Инженерная экология и охрана окружающей среды

Определение термина "популяция", ее класификация и свойства. Химизация сельского хозяйства и ее последствия. Пестициды, их классификация и влияние на живые организмы. Биологическая очистка сточной воды. Расчет экологических последствий от разлива нефти.

Рубрика Экология и охрана природы
Вид контрольная работа
Язык русский
Дата добавления 14.10.2015
Размер файла 397,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

1. Популяции, их классификация и основные свойства

2. Химизация сельского хозяйства и ее последствия. Пестициды, их классификация и влияние на живые организмы

2.1 Применение и значение пестицидов

2.2 Последствия применения пестицидов

3. Биологическая очистка сточной воды

3.1 Увеличение концентрации активного ила

3.2 Использование технического кислорода для аэрации

3.3 Биоадсорбционный способ биологической очистки сточных вод

3.4 Использование мутагенеза

3.5 Использование специальных штаммов и адаптированных микроорганизмов в очистке сточных вод

4. Расчет экологических последствий от разлива нефти

Список литературы

1. Популяции, их классификация и основные свойства

Слово «популяция» происходит от латинского (populus - «популюс») - народ, население. Термин «популяция», введен в экологию В. Иогансеном в 1903 г. Популяцией в экологии называют группу особей одного вида, находящихся во взаимодействии между собой и совместно населяющих общую территорию.

Основным свойством популяций, как и других биологических систем, является то, что они находятся в беспрерывном движении, постоянно изменяются. Это отражается на всех параметрах: продуктивности, устойчивости, структуре, распределении в пространстве. Популяциям присущи конкретные генетические и экологические признаки, отражающие способность систем поддерживать существование в постоянно меняющихся условиях: рост, развитие, устойчивость

Специфические внутривидовые взаимосвязи - это отношения, связанные с воспроизводством: между особями разных полов и между родительским и дочерним поколениями.

К основным свойствам популяции относятся:

1) Численность - общее количество особей на выделяемой территории. В природе не отмечено ни одной популяции, которая оставалась бы стабильной даже на протяжении короткого отрезка времени. «Волны жизни», так назвал такие колебания основатель популяционной генетики С.С. Четвериков.

Принято различать непериодические и периодические колебания численности естественных популяций. Известно, что численность популяции зависит от многих факторов.

Так, при улучшении кормовой базы, снижении числа хищников, ослаблении конкурентных отношений численность популяции увеличивается за счет повышения рождаемости и снижения смертности. И, наоборот, при сокращении питания, усилении давления паразитов и хищников, обострении конкурентных отношений численность сокращается за счет снижения рождаемости и повышения смертности.

Динамика численности выводит популяцию из равновесного состояния, что может привести к изменениям в экосистеме. Стабильность экосистемы означает, что популяции каждого входящего в нее вида находятся в равновесии. Равновесие же в популяции определяется соотношением факторов, ограничивающих численность, увеличивающих или снижающих ее.

Существует нижний предел численности, ниже которого популяция прекращает свое воспроизведение. Такая минимальная численность популяции называется критической. При определении критической численности нужно учитывать не всех особей, а только тех, которые принимают участие в размножении - это эффективная численность популяций.

2) Плотность популяции - среднее число особей на единицу площади или объема занимаемого популяцией пространства; плотность популяции можно выражать также через массу членов популяции в единице пространства. Плотность можно выражать также как массу (биомассу) членов популяции на единице площади или в единице объема.

Низкая плотность популяции уменьшает ее шансы на воспроизведение, но увеличивает шансы на выживание. Высокая плотность, наоборот, увеличивает шансы на воспроизведение, но уменьшает шансы на выживание. Следовательно, каждая конкретная популяция должна обладать некоторой

3) Рождаемость - число новых особей, появившихся за единицу времени в результате размножения. Новой особью (или особью нулевого возраста) может считаться зигота, яйцо, личинка или особь, вышедшая из-под родительской опеки. Различают абсолютную и относительную рождаемость.

Абсолютная рождаемость - это абсолютное число новых особей: например, в популяции в течение года родилось 156 новых особей.

Относительная (удельная) рождаемость - отношение числа новых особей к числу имевшихся особей; относительная рождаемость может рассчитываться или на одну особь, или на 1000 особей. Например, в популяции в начале года было 10 000 особей, а в течение года родилось 156 новых особей; тогда относительная рождаемость равна 156 : 10000 = 0,0156 на одну особь, или 0,0156 · 1000 = 15,6 на тысячу особей.

Существуют моноциклические (у растений монокарпические) виды, представители которых размножаются один раз в жизни, и полициклические (у растений поликарпические) виды, представители которых размножаются неоднократно.

Численность популяции может увеличиваться не только за счет рождаемости, но и за счет иммиграции особей из других популяций. Существуют зависимые и полузависимые популяции, которые поддерживают и увеличивают свою численность именно за счет иммиграции.

4) Смертность - это понятие, противоположное рождаемости - показатель, отражающий количество погибших в популяции особей за определенный отрезок времени.

Различают абсолютную смертность (количество погибших особей за единицу времени) и относительную (удельную) смертность (количество погибших особей за единицу времени в расчете на одну особь или на 1000 особей).

В отличие от рождаемости смертность наблюдается постоянно. Выживаемость - средняя для популяции вероятность сохранения особей каждого поколения за определенный промежуток времени. Ее величина равна отношению числа взрослых особей, участвующих в размножении, к числу особей, родившихся в каждом поколении (например, бактерии - 10-6%; млекопитающие - 10-30%). Она обратно пропорциональна плодовитости и характеризует степень сохранения популяции или вида в процессе естественного отбора. Кривые выживания - графическая зависимость числа выживших особей от их возраста при условии, что первоначальное число особей составляет 100 или 1000.

Различают пять основных типов кривых выживания.

· Кривая I - характерна для популяций, в которых большинство особей имеет продолжительность жизни, близкую к максимально возможной для данного вида, и умирают в течение короткого отрезка времени. Эту форму кривой называют выпуклой. Она свойственна насекомым, многим крупным млекопитающим, человеку.

· Кривая II - теоретическая, отражает равную вероятность гибели особей в любом возрасте, то есть коэффициент смертности остается постоянным в течение всей жизни особей. Например, у многих природных популяций птиц и насекомых, постоянно находящихся в оптимальных условиях.

