Методы очистки производственных сточных вод

Использование производственных сточных вод в системах оборотного или замкнутого водоснабжения и для обеспечения условий приема в городские системы водоотведения или сброса в водные объекты. Механические, физико-химические и биологические методы очистки.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 10.12.2010
Размер файла 126,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методы очистки производственных сточных вод

сточная вода очистка сброс

Очистка производственных сточных вод организуется с целью использования их в системах оборотного, последовательного или замкнутого водоснабжения, обеспечения условий приема в городские системы водоотведения или сброса в водные объекты.

Методы очистки сточных вод подразделяются на механические, физико-химические и биологические.

Механические методы очистки обеспечивают извлечение из очищаемых вод взвешенных и плавающих примесей. Наиболее простой способ удаления этих примесей - отстаивание, в процессе которого взвешенные вещества оседают на дно, а плавающие примеси всплывают на поверхность отстойников. Отстойники устраиваются горизонтальные, вертикальные, радиальные

Рис. 1. - Отстойники

А - горизонтальный; Б - вертикальный; В - радиальный

1 - загрязненная вода; 2 - очищенная вода; 3 - осадок (шлам);

4 - скребковый механизм

В горизонтальном отстойнике длина в 8-12 раз больше его глубины. Отстойники бывают непрерывного или периодического действия. В отстойниках непрерывного действия отделение примесей происходит благодаря резкому уменьшению скорости движения очищаемой жидкости (до 0,005-0,01 м/с). Продолжительность прохождения жидкости через отстойник составляет 1-3 часа. Эффективность осветления воды - от 40 до 60%. В отстойниках периодического действия продолжительность отстоя жидкое составляет несколько часов, после чего происходит удаление всплывших примесей, осветленной воды и осадка. Затем процесс повторяется.

Глубина (высота) вертикального отстойника в несколько раз превышает его горизонтальный размер. Разделение твердой и жидкой фаз происходит счет уменьшения скорости потока и изменения его направления на 180°. Вертикальные отстойники более компактны, однако их эффективность 10-20% ниже, чем у горизонтальных.

В конструкции радиального отстойника реализован принцип действия вертикального и горизонтального отстойников. В центральной его части происходит смена направления потока очищаемой жидкости, а от центра к периферии он работает в режиме горизонтального отстойника. Это позволяет получать достаточно компактные сооружения большой производительности. Эффективность осветления в радиальных отстойниках достигает 60%. Глубина их колеблется от 1,5 до 5 м, диаметр - от 15 до 60 м.

В зависимости от вида удаляемых плавающих примесей отстойники могут называться нефтеловушками, жироуловителями и т.п. Эффективность удаления из воды плавающих примесей составляет 95-96%. Всплывшие приме си удаляются с поверхности специальными приспособлениями и направляются на утилизацию.

Для удаления из воды волокнистых примесей (частичек шерсти, ниток, асбеста и др.) используется дисковый волокноуловителъ, представляющий собой вращающийся перфорированный диск, по которому тонким слоем стекает очищаемая жидкость.

Для повышения эффективности процесса осветления к очищаемой в отстойниках жидкости добавляют коагулянты - вещества, которые при взаимодействии с водой образуют хлопьеобразные частицы размером 0,5-3 мм с развитой поверхностью, обладающие также небольшим электрическим зарядом. При оседании эти хлопья захватывают из жидкости взвешенные и коллоидные частицы. В качестве коагулянтов применяются сернокислый алюминий, хлорное железо и др. Расход их составляет от 40 до 700 кг/м3 очищаемой жидкости. Высокие дозы относятся к физико-химической очистке технологических вод, обеспечивающей удаление хрома и цианидов, а также обесцвечивание воды.

