Основы экологии

Содержание, предмет и задачи экологии. Основные формы существования видов животных, растений и микроорганизмов в естественной среде обитания. Уровни организации живого и их характеристика. Популяции, сообщества, экосистемы и принципы их организации.

Рубрика Экология и охрана природы
Вид шпаргалка
Язык русский
Дата добавления 25.03.2011
Размер файла 106,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание, предмет и задачи экологии

Термин «экология» (от греч. oikos - жилище, место обитания и logos - наука) предложил Э. Геккель в 1866 г. для обозначения биологической науки, изучающей взаимоотношения животных с органической и неорганической средами. С того времени представление о содержании экологии претерпело ряд уточнений, конкретизаций. Однако до сих по нет достаточно чёткого и строгого определения экологии, и все ещё идут споры о том, что такое экология, следует ли её рассматривать как единую науку или же экология растений и экология животных - самостоятельные дисциплины. Не решён вопрос, относится ли биоценология к экологии или это обособленная область науки. Не случайно почти одновременно появляются руководства по экологии, написанные с принципиально разных позиций. В одних экология трактуется как современная естественная история, в других - как учение о структуре природы, в котором конкретные виды рассматриваются лишь как средства трансформации вещества и энергии в биосистемах, в третьих - как учение о популяции и т.д. Нет необходимости останавливаться на всех существующих точках зрения относительно предмета и содержания экологии. Важно лишь отметить, что на современном этапе развития экологических представлений все более чётко вырисовывается её суть. Экология - это наука, исследующая закономерности жизнедеятельности организмов (в любых её проявлениях, на всех уровнях интеграции) в их естественной среде обитания с учётом изменений, вносимых в среду деятельностью человека. Из этой формулировки можно сделать вывод, что все исследования, изучающие жизнь животных и растений в естественных условиях, открывающие законы, по которым организмы объединяются в биологические системы, и устанавливающие роль отдельных видов в жизни биосферы, относятся к экологическим.

Однако приведенное определение слишком пространно и недостаточно конкретно, хотя на первых этапах развития экологии один из вариантов его (экология - это наука об отношениях организмов друг с другом и со средой, наука о приспособлениях и т.п.) не только был принципиально верным, но и мог служить ориентиром при постановке ряда исследований. В последнее время экологи пришли к принципиально важному обобщению, показав, что условия среды осваиваются организмами на популяционно-биоценотическом уровне, а не отдельными особями вида. Это привело к интенсивному развитию учения о биологических макросистемах (популяциях, биоценозах, биогеоценозах), что оказало громадное влияние на развитие биологии в целом и всех её разделах в частности. В результате стали появляться всё новые и новые определения экологии. Её рассматривали как науку о популяциях, о структуре природы, о динамике численности и т.д. Но все они, несмотря на некоторую специфичность, определяют экологию как науку, исследующую законы жизни животных, растений и микроорганизмов в естественной среде обитания с учётом роли антропических факторов.

Основные формы существования видов животных, растений и микроорганизмов в естественной среде обитания - это внутривидовые группировки (популяции) или многовидовые сообщества (биоценозы). Поэтому современная экология изучает взаимоотношения организмов и среды на популяционно-биоценотическом уровне. Конечной целью экологических исследований является выяснение путей, с помощью которых вид сохраняется в постоянно меняющихся условиях среды. Процветание вида заключается в поддержании оптимальной численности его популяций в биогеоценозе. Следовательно, основным содержанием современной экологии становится исследование взаимоотношений организмов друг с другом и со средой на популяционно-биоценотическом уровне и изучение жизни биологических макросистем более высокого ранга: биогеоценозов (экосистем) и биосферы, их продуктивности и энергетики.

Отсюда очевидно, что предметом исследования экологии являются биологические макросистемы (популяции, биоценозы, экосистемы) и их динамика во времени и пространстве. Из содержания и предмета исследований экологии вытекают и её основные задачи, которые могут быть сведены к изучению динамики популяций, к учению о биогеоценозах и их системах. Структура биоценозов, на уровне формирования которых, как было отмечено, происходит освоение среды, способствует наиболее экономичному и полному использованию жизненных ресурсов. Поэтому главная теоретическая и практическая задача экологии заключается в том, чтобы вскрыть законы этих процессов и научиться управлять ими в условиях неизбежной индустриализации и урбанизации нашей планеты.

Уровни организации живого

Чтобы разобраться в разнообразии биосистем, необходимо рассмотреть само понятие "система" . Система - есть упорядоченное целое, состоящее из взаимосвязанных частей. Аристотелю принадлежит афоризм "целое больше суммы всех своих частей".

Свойства систем можно разделить на две группы: те, которые, являются суммой свойств ее частей и те, которые возникают у систем как у единого целого .

Биологические системы организованны иерархически , и на каждом уровне осуществляется регуляция, использующая сходные принципы. Сравнивая системы разного уровня, можно увидеть между ними много общего, а можно и найти черты специфичности каждого из уровней.