· Кривая III соответствует очень высокой смертности в раннем возрасте, а для особей, переживших этот период, вероятность смерти низка. Эта форма кривой - вогнутая. К таким популяциям относятся многие растения, беспозвоночные и рыбы.

· Кривая IV имеет ступенчатый характер и показывает, что при переходе от одной стадии развития к другой происходит резкое изменение выживания особей.

· Кривая V - имеет S-образную форму, приближающуюся к теоретической кривой.

Численность популяции может уменьшаться не только за счет смертности, но и за счет эмиграции особей.

5) Прирост популяции - разница между рождаемостью и смертностью; прирост может быть как положительным, так и отрицательным.

Относительный прирост популяции - этот параметр представляет собой разность между относительной рождаемостью и относительной смертностью. Это важнейшая характеристика популяции (обычно обозначается символом r). Относительный прирост популяции может быть положительным, нулевым и отрицательным.

Для изолированной популяции: прирост = рождаемость - смертность. Для открытой популяции: прирост = (рождаемость + иммиграция) - (смертность + эмиграция).

Абсолютный прирост популяции. Этот показатель представляет собой изменение абсолютной численности популяции за бесконечно малый промежуток времени. Абсолютное изменение численности популяции в единицу времени обозначается выражением dN/dt.

Если относительный прирост популяции (r) - величина постоянная (не зависит от численности популяции), то изменение численности популяции описывается уравнением неограниченного (экспоненциального) роста. В этом случае численность популяции в данный момент времени зависит, в первую очередь, от величины r.

Однако в реальных сообществах всегда существуют лимитирующие факторы, ограничивающие численность популяций. Максимально возможная численность популяции в данных условиях называется ёмкость экологической ниши и обозначается символом К. В этом случае изменение численности популяции описывается логистическим уравнением, которому соответствует кривая ограниченного роста. Популяции видов, у которых рождаемость и смертность в значительной мере зависят от действия внешних факторов, быстро изменяют свою численность. Периодические изменения численности популяций называются популяционными волнами. В некоторых случаях численность изменяется в тысячи и миллионы раз. Эти популяции редко достигают численности К и существуют за счет высокого значения r. Такой способ воспроизведения популяций называется r-стратегия.

r-Стратеги (эксплеренты) характеризуются низкой конкурентоспособностью, высокой плодовитостью, отсутствием заботы о потомстве, быстрым развитием и короткой продолжительностью жизни. r-Стратегов образно называют «шакалами», поскольку они способны за короткое время завоевывать освободившееся экологическое пространство.

Популяции видов, у которых рождаемость и смертность в значительной мере зависят от их плотности (то есть от характеристики самой популяции), в меньшей степени зависят от действия внешних факторов. Они поддерживают численность, близкую к величине К, поэтому способ воспроизведения таких популяций называется К-стратегия.

К-Стратеги (виоленты) характеризуются высокой конкурентоспособностью, низкой плодовитостью, заботой о потомстве, длительным развитием и длительной продолжительностью жизни. К-Стратегов образно называют «львами», поскольку они способны долгое время удерживать экологическое пространство.

Кроме r-стратегии и К-стратегии выделяется еще и S-стратегия. S-Стратеги (патиенты) населяют местообитания с неблагоприятными условиями жизни для большинства организмов, в которых конкуренция практически отсутствует.

Максимальная мгновенная скорость прироста популяции обратно пропорциональна продолжительности жизни организмов и отражает их способность увеличивать свою численность.

С увеличением размера особей время генерации увеличивается, период размножения отодвигается, поэтому максимальная мгновенная скорость прироста популяции уменьшается. Крупные организмы, несмотря на меньшие значения максимальной мгновенной скорости прироста популяции имеют больше преимуществ перед мелкими организмами:

1) Меньшее количество потенциальных хищников.

2) Крупные организмы легче переносят изменения состояния окружающей среды. Таким образом, крупные размеры тела позволяют особям этих популяций существовать и развиваться, несмотря на их меньшую численность.

Для классификации популяций экологи руководствуются различными принципами. Н. П. Наумов на примере млекопитающих рассматривает вид как иерархическую систему популяций различных рангов. Н.П. Наумов (1963 г.), выделяя популяционные единицы, использовал ландшафтно-биотопический подход. Согласно ему наиболее крупные территориальные группировки вида - это подвиды, или географические расы. Система подвидов и масштабы занимаемой ими территории зависят от биологических особенностей вида. Ареалы подвидов у подвижных форм могут быть очень велики. В пределах ареалов подвидов на территориях с однородными географическими условиями выделяются географические популяции, характеризующиеся общностью приспособлений к климату и ландшафту. К популяциям низшего ранга применяются такие названия, как экологические, биотические, местные, локальные, элементарные.

1.Элементарная (локальная) популяция - совокупность особей вида, занимающих небольшой участок однородной территории. Между ними постоянно идет обмен генетической информацией. В зависимости от характера условий в биогеоценозе, любой вид распадается на несколько элементарных популяций. Чем однообразнее условия, тем меньше количество элементарных популяций у каждого вида. В природе особи элементарных популяций часто смешиваются, поэтому границы между ними стираются.

2. Экологические популяции занимают территории с более или менее однородными экологическими условиями, формируются как совокупность элементарных популяций. Часто их называют экотопами. Например, белка (Sciurus vulgaris) заселяет разные типы леса. Поэтому могут быть четко выделены сосновые, елово-пихтовые и другие ее популяции. Они слабо изолированы одна от другой, и обмен генетической информацией между ними происходит довольно часто, но реже, чем между элементарными популяциями.