Интенсификации процесса коагуляции способствует добавка флокулянтов - веществ, обеспечивающих агрегирование пластин коагулянтов и ускоряющих тем самым их осаждение. В качестве флокулянтов применяют клейкие вещества: крахмал, декстрин, силикатный клей. Весьма эффективным является синтетический флокулянт - полиакриламид (ПАА), широко использующийся также при подготовке питьевой воды. Доза применения ПАА колеблется от 0,5 до 25 г/м3 очищаемой жидкости. Внедряются в практику и другие коагулянты и флокулянты на основе активных полимеров, дозы применения которых в десятки раз меньше.

Тонкодисперсные частички, которые не удается извлечь из жидкости в отстойниках, могут быть удалены с помощью фильтрования. Процесс фильтрования заключается в прохождении жидкости через пористую преграду, на которой осаждаются мелкодисперсные частицы. В качестве фильтрующего слоя используются зернистые материалы (песок, гранитная или мраморная крошка, керамзит и др.), ткани и нетканые полотна (хлопчатобумажные, шерстяные, синтетические, из асбеста, стекловолокна и др.), металлические сетки, перфорированные пластины, пористая керамика. Для ускорения процесса фильтрование производится под давлением или с помощью вакуума. Для извлечения нефтепродуктов, масел и других эмульгированных примесей применяются фильтры из полиуретана. Эффективность удаления взвешенных и эмульгированных примесей методом фильтрования достигает 99% и более.

В гидроциклонах и центрифугах разделение жидкой и твердой фаз производится под воздействием центробежных сил.

Для удаления взвешенных веществ используются напорные гидроциклоны. Для удаления плавающих примесей применяются открытые гидроциклоны. Гидроциклон представляет собой металлический аппарат, состоящий из цилиндрической и конической частей. Диаметр цилиндрической части - от 100 до 700 мм, высота примерно равна диаметру. Угол конусности составляет 10-20°. Внутри аппарата имеются струенаправляющие лопасти в виде винтовой спирали. Поданная под давлением жидкость, двигаясь по спирали к сливу, отделяется от взвешенных веществ. Часть жидкости с большим содержанием взвесей удаляется из гидроциклона, а осветленная вода под действием образовавшегося вакуума движется вверх и изливается через верхнее отверстие. В открытом (безнапорном) гидроциклоне удаление осветленной воды происходит через боковые отверстия, а всплывающие примеси извлекаются с помощью сифона. Гидроциклоны, по сравнению с другими устройствами для механической очистки вод, отличаются высокой производительностью, компактностью, экономичны в изготовлении и эксплуатации. Эффективность очистки от взвешенных и плавающих примесей составляет примерно 70%.

Рис. 2. - Гидроциклоны

А - вертикальный напорный; Б - многоярусный открытый

1 - загрязненная вода; 2 - очищенная вода; 3 - осадок (шлам);

4 - плавающие примеси (нефтепродукты, масла).

Центрифугирование является эффективным методом разделения суспензий и эмульсий. Центрифуги изготовляются периодического и непрерывного действия с автоматической выгрузкой осадка и осветленной жидкости. При центрифугировании достигается достаточно высокая степень обезвоживания осадка и получается относительно чистый фугат. Центрифуги потребляют большое количество электроэнергии, создают высокие шумовые нагрузки и небезопасны в эксплуатации.

Физико-химические методы очистки обеспечивают удаление из воды растворенных веществ, неподдающихся или плохо поддающихся биологической очистке, а также веществ, которые могут оказать неблагоприятное воздействие на коллекторы или другие элементы систем водоотведения.

Наиболее простым и распространенным методом физико-химической очистки является нейтрализация, которая заключается в подкислении щелочных вод (с рН>8,5) и подщелачивании вод с рН<6,5. При наличии на производстве кислых и щелочных вод нейтрализация достигается их смешением. При отсутствии одной из категорий вод нейтрализация осуществляется путем добавки реагента. Для нейтрализации кислых вод лучше всего использовать отходы щелочей - гидроокиси натрия или калия, не дающие осадка. При использовании гидроокиси кальция в виде известкового молока образуется шлам, который необходимо удалять, обезвреживать и утилизировать. Нейтрализация кислых вод достигается также фильтрованием их через слой известняка, доломита, магнезита, шлака или золы.