Различные уровни биосистем следует выделять потому, что каждый из уровней характеризуется свойствами, отсутствующими на нижележащих уровнях. Универсальный перечень уровней организации биосистем составить невозможно. В зависимости от того, какие биосистемы и с какой точки зрения изучаются, надо выделять больше или меньше уровней, на каждом из которых возникают какие-то эмергентные свойства. Целесообразно выделять такое число уровней, чтобы каждому из них были присущи свойства, изучение которых на нижележащем и вышележащем уровнях невозможно. Полное изучение системы должно включать также изучение вышестоящих и нижележащих систем (надсистем и подсистем). Так, демографическая структура популяции отсутствует на уровне отдельного организма, а феномен человеческого сознания отсутствует на уровне отдельных структур мозга. Феномен жизни возникает на клеточном уровне, а феномен потенциального бессмертия - на популяционном. Организм является единицей естественного отбора. Специфика биогеоценотического уровня связана с составом его компонентов и круговоротом веществ (сопровождающимся потоками энергии и информации), а биосферного уровня - с замкнутостью круговоротов веществ.

1. Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества; нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др. Основная стратегия жизни на молекулярном уровне - способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды.

2. Клеточный уровень. На клеточном уровне организации структурными элементами выступают различные органеллы. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня. Стратегия жизни на клеточном уровне - вовлечение химических элементов Земли и энергии Солнца в живые системы.

3. Тканевый уровень. Ткань совокупность клеточных элементов различных клеточных типов и межклеточного вещества, специализированная на выполнении специфических функций.

4. Органный уровень. Орган - совокупность тканей, которые связаны выполнением общих функций и занимают определенное место в многоклеточном организме.

5. Организменный уровень организации присущ одноклеточным и многоклеточным биосистемам (растениям, грибам, животным, в том числе человеку и разнообразным микроорганизмам). У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все перечисленные процессы в совокупности характеризуют организм как целостную саморегулирующуюся биосистему. Основная стратегия жизни на этом уровне - ориентация организма (особи) на выживание в постоянно меняющихся условиях среды.

6. Популяционно-видовой уровень организации характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе. Основная стратегия популяционно-видового уровня проявляется в более полном использовании возможностей среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.

7. Биогеоценотический (экосистемный) уровень организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети", трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях. Основная стратегия этого уровня - активное использование всего многообразия окружающей среды и создание благоприятных условий развития и процветания жизни во всем ее многообразии.

8. Биосферный уровень. Самый высокий уровень организации жизни. Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т. е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека. Основная стратегия, жизни на биосферном уровне - стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты.

Уровни организации живой природы, их характеристика

1. Сложная структура живой природы, выделение молекулярного, клеточного, организменно-го, популяционно-видового, биоценотического и биосферного уровней. Соподчинение и связь разных уровней организации структур живой природы, изучение их разными областями биологической науки: молекулярной биологией, цитологией, ботаникой, зоологией, анатомией и физиологией человека, экологией и др.

2. Молекулярный, наиболее древний уровень структуры живой природы, граничащий с неживой природой. Изучение химического состава и строения молекул сложных органических веществ, входящих в состав клетки (белков, нуклеиновых кислот и др.). Выявление роли нуклеиновых кислот в хранении наследственной информации, белков -- в образовании клеточных структур, в процессах жизнедеятельности клетки.

3. Клеточный уровень жизни, включающий в себя молекулярный. Сложное строение клетки, наличие в ней оболочки, плазматической мембраны, ядра, цитоплазмы и других органоидов; присущие ей разнообразные процессы жизнедеятельности: рост, развитие, деление, обмен веществ. Сходное строение и жизнедеятельность клеток организмов растений, животных, грибов и бактерий.

4. Организменный уровень, включающий в себя молекулярный и клеточный. Сходство организмов разных царств живой природы -- их клеточное строение, сходное строение клеток и протекающих в них процессов жизнедеятельности. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней.

5. Популяционно-видовой -- надорганизменный уровень жизни, включающий в себя организменный уровень. Пищевые, территориальные и родственные связи между особями вида, связь их с факторами неживой природы. Приуроченность экологических закономерностей и эволюционных процессов к этому уровню.

6. Биоценотический уровень жизни, представляющий собой сообщество особей разных видов на определенной территории, связанных различными внутривидовыми и межвидовыми взаимоотношениями, а также факторами неживой природы. Проявление на этом уровне экологических закономерностей и эволюционных процессов.

7. Биосферный -- высший уровень организации жизни. Биосфера -- биологическая оболочка Земли, совокупность всего живого населения. Круговорот веществ и превращение энергии в биосфере -- основа ее целостности, роль живых организмов в нем. Роль солнечной энергии в круговов хранении наследственной информации, белков -- в образовании клеточных структур, в процессах жизнедеятельности клетки.

Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.

Экология (от греческого oikos - жилище, местообитание) - наука, изучающая взаимосвязи живых организмов в природе: организацию и функционирование популяций, биогеоценозов и биосферы в целом; законы “здорового” состояния как нормы и основы существования жизни.[3]

Живая природа представляет собой сложно организованную, иерархичную систему. Выделяют несколько уровней организации живой материи.

1.Молекулярный. Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ.

2. Клеточный. Клетка - структурная и функциональная единица размножения и развития всех живых организмов, обитающих на Земле. Неклеточных форм жизни нет, а существование вирусов лишь подтверждает это правило, т.к. они могут проявлять свойства живых систем только в клетках.