3. Географическая популяция - совокупность экологических популяций, охватывающих группы особей одного вида, которые заселяют территорию с географически однородными условиями. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко - у животных и птиц - во время миграций, у растений - при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

Вид -- это система популяций. Формирование популяционной структуры вида не меньшее значение имеют и биологические особенности: подвижность особей, степень оседлости и привязанности к территории, способность преодолевать естественные преграды. Если особи постоянно перемещаются в пределах ареала, то вид имеет небольшое число крупных популяций (северные олени, песцы). Границы между популяциями обычно проходят по естественным рубежам -- проливы, реки, горные хребты. Например, Татарский пролив отграничивает сахалинскую популяцию белки от материковой. Если ареал невелик, то вид состоит из одной популяции (например, ель Глена на острове Сахалин). Очень четко прослеживается популяционная структура вида при обособленности условий обитания, например, если сравнивать группы особей одного и того же вида рыб в разных озерах. Наоборот, сплошное заселение затрудняет выделение популяций (например, у колорадского жука). В этом случае границы между популяциями обычно смазанные, нечеткие. Между популяциями осуществляется обмен отдельными особями, причем это может происходить регулярно или эпизодически. Например, часть молодых ворон остается на местах зимовок, образуя пары с оседлыми птицами этого вида. При высоком уровне весенних паводковых вод многочисленные водоемы на какое-то время образуют единую систему, в которой происходит обмен особями популяций. Так происходит обмен генетическими программами между отдельными популяциями, адаптации особей к изменяющимся условиям среды, их выживание или гибель (естественный отбор). Связи между популяциями поддерживают вид как единое целое. Различия могут затрагивать все стороны биологии вида: морфологические, физиологические, размножение. Например, особи популяций соболя на Сахалине, Сихотэ-Алине и Верхоянском хребте различаются величиной, длиной шерсти и ее окрасом. Самки зайца-беляка в Карелии приносят зайчат 2 раза в год, а в Беларуси -- до 4 раз. Установление численности популяции важно для определения величины заказников, заповедников, организуемых для сохранения того или иного вида. Именно с этой точки зрения многие заповедники не выполняют своей главной задачи. Например, Воронежский заповедник не решил бы задачи расселения бобра по всему его ареалу, если бы там не создали бобровой фермы, на которой этих животных выращивают в неволе. Вся площадь заповедника позволяет жить в естественных условиях лишь нескольким семьям. Вот почему в настоящее время ставится вопрос об установлении заповедного режима не на ограниченных территориях, а в целых ландшафтно-географических регионах.

Следовательно, популяции представляют собой весьма разнообразные видовые группировки, количество и особенности которых соответствуют пестроте и условиям местообитания, специфическим свойствам среды и биологии самих животных.

На уровне популяций происходят основные адаптации, естественный отбор и эволюционные процессы. Разнообразие популяций внутри вида резко увеличивает его приспособительные способности, освоение среды и, в конечном счете, возможности выживания. Все это позволяет считать популяцию элементарной эволюционирующей структурой.

2. Химизация сельского хозяйства и ее последствия. Пестициды, их классификация и влияние на живые организмы

Стратегия нашего земледелия за последние 25-30 лет строилась главным образом на неправильном наращивании средств химизации. Это привело к обострению медико-экологической обстановки в стране. Статистика показывает, что ежегодно 11,2% детей рождаются с физическими и умственными расстройствами, у 11-12 тысяч детей на каждые 100 тысяч - онкологические заболевания.

Процесс деградации - физической и умственной, вызванной воздействием загрязнителей среды обитания, -- ускоряется. В 1959 г на душу населения приходилось 5 кг химических продуктов, применяемых в сельском хозяйстве, детей с генетическими отклонениями рождалось 0,74% от общего числа. В 1983 г. масса химических препаратов, поступающих на сельхозугодья страны, возросла до 25 кг на душу населения, число детей, родившихся с генетическими нарушениями, возросло до 16,5%. Биологами же давно установлено, что популяция, на 30% «испорченная» генетически, обречена на вырождение. Наряду с другими факторами окружающей среды средства химизации вносят определенный вклад в эти процессы.

В 1992--1995 гг. произошел спад сельскохозяйственного производства. Это вызвало уменьшение негативного влияния сельского хозяйства на окружающую среду. Это относится в первую очередь к воздействию пестицидов. Площадь применения пестицидов сократилась с 81 млн. га в 1990 г. до 33 млн. га в 1993 г., а применение сельскохозяйственной авиации для этих целей соответственно с 12 до 6 млн. га.

2.1 Применение и значение пестицидов

Пестициды -- это химические или биологические препараты, используемые для борьбы с вредителями и болезнями растений, сорными растениями, вредителями хранящиеся в сельскохозяйственной продукции, бытовыми вредителями и внешними паразитами животных, а также для регулирования роста, предуборочного удаления листьев (дефолианты), предуборочного подсушивания растений (десиканты). Действующее вещество пестицида -- биологически активная его часть, использование которой приводит к воздействию на тот или иной вид вредного организма или на рост и развитие растений.

По химической структуре различают пестициды: хлорорганические, фосфорорганические, ртутьорганические, мышьяк содержащие, производные мочевины, цианистые соединения, производные карбаминовой, тио- и дитиокарбаминовой кислот, препараты меди, производные фенола, серы и ее соединений.

В зависимости от объекта воздействия (сорная растительность, вредные насекомые, теплокровные животные) и химической природы, пестициды подразделяются на: акарициды -- для борьбы с клещами; альгициды -- для уничтожения водорослей и другой водной растительности; антисептики -- для предохранения неметаллических материалов от разрушения микроорганизмами; бактерициды -- для борьбы с бактериями и бактериальными болезнями растений; зооциды (или родентициды) -- для борьбы с грызунами; инсектициды -- для борьбы с вредными насекомыми (эфициды -- препараты для борьбы с тлей); лимациды (моллюскоциды) -- для борьбы с различными моллюсками; нематоциды -- для борьбы с круглыми червями (нематоцидами); фунгициды -- для борьбы с болезнями растений под влиянием различных паразитирующих грибов.

К пестицидам относятся дефолианты - средства для удаления листьев, десиканты - препараты для высушивания листьев на корню, дефлоранты -- вещества для удаления излишних цветов, гербициды -- для уничтожения сорной растительности. В сельскохозяйственной практике применяются как обще истребительные гербициды, уничтожающие все растения на обрабатываемой площади, так и избирательные, губительно действующие только на сорную растительность. К пестицидам относят также химические вещества для отпугивания насекомых, грызунов и других животных (репелленты), привлечения насекомых с последующим их уничтожением (аттрактанты), половой стерилизации насекомых (стерилизаторы).

В настоящее время в зависимости то назначения, химической природы и патогенных свойств для теплокровных и человека принято несколько классификаций пестицидов: гигиеническая, химическая, производственная.

Гигиеническая классификация пестицидов построена по степени их ядовитости (токсичности) для биологических объектов, кумулятивными свойствами и стойкости с учетом возможности циркуляции во внешней среде. Степень опасности пестицидов оценивается по их токсичности, летучести, кумулятивным свойствам и стойкости.

