Чернобыль - последнее предупреждение человечеству

Источники и характеристика радиационного загрязнения, переработка и нейтрализация. Возможные последствия применения ядерного оружия массового поражения, йодный удар. Подготовка к эксперименту, взрывы, эвакуация, герои Чернобыля, гуманитарная помощь.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 26.11.2010
Размер файла 95,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки Российской Федерации

ТОГОУ СПО «Технологический техникум»

Реферат на тему:

«Чернобыль - последнее предупреждение человечеству»

по предмету «Экологические основы природопользования»

Выполнил:

студент гр.А-10

Карташов Александр

Проверил:

преподаватель

Янковская Т. И.

Уварово 2011 г.

План

Введение

1. Источники и характеристика радиационного загрязнения

1.1 Характеристика радиационного загрязнения

1.2 ПО «Маяк»

1.3 Чернобыль

2. Причины

2.1 Две точки зрения

2.2 Равновесие мнений

2.3 О нажатии кнопки АЗ - 5

2.4 О движении управляющих стержней

2.5 Сейсмический толчок

2.6 Новая версия

2.7 Количественные доказательства

2.8 А что говорят свидетели

2.9 Об адекватности распечаток ДРЕГ

2.10 Выводы «компетентных органов»

3. Подготовка к эксперименту

3.1 Исходные события

3.2 Первый взрыв

3.3 Второй взрыв

4. Распространение радиационного загрязнения

4.1 Радиоактивное загрязнение воздушной среды

4.2 Радиоактивное загрязнение водной среды

4.3 Радиоактивное загрязнение почвы

4.4 Радиоактивное загрязнение растительного и животного мира

5. Переработка и нейтрализация радиационных отходов

6. Эвакуация

7. Возможные последствия применения ядерного оружия массового поражения

8. Герои Чернобыля

9. Йодный удар

10. Основные выводы

11. Защита

12. Гуманитарная помощь

Заключение

Список используемой литературы

Введение

К началу 88 г. в мире существовало 417 атомных реакторов и 120 ещё строилось. Вклад АЭС в выработку энергии в некоторых странах составил для Франции - 70%, Бельгии - 66%, Южной Кореи - 53%, Тайваня - 48,5%. Кроме ядерных реакторов было 326 исследовательских ядерных установок, реакторы установлены на ледоколах, спутниках, подводных лодках. Это говорит о том, что атомная энергетика прочно входит в нашу жизнь со своими плюсами и минусами. Впервые человечество увидело атом в действии в 45 г, когда США сбросили на Хиросиму и Нагасаки водородные бомбы. Погибла треть населения этих городов, радиация вызвала у многих людей лейкозы. Люди умирали и продолжают умирать до сих пор. Ряд испытаний ядерного оружия Соединенными Штатами на острове Бикини в 46-58 гг. привели к тому, что в результате взрыва исчезли с лица земли 2 соседних островка, а сам остров стал непригоден для жизни. В 57 г. на заводе Селлафильд (Уиндскайл) в Англии по регенерации ядерного топлива произошел взрыв. В результате загрязнения погибли 13 человек, более 260 заболели острой и хронической лучевой болезнью. В 66 г. в Испании столкнулись 2 американских военных самолета с ракетами на борту. Одному пришлось сбросить 4 атомные бомбы. К счастью, взрыва не было, но в результате выбросов погибли посевы сельскохозяйственных культур, пришлось вывезти 1,5 тыс. т почвы для захоронения. В 79 г. на АЭС Тримайленд в г.Гаррисбург, Пенсильвания также произошла крупная авария. Но самая крупная по своим масштабам и последствиям катастрофа произошла 26 апреля 1986 г. на ЧАЭС, описания которой не было ни в каком справочнике по аварийным случаям на АЭС. Прошло уже много лет, но она все ещё напоминает о себе цезиевыми пятнами, преждевременными смертями, тяжкими болезнями и горем матерей, которые потеряли своих сыновей в битве с реактором. И будет долго ещё напоминать, пока цезий не подвергнется полному распаду, а это - десятки лет… Чернобыль - небольшое, милое, провинциальное украинское местечко, утопающее в зелени, все в вишнях и яблонях. Летом здесь любили отдыхать многие киевляне, москвичи, ленинградцы. Приезжали сюда основательно, часто на все лето, готовили на зиму варенья, собирали грибы, загорали на ослепительно чистых песчаных берегах Киевского моря, ловили рыбу. И казалось, что удивительно гармонично и неразрывно ужились здесь красота полесской природы и упрятанные в бетон четыре блока АЭС, расположенной неподалеку к северу от Чернобыля.