3.Организменный. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных для выполнения различных функций.

4.Популяционно-видовой. Под видом понимают совокупность особей, сходных по структурно-функциональной организации, имеющих одинаковый кариотип и единое происхождение и занимающих определенный ареал обитания, свободно скрещивающихся между собой и дающих плодовитое потомство, характеризующихся сходным поведением и определенными взаимоотношениями с другими видами и факторами неживой природы.

Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

5.Биогеоценотический. Биогеоценоз - сообщество, совокупность организмов разных видов и различной сложности организации со всеми факторами конкретной среды их обитания - компонентами атмосферы, гидросферы и литосферы.

6.Биосферный. Биосфера - самый высокий уровень организации жизни на нашей планете. В ней выделяют живое вещество - совокупность всех живых организмов, неживое или косное вещество и биокосное вещество (почва).[3]

Популяции, сообщества, экосистемы. Принципы их организации

экология животное растение микроорганизм

Популяцией называют группу особей одного вида, обладающих способностью свободно скрещиваться и неограниченно долго поддерживать свое существование в определенном местообитании. Популяция - это некоторое единство, которое определяется общностью занимаемой особями территории (или акватории), а также общностью их происхождения, сходством строения и поведения. Например: все особи, обитающие в небольшом озере, или все деревья одного вида в лесу.

Наиболее близким по значению к значению термина “популяция” является понятие “племя”. Следовательно, популяции состоят из одинаковых организмов, совместно населяющих определенные участки и связанных между собой различными взаимоотношениями, которые обеспечивают им устойчивое существование в данной природной среде.

Слово “популяция” происходит от латинского “популюс” - народ, население. Экологическую популяцию, таким образом, можно определить как население одного вида на определенной территории.[2]

Члены одной популяции оказывают друг на друга не меньшее взаимодействие, чем физические факторы среды или другие обитающие совместно виды организмов. В популяциях проявляются в той или иной степени все формы связей, характерные для межвидовых отношений, но наиболее ярко выражены мутуалистические (взаимно полезные) и конкурентные. Во всех случаях в популяциях действуют законы, позволяющие таким образом использовать ограниченные ресурсы среды, чтобы обеспечить оставление потомства. Достигается это в основном через количественное изменение населения. Популяции многих видов обладают свойствами, позволяющими им регулировать свою численность.[1]

Поддержание оптимальной в данных условиях численности называют гомеостазом популяции. Гомеостатические возможности популяций по-разному выражены у различных видов. Осуществляются они через взаимодействия особей.

Таким образом, популяции, как групповые объединения, обладают рядом специфических свойств, которые не присущи каждой отдельной особи. Групповые особенности - это основные характеристики популяций. К ним относятся:

1) численность - общее количество особей на выделяемой территории;

2) плотность - среднее число особей на единицу площади или объема , занимаемого популяцией пространства; плотность популяции можно выражать также через массу членов популяции в единице пространства;

3) рождаемость - число новых особей, проявившихся за единицу времени в результате размножения;

4) смертность - показатель, отражающий количество погибших в популяции особей за определенный отрезок времени;

5) прирост популяции - разница между рождаемостью; прирост может быть как положительным, так и отрицательным;

6) темп роста - средний прирост за единицу времени.

Популяции свойственна определенная организация. Распределение особей по территории, соотношения групп по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают структуру популяции. Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой - под влиянием абиотических факторов среды и популяций других видов. Структура популяций имеет, следовательно, приспособительный характер. Разные популяции одного вида обладают как сходными особенностями структуры, так и отличительными, характеризующими специфику экологических условий в местах их обитания.[1]

Таким образом, кроме адаптивных возможностей отдельных особей, население вида определенной территории характеризуется еще и приспособительными чертами групповой организации, которые являются свойствами популяции как надиндивидуальной системы. Адаптивные возможности вида в целом как системы популяций значительно шире приспособительных особенностей каждой конкретной особи.

Сообщество (биоценоз) - не просто сумма образующих его видов, но и совокупность взаимодействий между ними. Как и популяция, сообщество имеет собственные свойства, проявляющиеся только при изучении его самого, как, например, видовое разнообразие, структура пищевой сети, биомасса, продуктивность. Одна из главных задач экологии - выяснить взаимосвязи между свойствами и структурой (составом) сообщества, которые проявляются независимо от того, какие виды входят в него.[2]

Каждый организм живет в окружении множества других организмов, вступает с ними в самые разнообразные отношения, как с отрицательными, так и с положительными для себя последствиями и в конечном счете не может существовать без этого живого окружения. Связь с другими организмами - необходимое условие питания и размножения, возможность защиты, смягчения неблагоприятных условий среды, а с другой стороны - это опасность ущерба и часто даже непосредственная угроза существования индивидуума. Всю сумму воздействий, которую оказывают друг на друга живые существа, объединяют под названием биотические факторы среды.[2]

Непосредственно живое окружение организма составляет его биоценотическую среду [2]. Представители каждого вида способны существовать лишь в таком живом окружении, где связи с другими организмами обеспечивают им нормальные условия жизни. Иными словами, многообразные живые организмы встречаются на земле не в любом сочетании, а образуют определенные сожительства или сообщества, в которые входят виды, приспособленные к совместному обитанию. Группировки совместно обитающих и взаимно связанных организмов называют биоценозами (от латинского bios - жизнь, cenos - общий). Приспособленность членов биоценоза к совместной жизни выражается в определенном сходстве требований к важнейшим абиотическим условиям среды и закономерных отношений друг с другом.[1]

Масштабы биоценотических группировок организмов очень различны, от сообществ подушек лишайников на стволах деревьев или разлагающегося пня до населения целых ландшафтов: лесов, степей, пустынь и т.п.