Для нейтрализации щелочных вод используется отработанная серная кислота. Высокоэффективным методом нейтрализации щелочных вод является продувка через них газовых выбросов, содержащих оксиды серы, углерода, азота и другие кислотообразующие окислы. Таким образом обеспечивается одновременно эффективная очистка дымовых газов.

Реагентная обработка применяется для очистки вод от цианидов, роданидов, ионов тяжелых металлов и ряда других примесей. Вид применяемого реагента определяется составом примесей, подлежащих удалению из воды. Так, разложение цианидов достигается обработкой воды жидким хлором или веществами, выделяющими активный хлор, - хлорной известью, гипохлоридом кальция или натрия.

Окислением удается добиться деструкции таких соединений, как альдегиды, фенолы, анилиновые красители, серосодержащие органические вещества и др. В качестве окислителей применяют кислород, озон, перекись водорода, пиролюзит. В процессе окисления происходит разложение вредных примесей до простых окислов или образование соединений, поддающихся биохимическому разложению.

Извлечение из воды ионов ртути, хрома, кадмия, свинца, никеля, меди, мышьяка основано на переводе их из раствора в нерастворимый осадок. С этой целью очищаемую воду обрабатывают соединениями натрия или кальция - сульфитом, бисульфитом или сульфидом, карбонатами или гидроокисью. Образующийся шлам удаляют, утилизируют или складируют.

Одним из высокоэффективных методов очистки является ионный обмен, который представляет собой процесс взаимодействия очищаемой жидкости с зернистым материалом, обладающим способностью заменять ионы, находящиеся на поверхности зерен, на ионы противоположного заряда, содержащиеся в растворе. Такие материалы называются ионитами. Ионитными свойствами обладают природные минералы - цеолиты, апатиты, полевые шпаты, слюда, различные глины. Синтезировано большое число высокоэффективных ионитов, обладающих селективными свойствами. К ним относятся силикагели, алюмогели, пермутиты, сульфоугли и ионообменные смолы - синтетические высокомолекулярные органические соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Иониты не растворяются в воде, обладают достаточной механической прочностью, обеспечивают возможность их регенерации с получением ценных веществ, извлекаемых из очищаемых вод. Существуют ионообменные установки периодического и непрерывного действия. Установки периодического действия работают как фильтры с зернистой загрузкой в виде гранул ионитов. При насыщении поверхности гранул ионами вещества, извлекаемого из воды, производится их регенерация слабым раствором (2-8%) щелочи или кислоты. В установках непрерывного действия гранулы ионитов и очищаемая жидкость движутся противотоком, постоянно перемешиваясь. В процессе работы часть гранул подаются на регенерацию и заменяются новыми. Благодаря высокой механической прочности и способности к регенерации гранулы ионитов имеют довольно продолжительный срок службы. Ионный обмен является, по существу, универсальным методом очистки вод. Для извлечения практически любого вещества из воды можно подобрать соответствующий ионит или группу ионитов. Эффективность ионообменной очистки достигает 95-99%.

Рис. 3. - Установки ионообменной очистки

А - периодического действия; Б - непрерывного действия

1 - загрязненная вода; 2 - гранулы ионита; 3 - раствор для регенерации

ионита; 4 - очищенная вода; 5 - добавка ионита.

Другим универсальным и высокоэффективным метолом очистки вод является сорбция. Сорбция применяется преимущественно для очистки сточных вод, которые содержат высокотоксичные вещества, неподдающиеся биохимическому окислению. Метод сорбционной очистки основан на адгезии (прилипании) растворенных веществ поверхностью и порами сорбента - вещества, обладающего разветвленной внешней и внутренней (поры) поверхностью. Наилучшим сорбентом является активированный уголь. Сорбционными свойствами обладают золы, шлаки, опилки, коксовая крошка, торф, керамзит и др. Конструкции установок сорбционной очистки аналогичны ионообменным. Высокая эффективность очистки достигается в установках с псевдосжиженным ("кипящим") слоем, когда в полую вертикальную колонну снизу под давлением подается очищаемая вода, проходящая через слой сорбента, который находится во взвешенном состоянии. Отработанный сорбент заменяется новым или регенерируется. При поддержании сорбента в "кипящем" слое, когда достигаются наилучшие условия контакта его внешней и внутренней поверхности с очищаемой жидкостью, эффективность очистки достигает 99%. Если псевдосжиженный слой слеживается, эффективность очистки резко снижается.

