > 0,10).

В достаточно ответственных задачах при оправданных затратах на экспертизу осреднение суждений экспертов проводится с учетом их квалификации ("веса"). Для определения весовых коэффициентов экспертов целесообразно использовать иерархическую структуру критериев (рис. 5).

Расчет агрегированной оценки в случае привлечения п экспертов, имеющих различную значимость, осуществляется по формуле

где aakij -- оценка объекта, проведенная k-м экспертом с весовым коэффициентом ak; при этом а1 + а2 +...+ аn= 1.

5. Методы сравнения объектов относительно стандартов и копированием

Сравнение объектов относительно стандартов

Во второй модификации рассматривается метод сравнения объектов относительно стандартов. Метод попарного сравнения альтернатив не всегда может быть эффективно применен в некоторых практических ситуациях:

* эксперту может быть предложено для анализа более девяти альтернатив. В этом случае построение однородных матриц попарных сравнений становится затруднительным. Это связано с физическими ограничениями интеллекта человека;

* при добавлении новых альтернатив изменяется порядок ранее прошедших сравнение альтернатив относительно критериев качества. Нарушение порядка альтернатив нежелательно при решении ряда прикладных задач, связанных со значительными финансовыми, материальными и социальными затратами на корректировку последствий принимаемых решений или возможностью возникновения конфликтной ситуации между экспертами, готовящими и обосновывающими решения, и лицами, принимающими решения, несущими ответственность за принятые решения и их последствия;

* альтернативы могут поступать эксперту для сравнения не одновременно, а через определенные промежутки времени. Поэтому в данной ситуации не представляется возможным попарно сравнить объекты.

Для решения проблемы сравнения и оценки альтернатив в указанных ситуациях наиболее целесообразен метод сравнения альтернатив относительно стандартов. Стандарт устанавливает уровень качества объекта относительно критерия качества. Например, критерию "надежность" для объекта "автомобиль" может быть назначено три стандарта, характеризующих соответственно высокий (H -- high), средний (М -- medium), низкий (L -- little) уровень надежности. Каждый стандарт отождествляется, как правило, с некоторым существующим на практике эталоном качества. В качестве таких эталонов принимаются объекты, аналогичные сравниваемым альтернативам. Например, для видов обеспечения банковских кредитов высокий, средний и низкий стандарты по критерию "ликвидность" могут быть отождествлены соответственно с драгоценными металлами, ценными бумагами и недвижимостью.

В иерархической структуре стандарты присваиваются элементам, имеющим непосредственную связь с альтернативами. При этом число стандартов по каждому такому элементу (критерию качества) может быть различно и определяется экспертом с учетом конкретной ситуации. По каждому стандарту экспертом устанавливается относительная степень предпочтения, которая указывает значимость стандарта для эксперта. Численное значение каждого стандарта определяется их попарным сравнением по девятибалльной шкале (см. табл. 1) путем обработки матрицы

Вектор приоритетов стандартов будет иметь следующий вид:

{Н= 0,625 М= 0,257 L= 0,091}T

Из вышеприведенной матрицы следует, что эксперт отдал слабое предпочтение высокому стандарту (Н) перед средним (М), а также среднему перед низким стандартом (L). В то же время предпочтение высокого стандарта (Н) перед низким (L) определено как очень сильное (оценка 7 в матрице).

Рассмотрим правила построения иерархии (рис. 6), учитывающей стандарты и алгоритм вычисления векторов приоритетов альтернатив.

Введем следующие обозначения:

С = {С0, Cg} -- множество стандартов, включающее два подмножества, устанавливающие соответственно основную { С0 } и дополнительную { Сg } шкалы. Основная шкала включает градации С0 = {Н, М, L}, где Н, М, L -- соответственно высокий, средний и низкий уровень стандартов по определенному критерию. Дополнительная шкала может включать градации Cg = {НН, НМ, ML, LL}, где НН, НМ, ML, LL -- соответственно очень высокое; промежуточное между высоким и средним; промежуточное между средним и низким; очень низкое значение стандартов.

Для конкретного элемента Esj, включенного в иерархию из множества С, определяется подмножество стандартов Сj, такое, что Сj С, Сj Esj. Например, для элементов иерархии (см. рис. 6)

E1s и Esp определены стандарты Н, М, L, а для элемента Е2s -- стандарты Н, НМ, М, ML, L. Следует отметить, что экспертом могут быть назначены различные значения для одних и тех же по наименованию стандартов, относящихся соответственно к элементам E1s и Esp.