Термин “биоценоз” в современной экологической литературе чаще употребляют применительно к населению территориальных участков, которые на суше выделяют по относительно однородной растительности (обычно по границам растительных ассоциаций), например, биоценоз ельника-кисличника, большого суходольного луга, сосняка-беломошника, большой ковыльной степи, пшеничного поля и т.д. При этом имеется в виду вся совокупность живых существ, растений, животных микроорганизмов, приспособленных к совместному обитанию на данной территории. В водной среде различают биоценозы, соответствующие экологическим подразделениям частей водоемов, например, больших прибрежных галечных, песчаных или илистых грунтов, абиссальных глубин, пелагических больших крупных водоворотов водных масс и т.п.

По отношению к более мелким сообществам (населению стволов или листвы деревьев, моховых кочек на болотах, нор, муравейников и т.д.) применяют разнообразные термины: “микросообщества”, “биоценотические группировки”, “биоценотические комплексы” и др.

Принципиальной разницы между биоценотическими группировками разных масштабов нет. Более мелкие сообщества входят составной , хотя и отностительно автономной частью в более крупные, а те, в свою очередь, являются частями сообществ еще больших масштабов. Так, все живое население моховых и лишайниковых подушек на стволе дерева - это часть более крупного сообщества организмов, связанных с данным деревом и включающего его подкоровых и наствольных обитателей, население кроны, ризосферы и т.п.

В свою очередь эта группировка - лишь одна из составных частей лесного биоценоза. Последний входит в более сложные комплексы, образующие в конечном счете весь живой покров Земли. Таким образом, организация жизни на биоценотическом уровне иерархична.[1] С увеличением масштабов сообществ усиливается их сложность и доля непрямых, косвенных связей между видами.

Экосистема - это любое сообщество живых существ вместе с его физической средой обитания, функционирующее как единое целое.[2]

Рассмотрение экосистемы важно в тех случаях, когда речь идет о потоках вещества и энергии, циркулирующих между живыми и неживыми компонентами природы, о динамике элементов, поддерживающих существование жизни, об эволюции сообществ. Ни отдельный организм, ни популяцию, ни сообщество в целом нельзя изучать в отрыве от окружающей среды. Экосистема, по сути, это то, что мы называем природой.

Экосистема - понятие очень широкое и применимо как к естественным (тундра, океан), так и к искуственным комплексам (аквариум). Поэтому для обозначения элементарной природной экосистемы экологи также используют термин "биогеоценоз".

Биогеоценоз - исторически сложившаяся совокупность живых организмов (биоценоз) и абиотической среды вместе с занимаемым ими участком земельной поверхности (биотопом). Граница биогеоценоза устанавливается по границе растительного сообщества (фитоценоза) - важнейшего компонента биогеоценозов. Для каждого биогеоценоза характерен свой тип вещественно-энергетического обмена. Итак, биогеоценоз - это составная часть природного ландшафта и элементарная биотерриториальная единица биосферы.[2] Все природные экосистемы связаны между собой, и вместе образуют живую оболочку Земли, которую можно рассматривать как самую большую экосистему, которая называется биосферой.

Уровни организации живого

В организации живого в основном различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобальный (биосферный) уровни. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень. Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов, и стероидов, находящихся в клетках и, как уже отмечено, получивших название биологических молекул.

Размеры биологических молекул характеризуются довольно значительным разнообразием, которое определяется занимаемым ими пространством в живой материи. Самыми малыми биологическими молекулами являются нуклеотиды, аминокислоты и сахара. Напротив, белковые молекулы характеризуются значительно большими размерами. Например, диаметр молекулы гемоглобина человека составляет 6,5 нм.

Биологические молекулы синтезируются из низкомолекулярных предшественников, которыми являются окись углерода, вода и атмосферный азот и которые в процессе метаболизма превращаются через промежуточные соединения возрастающей молекулярной массы (строительные блоки) в биологические макромолекулы с большой молекулярной массой На этом уровне начинаются и осуществляются важнейшие процессы жизнедеятельности (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.).

Физикохимическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основной элементарный состав живого представлен углеродом, кислородом, водородом, азотом. Из групп атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлено нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров, и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами их неспецифических частей (участков).

Все макромолекулы универсальны, т. к. построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин и тимин), вследствие чего любой нуклеотид или любая последовательность нуклеотидов в молекулах ДНК неповторимы по своему составу, равно как неповторима также и вторичная структура молекулы ДНК. В состав большинства белков входит 100-500 аминокислот, но последовательности аминокислот в молекулах белков неповторимы, что делает их уникальными.