Сила токсического действия измеряется дозой вещества, выражаемой в мг/кг массы животного или концентрацией вещества в воздухе -- мг/л или мг/м3 воздуха. Для оценки токсичности пестицидов принято пользоваться средней смертельной дозой (ЛД50), вызывающей гибель 50% подопытных животных при однократном поступлении препаратов в желудочно-кишечный тракт.

В зависимости от величины ЛД50 пестициды делятся на сильнодействующие ядовитые вещества, средне смертельная доза которых менее 50 мг на 1 кг массы животного, высокоядовитые (ЛД50 от 50 до 200 мг/кг), средне ядовитые (ЛД50 от 200 до 1000 мг/кг) и мало ядовитые (ЛД50-- 1 г/кг и более).

Если пестициды поступают через кожу (кожно-резорбтивная токсичность), для оценки их действия используют кожно-оральный коэффициент (отношение средне смертельной дозы пестицида, действующего через кожу, к средне смертельной его дозе, вводимой в желудок). При резко выраженной токсичности (ЛД50 меньше 300 мг/кг) кожно-оральный коэффициент меньше 1; при выраженной токсичности (ЛД50 300--1000 мг/кг) кожно-оральный коэффициент от 1 до 3; при слабовыраженной токсичности (ЛД50более 1000 мг/кг) кожно-оральный коэффициент больше 3.

По степени летучести пестициды делятся на очень опасные вещества (насыщающая концентрация больше или равна токсичной), опасные (насыщающая концентрация больше пороговой) и малоопасные (насыщающая концентрация не оказывает порогового действия).

Кумуляция пестицидов определяется по коэффициенту кумуляции (отношение суммарной дозы препарата, вызывающей гибель 50% подопытных животных при многократном введении, к дозе, вызывающей гибель 50% животных при однократном введении). Если коэффициент кумуляции меньше 1, вещество обладает сверхкумуляцией; при коэффициенте кумуляции 1-3 у вещества выраженная кумуляция; при коэффициенте 3-5 - умеренная и при коэффициенте более 5 -- слабовыраженная кумуляция.

Пестициды подразделяются и по стойкости: очень стойкие (период разложения на нетоксические компоненты свыше 2 лет); стойкие (0,5-1 год); умеренно стойкие (1-6 месяцев) и малостойкие (1 месяц).

По способу поступления в организм насекомых пестициды принято подразделять на кишечные, контактные, фумигантные и системные. Кишечные яды проникают в организм насекомого через питание, и насекомое погибает при поступлении яда в кишечник. Кишечные яды губительно действуют на насекомых, имеющих грызущий или сосуще лижущий ротовой аппарат. Контактные яды убивают насекомых при контакте с любой частью их тела. Они разрушают наружные покровы, проникают в организм, нередко закупоривают органы дыхания. Такие яды применяются в основном против вредителей, имеющих колюще-сосущий ротовой аппарат. Системные яды обладают способностью перемещаться по сосудистой системе растений и отравлять их клеточный сок. Фумигантные яды поражают организм насекомого через дыхательную систему. Некоторые ядохимикаты действуют одновременно как кишечные, контактные и системные яды.

Инсектициды и акарициды. Препараты первой группы относятся к 17 классам химических веществ. 48% общего ассортимента препаратов занимают фосфорорганические соединения, 14% - производные карбаминовой кислоты и 11% - хлорорганические соединения. Остальные препараты этой группы относятся к другим классам химических соединений.

В последние годы наиболее широкое применение нашли фосфорорганические инсектициды и акарициды (хлорофос, метофос, карбофос, метатион, фозалон, фосфамид и др.). Они используются против паутинного клещика -- основного вредителя хлопчатника, вредной черепашки -- вредителя зерновых культур и ряда вредителей плодовых. Препараты обладают высокой биологической активностью. Им свойственны контактные и внутрирастительные системные действия. Они проникают в ткань растения и сохраняют токсичность для вредителя в течение двух--шести недель. Фосфорорганические пестициды, обладая высокой биологической активностью, оказывают токсическое воздействие на организм человека и животных. Большинство препаратов этой группы относятся к высокотоксичным ядам. В механизме их токсического действия лежит угнетение деятельности жизненно важных ферментов.

Фосфорорганические пестициды, в отличие от хлорорганических, относительно мало накапливаются в окружающей среде. Под влиянием воды, солнца примерно в течение месяца они разрушаются, превращаясь в малотоксичные соединения. Так, метилмеркаптофос в листьях растений находится в течение 30 дней, антио -- 10 дней, фосфамид -- 7--10 дней. Поэтому фосфорорганические препараты в меньшей степени загрязняют пищевые продукты, полученные из обрабатываемых культур и животных. Однако некоторые препараты (например, тиофос) обладают высокой токсичностью и способны вызывать острое отравление. Их применение в СНГ запрещено.

Производные карбаминовой кислоты (севин, цирам, цинеб и др.) обладают значительной фунгицидной активностью и используются для защиты от вредителей, возбудителей заболеваний и сорной растительности при возделывании плодово-ягодных, овощебахчевых, зерновых, зернобобовых и технических культур. Они обладают средней и малой токсичностью и слабовыраженной кумуляцией, сравнительно быстро разрушаются во внешней среде. Однако некоторые из них могут сохраняться на обрабатываемых поверхностях сельскохозяйственных культур в течение продолжительного времени.

Хотя производные карбаминовой кислоты по масштабам производства и применения занимают второе место после фосфорорганических препаратов, в нашей стране разрешено использование только севина, пиримора и фурадина.

Производные карбаминовой кислоты в большинстве случаев действуют как контактные и кишечные яды. Некоторые из них могут оказывать токсическое действие на теплокровных животных и человека и по токсичности не уступают фосфорорганическим соединениям. Они оказывают эмбриотоксическое и мутагенное действия.

Хлорорганические соединения. ДДТ, ГХЦГ, полихлорпинен, алдрин, эфирсульфонат и другие хлорорганические соединения -- пестициды, давно нашедшие широкое применение в сельскохозяйственном производстве. Они используются в борьбе с вредителями зерновых, зернобобовых, технических культур, виноградников, овощных и полевых культур, в лесном хозяйстве, ветеринарии и даже в медицинской практике. Отличительная их особенность -- стойкость к воздействию различных факторов внешней среды (температура, солнечная радиация, влага и др.). Так, ДДТ выдерживает нагревание до 115--120°С в течение 15 ч и почти не разрушается при кулинарной обработке. Этот препарат, обладая высокими кумулятивными свойствами, постепенно накапливается в окружающей среде (вода, почва, пищевые продукты). Его находили в почве через 8--12 лет после применения.