Рис. 4. - Установки сорбционной очистки

А - одноярусная; Б - трехъярусная.

1 - загрязненная вода; 2 - сорбент; 3 - очищенная вода;

4 - отработанный сорбент; 5 - чистый сорбент; 6 - решетка.

Флотационная очистка применяется для удаления из воды поверхностно-активных веществ (ПАВ), нефтепродуктов, жиров, смол и др. Процесс флотации заключается в сорбировании содержащихся в воде примесей поверхностью пузырьков воздуха, нагнетаемого в очищаемую жидкость. В практике очистки вод используются напорные, безнапорные, вакуумные и электрофлотационные установки. Наибольшее распространение получили напорные установки. В таких установках вода сначала насыщается воздухом пол давлением, а затем подается в открытый резервуар, где происходит выделение пузырьков и сорбирование ими содержащихся в воде примесей. Иногда сжатый воздух подается в нижний слой жидкости, находящейся в резервуаре (флотаторе). Для повышения эффективности очистки воздух подается через пористые (фильтросные) пластины. При вакуумной флотации в флотаторе создается разряжение, способствующее образованию пузырьков воздуха. Для безнапорной флотации используются эрлифтные установки, которые позволяют существенно (в 2-4 раза) снизить затраты электроэнергии на флотационную очистку. Повышению эффективности очистки вод при флотации способствует наличие синтетических поверхностно-активных веществ (СПАВ). Образуемая ими густая стойкая пена повышает степень извлечения из воды эмульгированных и диспергированных примесей. При флотации одновременно достигается дегазация очищаемых вод и насыщение их кислородом.

Рис. 5. - Установки флотационной очистки

1 - загрязненная вода; 2 - сжатый воздух; 3 - газгольдер;

4 - флотатор; 5 - очищенная вода; 6 - пенный шлам.

При электрофлотации образование пузырьков газа происходит вследствие электролиза воды. На аноде выделяется кислород, на катоде - водород. Однако этот метод очистки из-за больших затрат электроэнергии и роста ее стоимости практически не используют. По этим же причинам все реже применяют некогда широко распространенные электрохимические методы очистки вод: анодное окисление и катодное восстановление, электрокоагуляция, электродиализ. Электрохимические методы очистки основаны на пропускании постоянного электрического тока через очищаемую жидкость. Кислород, выделяемый на аноде, окисляет органические примеси. В качестве анодов используют электролитические неразлагаемые материалы: графит, магнетит, диоксиды свинца, марганца или рутения, наносимые на титановую основу. На катодах происходит выделение водорода и оседание ионов металлов с образованием нерастворимых гидроксидов. Катоды изготовляют из стали или алюминия. В процессе электролиза катионы катодов, взаимодействуя с гидроксидными группами, образуют гидроокиси в виде хлопьев. Этот процесс называется электрокоагуляцией.

Одной из разновидностей электрохимической очистки является электродиализ, который основан на разделении находящихся в растворе ионизированных веществ по отсекам, отгороженным проницаемыми мембранами. Высокий эффект достигается при использовании мембран из ионитов. Электродиализ является эффективным методом опреснения вод, в частности морской воды для последующего использования ее в питьевом водоснабжении. Установки опреснения морской воды успешно используют в Израиле, других странах Ближнего Востока. С 1973 г. в Казахстане, на полуострове Мангышлак в Каспийском море, эксплуатируется одна из крупнейших в мире установок по опреснению морской воды. Энергией ее обеспечивает построенная здесь АЭС. Электрохимические методы отличаются универсальностью, обеспечивают высокую эффективность очистки, хорошо поддаются автоматизации. Однако их недостатком, как уже отмечалось, является большой расход электроэнергии.