Объединяясь, макромолекулы разных типов образуют надмолекулярные структуры, примерами которых являются нуклеопротеиды, представляющие собой комплексы нуклеиновых кислот и белков, липопротеиды (комплексы липидов и белков), рибосомы (комплексы нуклеиновых кислот и белков). В этих структурах комплексы связаны нековалентно, однако нековалентное связывание весьма специфично. Биологическим макромолекулам присущи непрерывные превращения, которые обеспечиваются химическими реакциями, катализируемыми ферментами. В этих реакциях ферменты превращают субстрат в продукт реакции в течение исключительно короткого времени, которое может составлять несколько миллисекунд или даже микросекунд. Так, например, время раскручивания двухцепочечной спирали ДНК перед ее репликацией составляет всего лишь несколько микросекунд.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Этим свойством не обладают другие биологические молекулы.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, т. к. они являются основными структурными элементами клеток, катализаторами и регуляторами различных процессов, протекающих в клетках. Углеводы и липиды являются важнейшими источниками энергии, тогда как стероиды в виде стероидных гормонов имеют значение для регуляции ряда метаболических процессов.

Специфика биологических макромолекул определяется также и тем, что процессы биосинтеза осуществляются в результате одних и тех же этапов метаболизма. Больше того, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов независимо от их видовой принадлежности. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции. Например, гликолиз происходит в каждой живой клетке всех организмов-эукариотов и осуществляется в результате 10 последовательных ферментативных реакций, каждая из которых катализируется специфическим ферментом. Все аэробные организмы-эукариоты обладают молекулярными «машинами» в их митохондриях, где осуществляется цикл Кребса и другие реакции, связанные с освобождением энергии. На молекулярном уровне происходят многие мутации. Эти мутации изменяют последовательность азотистых оснований в молекулах ДНК.

На молекулярном уровне осуществляется фиксация лучистой энергии и превращение этой энергии в химическую, запасаемую в клетках в углеводах и других химических соединениях, а химической энергии углеводов и других молекул - в биологически доступную энергию, запасаемую в форме макроэнергетических связей АТФ. Наконец, на этом уровне происходит превращение энергии макроэргических фосфатных связей в работу -- механическую, электрическую, химическую, осмотическую, механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулярным и следующим за ним уровнем (клеточным), т. к. являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень. Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организмов (бактерии, простейшие и другие), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого ^уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клетками организмов-эукариотов, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки». Надмолекулярные структуры на этом уровне формируют мембранные системы и органеллы клеток (ядра, митохондрии и др.).

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных единиц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток эукариотов значительно развиты мембранные системы (плазматическая мембрана, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы).

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды, а также пространственное разделение в клетках многих биологических молекул. Мембрана клеток обладает высокоизбирательной проницаемостью. Поэтому их физическое состояние позволяет постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические).'Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, тогда как на внутренних мембранах митохондрии осуществляется окислительное фосфорилирование.

Компоненты мембран находятся в движении. Построенным главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток -- важнейшее свойство живого.

Тканевой уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, нервная, а также кровь и лимфа). У растений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень. Представлен органами организмов. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. У более совершенных организмов имеются системы органов. У растений и животных органы формируются за счет разного количества тканей. Для позвоночных характерна цефализация, защищающаяся в сосредоточении важнейших центров и органов чувств в голове.

Организменный уровень. Этот уровень представлен самими организмами - одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность организменного уровня заключается в том, что на этом уровне происходит декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида. Организмы уникальны в природе, потому что уникален их генетический материал, детерминирующий развитие, функции и взаимоотношение их с окружающей средой.

Популяционный уровень. Растения и животные не существуют изолированно; они объединены в популяции. Создавая надорганизменную систему, популяции характеризуются определенным генофондом и определенным местом обитания. В популяциях начинаются и элементарные эволюционные преобразования, происходит выработка адаптивной формы.

Видовой уровень. Этот уровень определяется видами растений, животных и микроорганизмов, существующими в природе в качестве живых звеньев. Популяционный состав видов чрезвычайно разнообразен. В составе одного вида может быть от одной до многих тысяч популяций, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Виды представляют собой результат эволюции и характеризуются сменяемостью. Ныне существующие виды не похожи на виды, существовавшие в прошлом. Вид является также единицей классификации живых существ.

Биоценотический уровень. Представлен биоценозами -- сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды. Экосистемам присуще динамическое (подвижное) равновесие между организмами и абиотическими факторами. На этом уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Биосферный (глобальный) уровень. Этот уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство, живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. связан с появлением нового качества.

История становления экологии

1. Период наивной экологии - до середины 19 в. (1-5 этапы)

Первый этап - примитивные знания, накопление фактического материала. О том, что разные виды животных связаны с определенными условиями, что их численность зависит от урожая семян и плодов, которыми они питаются, наверняка знали древние охотники уже 100-150 тыс. лет назад. О зависимости растений от внешних условий хорошо знали и первые земледельцы за много веков до новой эры (10-15 тыс. лет назад). Севооборот сельскохозяйственных культур применяли в Египте, Китае и Индии 5 тысячелетий назад. Сложнейшая и экологически выверенная система земледелия была у индейцев майя в древней Америке. Элементы экологии отражены в эпических произведениях и легендах: в древнеиндийских сказаниях «Махабхарта» (VI-II вв. до н.э.; сведения о повадках и образе жизни 50 животных), в рукописных книгах Китая и Вавилона (сроки посева и сбора диких и культурных растений, способы обработки земли, виды птиц и зверей).