Вычисление векторов приоритетов альтернатив относительно элементов иерархии,, учитывающей стандарты, осуществляется следующим образом.

Для каждого элемента Esj иерархии, непосредственно связанного со стандартами, устанавливается подмножество Сj С. Стандарты, входящие в подмножества Сj, сформированные относительно Esj, попарно сравниваются по девятибалльной шкале предпочтений. Относительные предпочтения стандартов фиксируются в матрицах, обработка которых по итерационному алгоритму, выполняемому в соответствии с соотношениями (2) и (3), позволяет определить для них правые собственные векторы Wsj Esj. В собственном векторе верхний индекс указывает на принадлежность вектора уровню стандартов в иерархии.

Лицо, принимающее решение, присваивает каждой альтернативе Аi значение одного стандарта. Процедура идентификации проводится по всем элементам Esj (j = ). В результате идентификации строится матрица [А] следующего вида:

В матрице [А] через wij обозначено численное значение стандартов, соответствующее альтернативе Аi и элементу Esj иерархии. Таким образом, столбцы в матрице [А] образуют ненормированные векторы приоритетов альтернатив по соответствующим элементам Esj.

Для получения нормированных векторов WAj (верхний индекс указывает на то, что ранжируются альтернативы) приоритетов альтернатив матрица [А] умножается на диагональную матрицу [S] вида:

Множество нормированных векторов приоритетов альтернатив относительно всех элементов самого нижнего уровня иерархии определяется перемножением матриц

[WA]=[A][S].

В полученной матрице [ WA ] столбцами являются нормированные векторы приоритетов альтернатив WAj для каждого элемента Esj иерархии.

Дальнейшее определение векторов приоритетов альтернатив относительно элементов Eij иерархии, расположенных выше уровня S, осуществляется в соответствии с шагами 2 и 3 алгоритма иерархического синтеза.

Рассмотрим пример использования метода сравнения альтернатив относительно стандартов, подтверждающий тот факт, что добавление новой альтернативы не нарушает порядок ранее проранжированных альтернатив.

Пусть имеется матрица предпочтений стандартов:

Вектор приоритетов стандартов имеет следующий вид:

Н = 0,696 М = 0,225 L = 0,079.

Рассмотрим четыре альтернативы А1,..., А4 которым поставлены в соответствие следующие значения вектора приоритетов стандартов:

А1 = 0,225 (М), А2 = 0,079 (L), А3 = 0,225 (М), А4 =0,079 (L),

Нормированный вектор приоритетов рассматриваемых альтернатив следующий:

А1 А2 А3 А4

W4 = { 0,370 0,130 0,370 0,130 }Т.

где Т -- знак транспонирования;

(4) -- нижний индекс, указывающий число ранжируемых альтернатив.

В соответствии с приведенным вектором альтернативы ранжируются в порядке убывания приоритета: А1, А3, А2, А4.

Добавим к рассматриваемому множеству альтернатив новую -- А5 и присвоим ей значение, соответствующее высокому стандарту -- Н. Нормированный вектор приоритетов для пяти альтернатив имеет следующий вид:

А1 А2 А3 А4 A5

W5= {0,137 0,061 0,173 0,061 0,534}T.

В соответствии с этим вектором альтернативы ранжируются в порядке убывания приоритета следующим образом: А5, А1, А3, А2, A4. Анализ приведенной последовательности показывает, что добавление новой альтернативы А5, не привело к нарушению порядка у ранее проанализированных альтернатив А1, ..., А4.

Сравнение объектов методом копирования

В третьей модификации рассматривается определение вектора приоритетов альтернатив методом копирования.

Метод копирования применяется в тех случаях, когда среди анализируемых альтернатив имеются такие, которые идентичны по одним или нескольким анализируемым свойствам (критериям качества). Например, пневматическая виброзащитная система рукавного типа, используемая в рессорном подвешивании пассажирских автобусов, идентична по качеству виброизоляции с металлическим механизмом перескока, реализующим квазинулевую жесткость.

Рассмотрим процедуры сравнения и установления приоритета альтернатив, используемые в методе копирования.