Другое характерное свойство хлорорганической группы веществ - способность накапливаться в тканях и жире животных. Большинство препаратов этой группы относится к среднетоксичным соединениям. Только некоторые из них (алдрин, дилдрин) принадлежат к сильнодействующим и очень опасным по своей летучести веществам.

В настоящее время принимаются меры к замене соединений более безопасными. Применение таких сильнодействующих препаратов, как алдрин, какалдрин, дилдрин, в сельском хозяйстве запрещено. С 1970 г. запрещено применение ДДТ, введены ограничения и для некоторых других препаратов этой группы.

В последнее время получены химические соединения этой группы, близкие по своему строению к ДДТ, обладающие высокой инсектицидной активностью и легко разлагающиеся в окружающей среде до нетоксичных продуктов. Из хлорорганических инсектицидов в нашей стране сегодня находят широкое применение полихлоркамфен, гексахлоран, гамма-изомер ГХЦГ тиодан, дилор.

Фунгициды. Многие фунгициды - это неорганические вещества, содержащие серу, медь или ртуть. Сера была, вероятно, первым эффективным фунгицидом и широко применяется до сих пор, особенно для борьбы с мучнистой росой. Как отмечалось, предохраняют от грибковых заболеваний сельскохозяйственные культуры. Сейчас наиболее распространены синтетические органические фунгициды, например дитиокарбаматы. Антибиотики типа стрептомицина тоже используют для борьбы с грибами, однако чаще - для защиты растений от бактерий. Фунгицид системного действия перемещается по всему растению и действует подобно антибиотику, излечивая болезни, вызываемые грибами, или не давая им появиться. Фунгициды широко применяют для борьбы с плесенью. В хлеб, например, с этой целью добавляют пропионат натрия. Объем их производства и ассортимент значительно меньше, чем инсектицидов и гербицидов.

Пиретримы. Повышая активность пестицидов, можно снизить действующую концентрацию до безопасных для человека величин. Если пестициды первого поколения (в основном соединения мышьяка) сильно загрязняли водную среду, то пестициды второго поколения менее опасны. Среди них -- препараты с высокой избирательностью и различной продолжительностью действия (от нескольких часов до многих месяцев). Многие из них под влиянием микроорганизмов, солнечного света, воды и воздуха полностью разлагаются на простые безвредные вещества. Таковы препараты из семейства пиретримов и их синтетических аналогов пиретроидов, которые вносят на поля в количестве 5--20 г/га, т.е. в 100--1000 раз меньше, чем в случаях традиционных пестицидов.

Гербициды - средства борьбы с сорняками. По функции гербициды можно разделить на несколько групп. В одну из них входят вещества, применяемые для стерилизации почвы; они полностью предотвращают развитие на ней растений. К этой группе относятся хлористый натрий и бура. Гербициды второй группы уничтожают растения избирательно, не затрагивая нужных. Например, 2,4-дихлорфеноксиуксусная кислота (2,4-Д) убивает двудольные сорняки и нежелательную древесно-кустарниковую растительность, но не вредит злакам. В третью группу входят вещества, уничтожающие все растения, но не стерилизующие почву, так что растения на этой почве могут потом расти. Так действует, например, керосин, по-видимому, первое вещество, примененное в качестве гербицида. Четвертая группа объединяет гербициды системного действия; нанесенные на побеги, они перемещаются по сосудистой системе растений вниз и губят их корни. Еще один способ классификации гербицидов основан на времени их применения, например, до посева, до появления всходов и т.д. В их числе наиболее широкое применение в сельском хозяйстве находят производные хлорфеноксиалкановых кислот, симметричного триазина, мочевины, тиокарбаминовой, хлорированных алифатических и бензойной кислот.

Гербициды в основном значительно менее токсичны для теплокровных, обладают и слабой кумулятивной способностью. Вместе с тем некоторые гербициды небезопасны для окружающей среды. К их числу следует отнести низшие эфиры, отличающиеся большой летучестью. Значительная устойчивость хлортриазиновых препаратов при нарушении правил их применения может оказывать отрицательное воздействие на последующие посевы. популяция химизация пестицид сточный

Дефолианты и десиканты. Для дефолиации сои, хлопчатника, картофеля и некоторых других культур применяются: бутифос, цианид кальция, хлорат магния и хлорат-хлорид кальция. Хлориды также используются для дисикации ботвы картофеля, подсолнечника, риса и др.

Способы применения пестицидов. Пестициды используются в разных препаративных формах, чаще всего в виде дустов, гранулированных препаратов, суспензий, эмульсий, аэрозолей и фумигантов. Дуст -- порошкообразная смесь, состоящая из основного яда (активно действующее вещество) и наполнителя. В качестве наполнителя используются тальк, мел, гипс, каолин и др. Дусты производятся промышленными предприятиями, готовить их самостоятельно не разрешается. Гранулированные препараты приготовляются посредством пропитки гранул или различных минералов (бентонит, каолин, верникулит) или минеральных удобрений. В зависимости от назначения препараты выпускаются с диаметром гранул от 0,25 мм до 5 мм.

Учитывая насущную необходимость значительно повысить активность пестицидов и тем самым снизить их действующую концентрацию до величин, безопасных для человека и животных, ученые разработали синтетические пиретроиды.

Способы применения пестицидов зависят от их препаративной формы и назначения (обработка семенного материала, опрыскивание, опыление, обработка гранулированными препаратами).

При выращивании картофеля и овощей активнее стали применяться технологии, позволяющие снизить нагрузку пестицидов на окружающую среду, в частности ультра объемное опрыскивание и предпосевная обработка посадочного и посевного материала.

Тактика применения пестицида обоснована особенностями биологии вредителей, возбудителей болезней, сорняков и характером их вредоносности.

Тактика применения инсектицидов обоснована задачей управления численностью популяций вредных видов. При этом учитывается прежде всего экономический уровень вредоносности: определяется плотность популяции вредителя, при которой с экономических позиций целесообразно проводить обработку.