Второй этап - продолжение накопления фактического материала античными учеными, средневековый застой. Древняя Греция: Гераклит - 530-470 лет до н.э., Гиппократ - 460-370 лет до н.э. Аристотель (384-322 лет до н.э.) создал Ликей (школу) и при нем сад. В «Истории животных» он описал более 500 видов животных, классифицируя их по образу жизни.

Его ученик, друг и преемник Теофраст (Парацельз, он же Тиртам, 287-372) описал 500 видов растений. Самыми главными работами разностороннего ученого (его труды: "О камнях", "Об огне", "О вкусах", "Об усталости", "О приметах погоды", "Характеры", "Учебник риторики" и др.) и философа стали "Исследования о ботанике" в 9 книгах: 1 - о частях и морфологии растений, 2 - уход за садовыми деревьями, 3 - описание лесных деревьев, 4 - описание заморских растений и их болезней, 5 - о лесе и его пользе, 6 - о кустарниках и цветах, 7 - об огородных растениях и уходе за ними, 8 - о злаках, бобовых и о полеводстве, 9 - о лекарственных травах. Теофраст сделал ботанику самостоятельной наукой, отделив ее от зоологии. Потому его и называют отцом ботаники.

Древнегреческие философы во многом отождествляли растения и животных, считали, что растения могут радоваться и печалиться, органы животных отождествляли с органами растений: корни - рот и голова, стебли - ноги и живот, и т.д. Мечтали вырастить в колбе живое существо (гомункулус).

Но Теофраст был не только отцом ботаники. Большое внимание в своих трудах он уделял влиянию внешней среды на живые организмы, и именно он впервые разделил покрытосеменные растения на жизненные формы: деревья, кустарники, полукустарники и травы, с учетом зависимости от почвы и климата. Умер он в возрасте 83 лет, имея ясный ум и память. Его последние слова: "Мы умираем тогда, когда начинаем жить!".

Древний Рим: Плиний старший (23-79 лет н.э.) в своей многотомной "Философии природы" многие явления природы рассматривал с подлинно экологических позиций. Древние ученые задумывались о многом, о чем задумываемся и мы с вами.

В средние века в Европе произошел откат человеческой мысли далеко назад, церковь на несколько веков явилась тормозом развития всех естественных наук. Связь строения организмов со средой всецело приписывалась воле бога. Научные сведения содержатся в единичных работах (многотомное сочинение Венсенна де Бове (XIII век) "Зеркало вещей", "Поучение Владимира Мономаха" (XI), "О поучениях и сходствах вещей" доминиканского монаха Иоанна Сиенского (XIV)) и имеют прикладной характер; заключаются в описании целебных трав, культивируемых растений и животных. Известные ученые этого периода: Разес (850--923), Авиценна (980-1037). Но уже в позднее средневековье стали появились новые веяния в науке - Зачатки экологии. Альберт Великий (Альберт фон Больштедт, 1193-1280 гг.) в трудах о растениях придает большое значение условиям произрастания, в частности световому фактору - "солнечному теплу", рассматривает причины "зимнего сна". Появилась информация о дальних странах (Марко Поло (XIII век), Афанасий Никитин (XV век) и его известное "Хождение за три моря").

Третий этап - описание и систематизация колоссального фактического материала после средневекового застоя - начался с великими географическими открытиями XIV и XVI веков и колонизацией новых стран - с эпохой Возрождения. Новая географическая и биологическая информация, полученная в экспедициях, заставила переосмыслить многие религиозные догматы. Она не умещалась в той системе мира, которую проповедовала христианская религия. Путешественники из дальних стран привозили неведомых животных и семена неведомых растений. Чтобы разобраться во всем многообразии форм живых существ, необходимо было создать таксономическую систему и, таким образом, осмыслить это разнообразие. И такое осмысление произошло. В первой половине XVIII века Карл Линней создал таксономическую систему животных и растений, которой ботаники пользуются и поныне.

Заслуги этого ученого перед миром столь велики, что на их перечисление не хватит и целой лекции. Его считают реформатором ботаники. Помимо бинарной номенклатуры он разработал терминологию, введя в систематику более 1000 терминов для разных органов растений и их частей. Линней много путешествовал по разным странам, сам открыл и описал более 1500 видов. Главный труд К. Линнея - "Виды растений" вышел в 1753 г., в нем приведены все известные ему растения; описания кратки и точны. Ботанический "хаос" был приведен в систему! И именно с этого времени ведется отсчет при установлении первенства в названиях отдельных видов. В основу данной работы Линней положил свои данные и все доступные ему гербарные образцы и публикации других авторов. Кроме флоры, он прекрасно знал фауну ("Фауна Швеции" 1746 г.) почвы, минералы, человеческие расы, болезни (Линней был первоклассным врачом), открыл целебные и ядовитые свойства многих растений.