Пусть определено множество альтернатив А = {а1, а2, ..., аn}, каждая из которых отличается от всех других альтернатив этого множества уровнем качества по рассматриваемому критерию Кi и определено другое множество альтернатив В == {b1, b2, ..., bn}, каждая из которых имеет одинаковые свойства со всеми другими по ранее определенному критерию Кi. Предположим, что множество А имеет хотя бы один элемент аi* , свойство которого по критерию Кi идентично свойствам всех альтернатив множества В. Тогда все альтернативы множества В являются копиями элемента аi* по критерию Кi. При такой ситуации эксперт по критерию Кi попарно сравнивает только альтернативы множества А. Далее на основании матрицы попарных сравнений рассчитывается нормированный собственный вектор WA, ранжирующий альтернативы множества A. Всем альтернативам-копиям {b1, b2, ..., bn} присваивается значение нормированного собственного вектора WA, соответствующее элементу ai*. В результате получается новый ненормированный вектор приоритетов WAB всех альтернатив, входящих в множества A и В. Вектор WAB нормируется путем деления каждого значения указанного вектора на сумму всех его значений.

Метод копирования аналогичен методу сравнения альтернатив относительно стандартов в том плане, что позволяет не нарушать порядок ранее проранжированных альтернатив при добавлении новых, являющихся копиями ранее проранжированных альтернатив. Кроме того, число анализируемых альтернатив при добавлении копий может превышать пороговое значение, равное девяти, установленное для метода попарного сравнения. иерархический матрица суждение эксперт

Рассмотрим пример добавления к ранее проранжированным объектам альтернатив-копий.

Допустим, определены три альтернативы A1, А2 и А3, для которых экспертом установлена относительная степень предпочтений по критерию "надежность функционирования системы". Альтернативы сравниваются попарно в матрице, для которой рассчитывается нормированный собственный вектор, имеющий значения {0,5 0,3 0,2}T . В приведенном векторе указан знак транспонирования -- Т, а порядок значений вектора соответствует весу альтернатив А1, А2 и А3. Предположим, что для анализа поступают две новые альтернативы А4, А5, свойства которых по указанному критерию полностью идентичны свойствам альтернативы А3. В этом случае альтернативам-копиям присваиваются веса, соответствующие весу альтернативы А3,, т. е. А4 = 0,2 и А5 = 0,2. Новый ненормированный вектор приоритетов альтернатив принимает следующий вид:

{0,5 0,3 0,2 0,2 0,2}T

Значения весов пяти альтернатив после нормирования предыдущего вектора приоритетов имеют следующий вид:

A1 = 0,35, А2 == 0,21, А3 = 0,14, A4 = 0,14, A5= 0,14.

Анализ двух векторов приоритетов, характеризующих соответственно множества из трех и пяти альтернатив, показывает, что добавление альтернатив А4, А5 не нарушило порядок приоритетности альтернатив А1, А2 и А3,.

Метод копирования позволяет существенно сократить время экспертов на подготовку исходных данных для анализа и уменьшить вероятность внесения в них как случайных, так и логических ошибок.

6. Многокритериальный выбор на иерархиях с различным числом и составом альтернатив под критериями

В четвертой модификации рассматривается метод определения векторов приоритетов альтернатив для иерархий с различным числом и различающимся составом альтернатив под критериями.

В практике принятия решений нередко встречается задача, когда ранжируемые по множеству критериев альтернативы оцениваются экспертом не по всем критериям. Эта задача характерна для ситуаций, в которых множество критериев, выделенных для всех рассматриваемых альтернатив, является избыточным относительно одной или нескольких альтернатив. Таким образом, в рассматриваемом случае эксперт имеет разное количество альтернатив под каждым критерием или под их частью. На рис. 7 приведены примеры иерархий, в которых каждый критерий Ej из множества {Е1, E2, ... , Еp} имеет разное количество альтернатив из множества {А1,А2, ... ,Аr}.

Альтернативы А1 и Аr; А1, А2 Аr; А2 и Аr оцениваются соответственно относительно элементов (критериев) Е1, Е2, Ер (рис. 2.7а).

Рис. 7. Примеры иерархий с разным числом альтернатив под критериями а -- синтез; б -- декомпозиция

Рассмотрим методику определения вектора приоритета альтернатив для случая, когда иерархия имеет один уровень критериев, объединенных фокусом (рис. 7 б) с учетом значимости критериев, и разное количество альтернатив у каждого критерия. Методика предполагает выполнение ряда процедур по структурированию информации и проведению вычислительных операций.