Тактика применения фунгицидов в борьбе с грибковыми болезнями -- предупреждение заражения патогенными микроорганизмами путем обеззараживания посевного материала, а также профилактика заражения растений и распространения заболеваний в период вегетации. Задача применения гербицидов в борьбе с сорной растительностью состоит в замене ручного труда на прополке и сокращении количества междурядной обработки почвы.

2.2 Последствия применения пестицидов

Многолетнее использование пестицидов на огромных сельскохозяйственных и лесных территориях, часто с применением авиации, привело к масштабному загрязнению окружающей среды. Более того, молекулы ядохимикатов (особенно это относится к стойким соединениям) включаются в природные процессы миграции и круговорота веществ и разносятся вместе с атмосферными потоками на большие расстояния. Например, в Антарктиде, за десятки тысяч километров от зон применения, ледниковый панцирь накопил более 2000 т ДДТ. Химические вещества вместе с водным стоком с полей попадают в реки и озера, накапливаются в донных отложениях, поступают в Мировой океан. Но самое главное -- они включаются в экологические пищевые цепочки: из почвы попадают в воды и растения, затем -- в организмы животных и птиц, а в конечном счете -- с пищей и водой -- в организм человека. И на каждом этапе миграции они наносят вред и ущерб. Однако, так как вредные насекомые со временем приспосабливаются к ядовитым свойствам этих веществ и эффективность пестицидов падает, их количество на единицу сельскохозяйственной продукции приходится постоянно увеличивать.

Многим, вероятно, известна история ДДТ -- пестицида, в свое время получившего чрезвычайно широкое распространение. Его создатель П. Мюллер был удостоен Нобелевской премии. Казалось, что ДДТ принес человечеству долгожданное освобождение от малярии, желтой лихорадки, эпидемий тифа. Однако более поздние исследования показали: последствия применения этого препарата весьма плачевны.

Чем устойчивее и токсичнее пестициды, тем серьезнее их негативное воздействие на живую природу и человека. При этом устойчивость к факторам окружающей среды (солнечный свет, кислород, микробиологическое разложение и т.д., способность ядохимикатов сохраняться длительное время) в большей мере определяет их опасность. Пестициды на основе хлорорганических, фосфорорганических и карбаматных соединений значительно отличаются по своей стойкости. ДДТ -- типичное хлорорганическое соединение -- способно более 50 лет циркулировать в биосфере. Более того, продукты его разложения (например, ДДЕ) -- опасные и стойкие вещества, порой они более токсичны, чем исходное вещество.

Один из механизмов отрицательных последствий -- передача и концентрирование стабильных пестицидов по трофическим цепям. Устойчивые к определенным пестицидам, флора и фауна могут накапливать их без разложения. В результате концентрация токсиканта в организме может многократно превысить исходную концентрацию его в окружающей среде. Этот процесс биологического концентрирования имеет особенно серьезное экологическое значение в пищевых цепях, связанных с водной средой. Классический пример биологического концентрирования -- накопление ДДТ и препаратов ртути в организме морских птиц. Эти птицы -- конечное звено трофической цепи: морская вода -- планктон -- рыба, потребляющая планктон, -- хищная рыба -- птица, питающаяся рыбой. При этом концентрация токсиканта от исходного звена (морская вода) к конечному (птица) возрастает во много тысяч раз.

В 1988 г. Национальная Академия наук США опубликовала доклад, в котором говорится, что в предстоящие 70 лет более одного миллиона американцев рискуют заболеть раком, вызванным наличием 28 канцерогенных пестицидов в пище.

По данным индийских ученых, злоупотребление пестицидами уже в следующем десятилетии способно спровоцировать взрыв раковых заболеваний и мутаций в развивающихся странах. Эти генетические изменения необратимы.

По данным индийских ученых, злоупотребление пестицидами уже в следующем десятилетии способно спровоцировать взрыв раковых заболеваний и мутаций в развивающихся странах. Эти генетические изменения необратимы.

Из всех химических веществ, которые поступают в организм человека с воздухом, водой, пищей, наиболее опасными считаются пестициды. Стойкие пестициды способны накапливаться в жировой ткани людей и животных, отрицательно воздействуя на нервную и сердечно-сосудистую системы.

Особенно опасны пестициды для детей. В России, в районах ' массированного применения пестицидов, общая заболеваемость детей до шести лет (болезни кожи, пищеварительного тракта, органов дыхания, нарушение обмена веществ, отставание в физическом развитии) в 4,6 раза выше, чем в районах с наименьшей химизацией. За 25 лет в 300 раз увеличились случаи аллергических заболеваний.

По данным Всемирной организации здравоохранения, ежегодно пестицидами отравляются 500 тыс. человек, более 5 тыс. -- со смертельным исходом.

Исследования показали, что стойкие хлорорганические пестициды обнаруживаются почти во всех организмах, обитающих на суше и в воде. Распространение ДДТ имеет глобальный характер. Повсюду ДДТ, алдрин, дилдрин, гексахлорциклогексан и другие стойкие пестициды содержатся в тканях птиц, млекопитающих, земноводных, пресмыкающихся, рыб, моллюсков и других обитателей суши, морских и пресных вод.

Содержание пестицидов в тканях и органах живых организмов, точно так же как и любых других загрязняющих веществ, намного больше, чем в среде обитания. Это явление характеризуется коэффициентом накопления (отношение концентрации в организме к концентрации в среде). Очень велики коэффициенты накопления у животных, обитающих в воде: у рыб -- 10-15, у моллюсков -- 25 тыс. Содержание ДДТ в различных тканях и органах одного вида значительно колеблется. Так, например, в мышцах североатлантической трески концентрация его -- 1-10 мг/кг, а в печени -- 180-- 1800 мг/кг.

Нерациональное применение пестицидов в сельском хозяйстве приводит к их накоплению в почве, пищевых продуктах. Однако не вызывает сомнения, что повышение культуры земледелия, улучшение технологии внесения пестицидов, ограничение их применения в районах, близко прилегающих к водоемам, строгая дозировка при внесении в почву могут в значительной степени снизить их негативное воздействие.