Современники знали его и как остроумного, веселого человека. Так, в честь 3 братьев Коммелинов, двое из которых были известными ботаниками, а третий - ничем не примечательный человек, он назвал род Коммелина, у цветков которой 3 тычинки: две длинные и одна короткая. В.Л. Комаров сказал о К.Линнее: "Пока не стерта с лица Земли цивилизация, имя Линнея будет жить". Слова пророческие. Имя Линнея носят более 20 обществ, два города и гора в США, острова близ Гренландии, улицы и площади в европейских городах и др. географические объекты. В честь К. Линнея назван род - Линнея с единственным видом - «Л. северная».

Уже первые систематики: А. Цезальпин (1509-1603), Д. Рей (1623-1705), Ж. Турнефор (1656-1708), отмечали зависимость растений от условий среды и мест произрастания. Жорж Леклерк Бюффон (1707-1788) в «Естественной истории» писал о влиянии климата на животные организмы, Жан Батист Ламарк (1744-1829) открыл эволюцию жизни. Ламарк был последователем К. Линнея и составил классификацию животных ("Философия зоологии"), отражающую происхождение - эволюцию, животных, выбрав в качестве признаков внутреннее строение (отделил беспозвоночных от позвоночных) и строение нервной системы (бесчувственные - инфузории и полипы, чувствующие - все остальные беспозвоночные, и разумные - позвоночные). В его классификации инфузории заняли низшее место (Линней же не знал, куда их поместить). Ламарк считается предшественником Ч. Дарвина - обращая внимание на роль внешних условий в формировании строения животных (жираф - длинная шея, чтобы доставать листья деревьев, утка - перепонки, чтобы плавать, крот - передние лапы-лопаты, чтобы рыть, а глаза атрофировались - не нужны) и растений, он открыл эволюцию жизни. Альфонс де Кандоль (1806-1895) в «Ботанической географии» описывал влияние абиотических факторов на растительные организмы.

Известный английский химик Р. Бойль (1627-1691) поставил первый экологический эксперимент по влиянию низкого атмосферного давления на развитие животных, а Ф. Реди экспериментально доказал, что самозарождениях сложных животных невозможно. Антони ван Левенгук, изобретший микроскоп, был первым в изучении трофических цепей и регуляции численности организмов.

Большой вклад в развитие экологических представлений в это время внесли и российские ученые такие, как М.В. Ломоносов (1711-1765), его сподвижник С.П. Крашенинников (1711-1755), П.С. Паллас (1741-1811), И.И. Лепехин (1740-1802). И это не случайно, так как Россия в XVII веке сильно расширила свои границы, выйдя своими восточными рубежами на побережье Тихого океана.

Петр Симон Паллас в работе «Зоогеография» описал образ жизни 151 млекопитающих и 426 видов птиц и его считают одним из основателей «экологии животных». В 20 лет он защитил выдающуюся по тем временам докторскую диссертацию по гельминтам. Его пригласили в Петербург, и он сразу же - в 26 лет, стал академиком. Немец по происхождению, он более 40 лет посвятил российской науке, проводя по нескольку лет в полевых экспедициях (города Чита, Иркутск, Красноярск, Тамбов, озера Эльтон и Баскунчак, Крым). Основной специальностью Палласа была зоология. Он издал несколько монографий по млекопитающим, птицам, насекомым. При этом он обладал обширными знаниями во многих науках (сельское хозяйство, медицина, минералогия (на Енисее открыл "Палласов метеорит"), палеонтология (исследовал ископаемые остатки буйвола, мамонта, носорога), археология, этнография, филология и др.), особенно в ботанике. Он задумал издать многотомную сводку русской флоры с полным описанием и рисунками всех растений, но подготовить успел только 2 тома. Опубликовал около 170 работ. В честь Палласа назван вулкан на Курильских островах, риф у Новой Гвинеи, множество видов животных. На Дальнем Востоке имя Палласа носят желтушник, мытник, лютик.

Сходный путь в науке прошел и Степан Петрович Крашенинников. После 9-летней экспедиции на Камчатку он опубликовал "Описание земли Камчатки", вошедшее в золотой фонд естественно-исторической литературы.

М. В. Ломоносов рассматривал влияние среды на организм. Он в работе «О слоях земных» (1763) писал, что «…напрасно многие думают, что все, что мы видим, сначала создано творцом…». По останкам вымерших животных (моллюсков и насекомых) Ломоносов конструировал условия их существования в прошлом и опроверг теорию катастроф Ж. Кювье. (Религиозный Кювье считал, что исчезновение одних видов (мамонты, палеотерий, и др.) и появление других (коровы, лошади) на той же территории объясняется резким изменением условий жизни и переселением животных из соседних районов, не подвергшихся катастрофам).

Русский малоизвестный ученый А.А. Каверзнев (годы жизни неизвестны) издал в 1775 г. книгу «О перерождении животных», в которой с экологических позиций рассматривал вопрос об изменениях животных и сделал вывод об их едином происхождении. Другой русский исследователь - первый агроном России, А.Т. Болотов (1738-1833), изучая влияние минеральных солей на молодые яблони, разработал классификацию местообитаний растений.