Процедура 1. Исходная проблема структурируется в виде иерархии, устанавливающей взаимосвязь между множеством сравниваемых альтернатив {А1, A2,... , Аr}и множеством критериев {E1, Е2, ... , Еp}.

Процедура 2. На основе иерархической структуры определяется бинарная матрица [В], устанавливающая соответствие между альтернативами и критериями. Матрица [В] содержит элементы bij = {0,1}. При этом если альтернатива Аi оценивается по критерию Ej, то bij = 1, в противном случае bij = 0.

Процедура 3. Осуществляется экспертная оценка альтернатив по соответствующим критериям. Для этой цели используются метод попарного сравнения, метод сравнения относительно стандартов или метод копирования. На основе экспертных оценок с учетом матрицы [В] строится матрица [А] следующего вида:

В матрице [А] экспертные оценки {aij} представляют векторы приоритетов альтернатив относительно критериев Ej. При этом если альтернатива Аi не оценивается по критерию Еj, то в матрице [А] соответствующее значение aij = 0. Векторы в указанной матрице имеют различное число значений aij и могут быть нормированными или ненормированными в зависимости от используемого метода сравнения альтернатив.

Процедура 4. В результате обработки матрицы попарных сравнений критериев Еj определяется нормированный вектор приоритетов критериев .

Процедура 5. Формируются структурные критерии S и L, отображаемые соответствующими диагональными матрицами [S] и [L].

Рассмотрим состав упомянутых матриц.

Матрица [S] имеет следующий вид:

где aij -- значения векторов приоритетов из матрицы [А].

С помощью матрицы [S] обеспечивается нормирование векторов приоритетов альтернатив, образующих матрицу [А], если последняя заполнена методом сравнения относительно стандартов или копирования без предварительного нормирования.

Матрица [L] имеет следующий вид:

где Rj -- число альтернатив Аi, находящихся под критерием Еj,

-- суммарное число альтернатив, находящихся под всеми критериями.

Здесь следует отметить, что число N в матрице [L] может приниматься равным числу рассматриваемых альтернатив r, т.е. N= r. При этом на конечный результат способ определения N не оказывает влияния.

Использование структурного критерия L позволяет эксперту или ЛПР изменять при необходимости вес альтернатив, связанных с соответствующими критериями пропорционально отношению Rj / N. Этим обеспечивается повышение приоритета альтернатив, образующих большие группы, и снижение приоритета альтернатив в группах с их относительно небольшим числом. Здесь имеется в виду, что группу определяют альтернативы, являющиеся "потомками" по отношению к критерию Ej. Необходимость в приведенной вычислительной процедуре обусловлена тем, что у критериев-"родителей" с высоким приоритетом в иерархии может находиться большое число альтернатив-"потомков", а у критериев-родителей" с низким приоритетом -- значительно меньшее число альтернатив-"потомков", чем в первом случае. Поэтому в этой ситуации желательно повышение приоритетов альтернатив в большой группе, поскольку, если альтернатив много, каждая из них получит меньший составной приоритет, чем каждая альтернатива, входящая в меньшую группу с низким приоритетом критерия.

На практике возможны также ситуации, прямо противоположные выше охарактеризованной, когда требуется повысить приоритет так называемых редких альтернатив-"потомков", образующих относительно критериев-"родителей" маленькие группы. В этом случае структурная матрица [L] принимает следующий вид:

Процедура 6. Определяется вектор приоритетов альтернатив W относительно критериев. Данная процедура реализуется последовательным перемножением слева направо следующих матриц и векторов:

а) для случая, когда экспертные оценки в матрице [А] ненормированы:

W=[A] [S][L] [B]; (7)

б) для случая, когда экспертные оценки в матрице [А] нормированы:

W=[A] [L] [B]. (8)

В выражениях (7) и (8) диагональная матрица [В] предназначена для окончательного нормирования значений вектора приоритетов альтернатив. Эта матрица имеет следующий вид:

где хi -- значение ненормированного вектора приоритетов альтернатив, полученное после последовательного перемножения слева направо матриц [A], [S], [L] и вектора ;

r -- число альтернатив.

Рассмотрим пример вычисления вектора приоритета альтернатив.

Допустим, имеется иерархическая система (рис. 8), включающая корневую вершину -- фокус (Ф), два критерия К1 и К2 и пять альтернатив A1, ... ,А5. При этом по критерию К1 оцениваются все пять альтернатив, а по критерию К2 -- две альтернативы: А4 и А5.