Загрязнение пестицидами продуктов питания. Чаще всего пищевые продукты загрязнены хлор-, фосфор- и ртутьорганическими соединениями, производными карбаминовой, тио- и дитиокарбаминовой кислот, бромидами. Из группы хлорорганических пестицидов в продуктах обнаружены ДДТ, ДДЕ, аддрин, дилдрин и некоторые другие, из фосфорорганических -- тиофос, карбофос и др., из карбаматов -- севин, цинеб и др. Хлорорганические пестициды находят в продуктах животного и растительного происхождения, а фосфорорганические и карбаматы -- преимущественно в растениях.

Накопление стойких химических веществ в продуктах питания чаще всего связано с нарушением правил и регламента их применения, с завышением рекомендуемых доз препарата, несоблюдением сроков последней обработки растений перед сбором урожая (время ожидания) и др.

Во многих случаях причиной загрязнения пестицидами фуражных культур является выращивание их в междурядьях обработанных садов.

Содержание хлорорганических пестицидов в продуктах животного происхождения может быть связано и с обработкой ими убойного и молочного скота в целях борьбы с эктопаразитами.

Влияние пестицидов на биогеоценозы. Экологическая активность пестицидов зависит от характера экосистемы (целой или ее части), а также от физико-химических свойств используемых препаратов. Пестицидами могут обрабатывать внутренний водоем, используемый для разведения рыбы, земельный участок, на котором выращивают урожай, лесные насаждения, луга, животную или растительную популяцию.

Неблагоприятное воздействие пестицидов на отдельные популяции выражается в уничтожении полезных организмов (главным образом насекомых-опылителей и энтомофагов) и, следовательно, в нарушении стабильности экосистемы с последующим размножением нежелательных для человека видов. Например, отмеченное в ряде стран массовое размножение красного плодового клеща при обработке ДДТ плодовых связывают с гибелью хищных клещей тифлодромид, а кровяной тли -- с уничтожением паразита тлиафелинуса. Прекращение применения тех или иных пестицидов может вызвать вспышку размножения вредителей, длительное время угнетаемых пестицидами.

Как уже отмечалось, неблагоприятное воздействие пестицидов в решающей степени зависит от их физико-химических свойств. Длительное время в сельском хозяйстве в качестве химических средств защиты растений применялись главным образом неорганические пестициды, содержащие мышьяк, фтор, ртуть, обладающие чрезвычайно высокой токсичностью. Применяли их с большими предосторожностями и в ограниченном количестве. Вместе с тем пестициды этого класса не обладают способностью накапливаться в организме и довольно быстро разлагаются в условиях внешней среды.

Более значительные нарушения в биогеоценозах отмечаются при систематическом применении стойких высокотоксичных пестицидов, главным образом хлорорганических соединений, особенно препаратов ДДТ и ГХЦГ. Эти препараты, как уже отмечалось, плохо разлагаются в воде и почве, обладают способностью накапливаться в организме растений, животных и поэтому оказывают существенное воздействие на многие стороны биогеоценозов.

3. Биологическая очистка сточной воды

Биологическая очистка сточных вод основана на способности микроорганизмов, использовать органические вещества, находящиеся в сточных водах, в качестве источника питания, при этом происходит их окисление или восстановление. Биологическая очистка сточных вод заключается в функционировании системы «активный ил -- сточная вода», характеризуемой наличием сложной многоуровневой структуры. Хлопья активного ила представляют собой «живую систему» - сложную микробную ассоциацию, внутри которой складываются разнообразные взаимоотношения.

Интенсификация процесса биологической очистки сточных вод осуществляется в настоящее время путём повышения концентрации активного ила в зоне аэрации, использование технического кислорода, озона, порошковых и гранулированных сорбентов, применения мутантов, ультразвуковой обработки сточных вод и активного ила, закреплённой биомассы.

3.1 Увеличение концентрации активного ила

Эффективность процесса биохимической очистки сточных вод в значительной степени зависит от концентрации активного ила в аэротенке. Большая часть из применяемых в настоящее время математических моделей биохимической очистки сточных вод в аэротенках предполагает обратно пропорциональную зависимость между потребной продолжительностью аэрации сточных вод и концентрацией активного ила. Её увеличение является одним из возможных путей интенсификации работы аэротенков, позволяющих создать высокие нагрузки на единицу объёма сооружения.

Результаты многочисленных исследований процесса биологической очистки сточных вод с повышенной концентрацией активного ила убедительно доказали возможность увеличения этим методом окислительной мощности аэротенка и снижения необходимого времени аэрации. Высокая концентрация активного ила изменяет его свойства - снижается удельная скорость окисления органических соединений, способность иловой смеси к разделению и выпадению ила в осадок. Однако при исключении этих недостатков, метод интенсификации биологической очистки повышенной концентрацией активного ила не позволяет, по сравнению с обычным способом, увеличить глубину очистки по ХПК, снизить содержание специфических загрязнений в очищенной воде, которые обычно трудно подвергаются биологической очистке.

Активный ил под микроскопом

3.2 Использование технического кислорода для аэрации

Недостатки аэрационных систем аэротенков (расход воздуха достигает нескольких десятков м3 на 1м3 сточных вод; расход энергии на 1кг снятой БПК составляет 1-2квт./ч; КПД систем аэрации -1,5 -3%) привели к необходимости применения для биологической очистки вод технического кислорода.

Исследования по применению кислорода для интенсификации биологической очистки сточных вод, включающие разработку специальных сооружений- окситенков, позволяющих эффективно использовать кислород, а также применять этот метод интенсификации в промышленных масштабах показали, что применение чистого кислорода позволяет увеличить концентрацию растворённого кислорода в иловой смеси с 1-2 до 4-8мг/л. При возрастании концентрации кислорода от 0 до 6мг/л, окислительная мощность аэротенка увеличивается до 3 -7 кг БПК/м3сут. Дальнейшее увеличение концентрации растворённого кислорода незначительно повышает окислительную мощность сооружения.

Применение технического кислорода при биологической очистке сточных вод не только увеличивает окислительную мощность аэротенка, но и значительно сокращает необходимое время аэрации.

Сокращение времени аэрации, и увеличение окислительной мощности позволяет повысить производительность очистных сооружений.

Кроме того, было установлено, что повышение концентрации растворённого кислорода в аэротенках (окситенках) увеличивает удельную скорость изъятия органических загрязнений, повышает степень очистки.