Таким образом, к концу XVIII, по мере все большего накопления экологических знаний, у естествоиспытателей начал складываться особый подход к изучению явлений природы, учитывающий зависимость изменения организмов от окружающих условий. Но экологических идей как таковых еще нет. Есть только их предпосылка.

Четвертый этап ознаменовал начало в становлении экологии. Он связан с крупными ботанико-географическими исследованиями, способствовавшими дальнейшему развитию экологического мышления. В начале XIX в. выделяются в самостоятельные отрасли экология растений и экология животных. Ученые этого времени анализировали закономерности организмов и среды, взаимоотношения между организмами, приспособляемость и приспособленность. Огромную роль в развитии экологических идей сыграл немецкий ученый А. Гумбольдт (1769-1859), заложивший основы биогеографии. В книге «Идеи географии растений» (1807) он ввел ряд научных понятий, которые используются экологами и сегодня (экобиоморфа растений, ассоциация видов, формация растительности и др.).

Появились работы, в которых авторы понимают среду обитания, как совокупность действующих экологических факторов. В 1832 г. О. Декандоль обосновал необходимость выделения новой отрасли наук "Эпирреалогии". Он писал: "…Растения не выбирают условия среды, они их выдерживают или умирают. Каждый вид, живущий в определенной местности, при известных условиях представляет как бы физиологический опыт, демонстрирующий нам способ воздействия теплоты, света, влажности и столь разнообразных модификаций этих факторов…".

Пятый этап - становление эволюционной экологии. Профессор Московского университета Карл Францов Рулье (1814-1858) четко сформулировал мысль о том, что развитие органического мира обусловлено воздействием изменяющейся внешней среды: "…Ни одно органическое существо не живет само по себе; каждое вызывается к жизни и живет только постольку, поскольку находится во взаимодействии с относительно внешним для него миром. Это закон общения или двойственности жизненных начал, показывающий, что каждое существо получает возможность к жизни части от себя, а части из внешности…". Считается, что К.Ф. Рулье в своих трудах (160 работ) заложил основы экологии животных, поставил проблемы адаптации, миграции, изменчивости, ввел понятие "стация". Он ближе всех подошел к эволюционной теории Дарвина, но прожил всего 44 года... Его идеи развил ученик Н.А. Северцев (1827-1885), опубликовавший в 1855 г. работу «Периодические явления в жизни зверей, птиц Воронежской губернии». Значимость этой магистерской диссертации Н.А. Северцева для науки можно оценить тем, что через 100 лет в 1950 г. эта работа была переиздана, и она не утратила своего значения и сегодня. Важнейшей вехой в развитии экологических представлений о природе явился выход знаменитой книги Ч. Дарвина (1809-1882) о происхождении видов путем естественного отбора, жесткой конкуренции.


Подобные документы

  • Изучение экологии как биологической науки, которая исследует структуру и функционирование систем надорганизменного уровня (популяции, сообщества, экосистемы), в естественных и измененных человеком условиях. Принципы эволюционной теории Ч. Дарвина.

    презентация [3,7 M], добавлен 09.06.2019

  • Объекты организменного (уровня особей), популяционно-видового, биоценотического, биосферного уровней организации как предмет изучения экологии. Главные задачи экологии, основные принципы изучения. Специфика экологических факторов, классификация на группы.

    реферат [27,8 K], добавлен 17.02.2010

  • Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.

    реферат [16,3 K], добавлен 10.05.2010

  • Предмет и задачи экологии. Основные понятия и определения экологии. Современные экологические проблемы. Экологические аспекты существования человека в современных условиях. Пространственная структура популяции.

    курс лекций [39,1 K], добавлен 18.07.2007

  • Предмет, задачи, методы исследования экологи. Структура современной экологии, ее связь с другими науками. Уровни организации живых систем. Взаимодействие природы и общества. Виды и методы экологических исследований. Основные экологические проблемы.

    реферат [71,5 K], добавлен 10.09.2013

  • Содержание, структура и задачи экологии как научной дисциплины. Характеристика наземно-воздушной популяции. Биологический и геологический круговороты веществ. Понятие и классификация эвтрофикации водоемов. Экологические аспекты интенсификации земледелия.

    контрольная работа [183,3 K], добавлен 16.08.2013

  • Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.

    методичка [66,2 K], добавлен 07.01.2012

  • История термина медицинской экологии. Формирование нового направления на границе медицинских дисциплин и экологии. Объект и предмет этой дисциплины. Разработка мероприятий, обеспечивающих сохранение оптимального для здоровья людей экологического баланса.

    презентация [598,5 K], добавлен 05.11.2014

  • Основы экологии человека: понятия и термины. Взаимосвязь экологии человека с проблемами сохранения здоровья. Главные аксиомы экологии. Понятие зоны экологической стабильности, нестабильности. Важнейшие современные антропогенные экосистемы, их особенности.

    реферат [46,1 K], добавлен 24.12.2014

  • Основные этапы становления экологии как науки, популяции, биоценозы, экосистемы как объекты ее исследования. Разработка принципов рационального использования природных ресурсов. Классификация методов исследований в экологии, ее связь с другими науками.

    реферат [77,2 K], добавлен 26.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.