Предположим, что при попарном сравнении альтернатив и критериев получены матрицы, отображающие равную предпочтительность сравниваемых объектов.

Матрицы предпочтений альтернатив относительно критериев K1 и K2 соответственно примут вид:

Построим матрицу предпочтений критериев относительно фокуса (Ф):

Правые собственные векторы для приведенных матриц имеют следующий вид:

= {0,2 0,2 0,2 0,2 0,2}T -- приоритет альтернатив по критерию K1;

= {0,5 0,5}T -- приоритет альтернатив по критерию К2;

= {0,5 0,5}T-- приоритет критериев относительно фокуса Ф.

Поскольку векторы приоритетов альтернатив относительно критериев K1 и К2 нормированы, результирующий вектор рассчитывается по формуле (8).

При этом матрицы [А] и [L] и вектор с учетом ранее выполненных расчетов имеют следующий вид:

Производя последовательные перемножения матриц и вектора слева направо, получим следующие результаты:

Следует отметить, что при неучете структурного критерия L результирующий вектор приоритетов альтернатив имеет следующий вид:

W'=[A] = {0,1 0,1 0,1 0,35 0,35}T.

Из сравнительного анализа двух результирующих векторов W и W' видно, что в первом случае каждая из альтернатив A4, и A5, (значение 0,286 в векторе) в два раза весомее любой из альтернатив А1, A2 или А3, (значение 0,143 в векторе), а во втором случае различие между теми же альтернативами большее и равно 3,5 (значение 0,35 против 0,1) для альтернатив в векторе приоритетов W'.

Существуют иерархии (рис. 9), у которых, в отличие от ранее рассмотренных (приведенной, например, на рис. 2.8), альтернативы сгруппированы в подмножества {А1, А2, ..., Аm}, {А'1, А'2, ..., А's}, {А"1, А"2, ... , A"l}, а элементы каждого из таких подмножеств связаны, в свою очередь, с определенными группами критериев {K11, K12,...,K1m}, {K21, K22,...,K2n}, {Kn1, Kn2,…,Knp}.

В этом случае перевернутое иерархическое дерево состоит из ряда самостоятельных иерархических ветвей.

Рассмотрим особенности алгоритма для определения векторов приоритетов альтернатив на иерархиях, состоящих из нескольких ветвей. Для лучшего понимания сущности алгоритма проиллюстрируем его на примере конкретной иерархии (см. рис. 9).

Алгоритм для иерархии с несколькими ветвями

Шаг 1. Вычисляются векторы приоритетов альтернатив относительно критериев Кij:

Шаг 2. Строятся r матриц [Аi], у которых наименованиями строк являются альтернативы, а наименованиями столбцов -- критерии Кij . При этом если альтернатива Аi не связана с критерием Kij , то в матрице [Аi] на пересечении соответствующих строки и столбца проставляется нуль.

Шаг 3. Вычисляются r векторов приоритетов альтернатив WAi (i = 1,r) относительно критериев Кi по выражениям:

где [Si] -- матрица для нормирования матрицы [Аi];

[Li] -- структурная матрица для изменения веса альтернатив пропорционально отношению R/N (R -- число альтернатив, находящихся под критерием Кij , N -- суммарное число альтернатив);

-- вектор приоритетов критериев Кij относительно критериев Кi;

[Bi] -- диагональная матрица для получения нормированного вектора WAi, определяемая по выражению (9).

Ш а г 4. Вычисляется вектор приоритетов критериев относительно фокуса иерархии К0.

Шаг 5. Строится результирующая матрица [A0], у которой наименованиями строк являются все рассматриваемые альтернативы ({Аi}, i = 1,т, {А'i}, i = 1,s, {А"i}, i = 1,t), а наименованиями столбцов -- критерии Кi. При этом результирующая матрица [Ао] имеет следующий вид:

Шаг 6. Определяется результирующий нормированный вектор приоритетов W0A всех рассматриваемых альтернатив относительно фокуса иерархии К0 на основании известного выражения:

W0A= [А0] [S0] [L0] [В0] .

Конец алгоритма.

Литература

1. Андрейчиков А.В., Андрейчикова О.Н. Анализ, синтез, планирование решений в экономике -- М.: Финансы и статистика, 2000. -- 368 с.