В последнее время всё большее внимание специалистов привлекает возможность интенсификации биологической очистки сточных вод путём подачи в аэротенк озоно- воздушной смеси. Такой метод интенсификации процесса биологической очистки позволяет значительно повысить эффективность очистки по БПК, ХПК и взвешенным веществам. Подача озоно-воздушной смеси для аэрации с концентрацией озона 1 мг/л увеличивает степень очистки по БПК с 70 до 95%. При подаче озоно-воздушной смеси в импульсном режиме (10-15 минут в час) остаточная ХПК в 1,3 раза меньше, чем при обычной (воздушной), при одинаковом времени аэрации. Экспериментальные исследования показывают, что озон в малых дозах положительно воздействуют на различные процессы, проходящие при биологической очистке сточных вод. Подача озона в иловую смесь в течение аэрации позволяет повысить скорость и степень биологической очистки по БПК и ХПК при одновременном уменьшении времени аэрации. Озонирование влияет на основные характеристики активного ила: уменьшается иловый индекс, время уплотнения активного ила, удельное сопротивление осадка. При этом уменьшается прирост активного ила, что приводит к уменьшению количества избыточного ила и затрат на его обработку.

Использование озоно-воздушной смеси в процессе очистке сточных вод не требует сложного переоборудования действующих аэротенков. Однако широкая реализация преимуществ такого способа сдерживается отсутствием глубокого проработанного обоснования применения озона в технологии очистных сооружений, отсутствием рекомендаций по его практическому применению, оптимальных норм технологических режимов.

Технологическая схема работы одноступенчатого аэротенка: 1 -- аэротенк; 2 -- циркулирующий активный ил; 3 -- насосная станция; 4 -- вторичный отстойник; 5 -- первичный отстойник; 6 -- избыточный активный ил

3.3 Биоадсорбционный способ биологической очистки сточных вод

Биосорбция - это способ, совмещающий процессы адсорбции и биохимического окисления, который широко используют для интенсификации процесса биологической очистки. Эффективность данного способа достигается высокой сорбционной способностью адсорбентов к бактериям активного ила и к самым различным классам органических соединений. Наиболее вероятный механизм действия адсорбентов и активного ила состоит в повышении физиологической активности прикреплённых бактериальных клеток, повышение концентрации субстрата за счёт его сорбции на поверхности адсорбента. обогащение среды экзоферментами.

Вид применяемого сорбента может быть различным. Наиболее часто предлагается для ининтенсификации процесса биологической очистки использовать порошкообразный активный уголь (ПАУ) марки АГ-3, КАД. В качестве сорбента могут применяться и другие материалы, к примеру, дроблённый неактивированный антрацит, сорбент КДТ и др.

Сорбент вводится непосредственно в аэротенк, вместе с циркулирующим активным илом в количестве от 0,1г/л до 10-20г/л. Добавки адсорбентов в аэротенк увеличивают степень очистки сточных вод по ХПК и БПК. К примеру, при очистке сточных вод нефтехимических производств с ХПК=14800мг/л и БПК5=7470мг/л после биоадсорбционной очистки сточная вода имела ХПК и БПК20- 55 и 11 мг/л, против 540 и 280мг/л после обычной биохимической очистки.

Добавки адсорбентов в иловую смесь позволяют повысить глубину очистки по специфическим загрязнителям, содержащимся в сточных водах. Так, при добавлении ПАУ в иловую смесь, степень очистки воды от нефтепродуктов увеличилась на 25-30%.


Подобные документы

  • Экологические факторы и их воздействие, понятие об экологической нише. Адаптация живых организмов, популяция, ее структура и динамика. Промышленное производство и его воздействие на окружающую среду, стандартизация и охрана окружающей природной среды.

    шпаргалка [297,9 K], добавлен 24.09.2010

  • Экологические проблемы охраны окружающей среды в современных условиях. Влияние на окружающую среду аграрно-животноводческого комплекса. Санитарно-защитные зоны. Нормирование качества окружающей природной среды. Мелиорация, химизация сельского хозяйства.

    отчет по практике [49,5 K], добавлен 20.04.2015

  • Экологические проблемы как следствие хозяйственной деятельности человека. Влияние использования ядохимикатов в сельском хозяйстве на полезные живые организмы. Экологическое воздействие автотранспорта на человека. Источники загрязнения атмосферы и воды.

    презентация [2,4 M], добавлен 03.11.2016

  • Влияние радиации на живые организмы. Канцерогенный риск, вызываемый облучением. Генетические последствия облучения. Чернобыльская катастрофа. Последствия испытаний ядерного оружия. Хиросима и Нагасаки. Радиоактивные отходы.

    реферат [32,8 K], добавлен 03.06.2004

  • Экологические последствия воздействия человека на живую природу. Влияние природы на живые организмы. Сущность антропогенного загрязнения, парникового эффекта и воздействие на почвы и биосферу сельскохозяйственного производства. Охрана окружающей среды.

    презентация [403,3 K], добавлен 03.05.2014

  • Воздействие экологических факторов окружающей среды (климата, температуры, влажности) на живые организмы. Проявление биотических факторов во взаимоотношениях организмов при совместном обитании: хищничество, паразитизм, симбиоз. Свойства популяции.

    реферат [20,9 K], добавлен 06.07.2010

  • Классификация экологических факторов. Характеристика влияния деятельности человека на географическую оболочку Земли. Последствия экологической катастрофы в результате разлива нефти в Мексиканском заливе. Перенос и трансформация загрязнителей в биосфере.

    курсовая работа [154,4 K], добавлен 20.04.2011

  • Современное определение понятия "экология". Прикладные аспекты экологической науки. Значение развития охраны природы для жизни человека и животных. Сущность основных экологических проблем. Влияние загрязнения окружающей среды на здоровье человека.

    реферат [13,1 K], добавлен 22.12.2010

  • Химики и инженеры-химики в современном химическом производстве. Современное общество, экологический кризис и химическое образование. Пестициды и охрана окружающей среды. Изучение современного состояния исследований миграции радионуклидов в экосистемах.

    методичка [111,8 K], добавлен 03.07.2015

  • Проблема охраны окружающей среды. Внедрение высокоэффективных систем защиты водоемов от загрязнений. Очистка промышленных стоков и подготовка воды для технических и хозяйственно-питьевых целей. Процесс биологической очистки, характеристика ее стадий.

    презентация [7,2 M], добавлен 25.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.