Рис. 6. - Принцип работы установок электродиализа

А - с обычной пористой мембраной; Б - с ионитной мембраной.

Другие физико-химические методы очистки вод имеют ограниченное применение.

Экстракция - извлечение из сточных вод растворенных или эмульгированных веществ с помощью экстрагента - растворителя более сильного, чем вода. Например, очистка сточных вод от нефтепродуктов путем растворения их бензином с последующей его отгонкой.

Эвапорация - отгон из воды летучих веществ водяным паром.

Гиперфильтрация (обратный осмос), микрофильтрация - выделение из воды гидратированных ионов, молекул и других мельчайших частиц путем пропускания ее под большим давлением через мембраны, размеры отверстий которых меньше размеров извлекаемых из воды частиц. Например, обратный осмос используется для обессоливания воды.

При наличии на производстве излишков тепла, например, горячих дымовых газов, можно организовать выпаривание или испарение сточных вод. При этом следует применять меры по охране атмосферного воздуха от испаряемых вредных веществ, таких как бензапирен и др.

Испарение сточных вод может происходить и в естественных условиях в накопителях-испарителях, представляющих собой земляные сооружения иногда гигантских размеров - высотой в несколько десятков метров, диаметром в несколько километров.

Размещено на Allbest.ru


Подобные документы

  • Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

    реферат [308,8 K], добавлен 21.11.2011

  • Физико-химическая характеристика сточных вод. Механические и физико-химические методы очистки сточных вод. Сущность биохимической очистки сточных вод коксохимических производств. Обзор технологических схем биохимических установок для очистки сточных вод.

    курсовая работа [1,0 M], добавлен 30.05.2014

  • Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат [29,9 K], добавлен 05.12.2003

  • Внедрение технологии очистки сточных вод, образующихся при производстве стеновых и облицовочных материалов. Состав сточных вод предприятия. Локальная очистка и нейтрализация сточных вод. Механические, физико-химические и химические методы очистки.

    курсовая работа [3,0 M], добавлен 04.10.2009

  • Правила приема производственных сточных вод в системы канализации населенных мест, санитарные требования к ним. Механические, физико-химические и биологические методы для очистки технической воды и промышленных стоков, необходимое оборудование для работ

    реферат [3,5 M], добавлен 07.08.2009

  • Методы очистки сточных вод: механические, химические, биологические и электрохимические. Рассмотрение сущности метода электрохимической деструкции. Схема однокамерной электро-флотационной установки. Электрофорез, электроосмос и электрофильтрование.

    презентация [325,9 K], добавлен 06.01.2015

  • Состав сточных вод и основные методы их очистки. Выпуск сточных вод в водоемы. Основные методы очистки сточных вод. Повышение эффективности мер по охране окружающей среды. Внедрение малоотходных и безотходных технологических процессов.

    реферат [13,1 K], добавлен 18.10.2006

  • Биологические методы очистки и обеззараживания сточных вод. Очистные установки биологической очистки, их эффективность и концентрация очищенных вод по основным показателям. Международная стандартизация в области экологического менеджмента. Экоаудит.

    контрольная работа [1,9 M], добавлен 18.09.2008

  • Определение расходов сточных вод от жилой застройки. Характеристика загрязнений производственных сточных вод и места их сброса. Выбор технологической схемы очистки и обработки осадка. Расчет сооружений механической очистки. Аэрируемая песколовка.

    курсовая работа [236,6 K], добавлен 24.02.2014

  • Анализ технологического процесса и условий образования опасных факторов. Действие вредных факторов на рабочем месте. Изучение особенностей применения методов флотации, сорбции и коагуляции для очистки сточных вод. Расчет интегральной оценки тяжести труда.

    курсовая работа [902,2 K], добавлен 06.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.