2. Макеев С. П., Шахнов И.Ф. Упорядочение объектов в иерархических системах // Известия АН СССР, Техническая кибернетика. -- 2006.--№ З.--С. 29--46.

3. Caamu Т. Принятие решений. Метод анализа иерархий: Пер. с англ. -- М.: Радио и связь, 2009. -- 316 с.

4. Сваткин М. 3., Мацута В. Д., Рахлин К. М. Группы качества на машиностроительных предприятиях. --Л.: Машиностроение, 2008. -- 141 с.

5. Влчек Р. Функционально-стоимостный анализ в управлении: Сокр. пер. с чеш. -- М.: Экономика, 2006. -- 176 с.

6. Карпунин М. Г., Любинецкий Я. Г., Майданчик Б. И. Жизненный цикл и эффективность машин. -- М.: Машиностроение, 2009. -- 312 с.

7. Карпунин М. Г., Майданчик Б. И. Функционально-стоимостный анализ в электротехнической промышленности. -- М.: Энергоиздат, 2004. --288 с.

8. Скворцов Н. Н., Омельченко Л. Н. Организация функционально-стоимостного анализа на машиностроительных предприятиях. -- Киев: Технiка, 2007. -- 112 с.

Размещено на Allbest.ru


Подобные документы

  • Построение графического дерева решений по установленному критерию оптимальности. Анализ узлов дерева решений с точки зрения доступности информации. Определение вектора приоритетов альтернатив, используя метод анализа иерархий и матрицы парных сравнений.

    контрольная работа [106,4 K], добавлен 09.07.2014

  • Формирование иерархии при решении проблемы "выбор фрезы". Третий этап окончательного определения. Глобальные приоритеты выбора. Полный факторный эксперимент. Определение однородности дисперсий. Расчетные значения критериев. Неполная квадратичная модель.

    курсовая работа [1,6 M], добавлен 12.09.2014

  • Описание методики проектирования принятия решения. Иерархии как воспроизведение сложности, ее структура, нахождение экономических приоритетов. Построение трёхуровневой иерархии на примере о покупке дома. Способы формирования матриц парных сравнений.

    курсовая работа [81,4 K], добавлен 04.02.2011

  • Характеристика ипотечного кредитования на примере Брянской области. Обзор математических методов принятия решений: экспертных оценок, последовательных и парных сравнений, анализа иерархий. Разработка программы поиска оптимального ипотечного кредита.

    курсовая работа [1,7 M], добавлен 29.11.2012

  • Регрессионный анализ. Экспериментальные, средние и расчетные значения выходной переменной. Проверка однородности дисперсий. Оценка значимости коэффициентов модели. Табличные значения критерия Стьюдента для заданных уровней значимости и степеней свободы.

    лабораторная работа [2,9 M], добавлен 28.12.2012

  • Расчет рыночной стоимости и оценка конкурентоспособности радиомодема МЕТА: выбор коэффициентов; определение величины затрат. Сравнение радиомодемов МЕТА, Риф Файндер-801, ГАММА методом построения и анализа иерархии. Расчет матриц сравнения и приоритетов.

    курсовая работа [245,3 K], добавлен 30.06.2012

  • Методы экспертных оценок - методы организации работы со специалистами-экспертами и анализа мнений экспертов. Экспертные оценки - индивидуальные и коллективные. Индивидуальные оценки - оценки одного специалиста. Экспертные оценки используются при выборе.

    реферат [57,9 K], добавлен 08.01.2009

  • Построение матриц и функций принадлежности на основе парных сравнений мнения эксперта об относительному соответствию элементов множеству. Использование статистических данных, ранговых оценок и параметрического подхода. Понятие лингвистической переменной.

    контрольная работа [65,5 K], добавлен 22.03.2011

  • Расчет матриц парных коэффициентов корреляции, оценка их значимости. Построение уравнения регрессии. Точечный и интервальный прогноз значения У. Кластерный анализ методом К-средних. Упорядочивание субъектов РФ в порядке убывания по значениям факторов.

    курсовая работа [2,2 M], добавлен 10.11.2013

  • Построение типологических регрессий по отдельным группам наблюдений. Пространственные данные и временная информация. Сферы применения кластерного анализа. Понятие однородности объектов, свойства матрицы расстояний. Проведение типологической регрессии.

    презентация [322,6 K], добавлен 26.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.