Радиоактивное загрязнение биосферы это превышение естественного уровня содержания в окружающей среде радиоактивных веществ. Оно может быть вызвано ядерными взрывами и утечкой радиоактивных компонентов в результате аварий на АЭС или других предприятиях, при разработке радиоактивных руд и т.п. При авариях на АЭС особенно резко увеличивается загрязнение среды радионуклидами (стронций-90, цезий-137, церий-141, йод-131, рутений-106 и др.). В настоящее время, по данным Международного агентства по атомной энергетике. (МАГАТЭ), число действующих в мире реакторов достигло 426 при их суммарной электрической мощности около 320 ГВт (17% мирового производства электроэнергии). Ядерная энергетика, при условии строжайшего выполнения необходимых требований, более или менее экологически чище по сравнению с тепло-энергетикой, поскольку исключает вредные выбросы в атмосферу (зола, диоксиды, углерода и серы, оксиды азота и др.). Так, во Франции быстрое наращивание мощностей АЭС позволило в последние годы значительно уменьшить выбросы диоксида серы и оксидов азота в секторе энергетики соответственно на 71 и 60% . В Японии для стабилизации энергообеспечения страны намечается в ближайшие два десятилетия построить около 40 новых АЭС, что удовлетворит 43% энерго-потребностей. Однако в целом в мире отмечена тенденция сокращения строительства новых АЭС. Использование атомной энергии в широких масштабах приводит к накоплению радиоактивных отходов. Возникает проблема их захоронения.

1. Источники и характеристика радиационного загрязнения

1.1 Характеристика радиационного загрязнения

Научные открытия и развитие физико-химических технологий в XX в. привели к появлению искусственных источников радиации,представляющих большую потенциальную опасность для человечества и всей биосферы. Этот потенциал на много порядков больше естественного радиационного фона, к которому адаптирована вся живая природа.

Естественный радиационный фон обусловлен рассеянной радиоактивностью земной коры, проникающим космическим излучением, потреблением с пищей биогенных радионуклидов и составлял в недавнем прошлом 8--9 микрорентген в час (мкР/ч), что соответствует среднегодовой эффективной эквивалентной дозе (ЭЭД = НD) для жителя Земли в 2 миллизиверта (мЗв). Рассеянная радиоактивность обусловлена наличием в среде следовых количеств природных радиоизотопов с периодом полураспада (T1/2) более 105лет (в основном урана и тория), а также40К, 14С,226Raи 222Rn. Газ радон в среднем дает от 30 до 50% естественного фона облучения наземной биоты. Из-за неравномерности распределения источников излучения в земной коре существуют некоторые региональные различия фона и его локальные аномалии.

Указанный уровень фона был характерен для доиндустриальной эпохи и в настоящее время несколько повышен техногенными источниками радиоактивности -- в среднем до 11-- 12 мкР/ч при среднегодовой ЭЭД в 2,5 мЗв. Эту прибавку обусловили:

а) технические источники проникающей радиации (медицинская диагностическая и терапевтическая рентгеновская аппаратура, радиационная дефектоскопия, источники сигнальной индикации и т.п.);

б) извлекаемые из недр минералы, топливо и вода;

в) ядерные реакции в энергетике и ядерно-топливном цикле;

г) испытания и применение ядерного оружия. Деятельность человека в несколько раз увеличила число присутствующих в среде радионуклидов и на несколько порядков -- их массу на поверхности планеты.

Главную радиационную опасность представляют запасы ядерного оружия и топлива и радиоактивные осадки, которые образовались в результате ядерных взрывов или аварий и утечек в ядерно-топливном цикле -- от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью.

С 1945 по 1996 г. США, СССР (Россия), Великобритания, Франция и Китай произвели в надземном пространстве более 400 ядерных взрывов. В атмосферу поступила большая масса сотен различных радионуклидов, которые постепенно выпали на всей поверхности планеты. Их глобальное количество почти удвоили ядерные катастрофы, произошедшие на территории СССР. Долгоживущие радиоизотопы (углерод-14, цезий-137, стронций-90 и др.) и сегодня продолжают излучать, создавая приблизительно 2%-ю добавку к фону радиации. Последствия атомных бомбардировок, ядерных испытаний и аварий еще долго будут сказываться на здоровье облученных людей и их потомков.

Пока еще трудно говорить о влиянии техногенного превышения естественного фона радиации на биоту биосферы. Мы еще не знаем, как может сказаться на биоте океана разгерметизация затопленных контейнеров с радионуклидами и реакторов затонувших подводных лодок. Во всяком случае, можно предполагать некоторое повышение уровня мутагенеза.

Радиационные загрязнения, связанные с технологически нормальным ядерным топливным циклом, имеют локальный характер и доступны для контроля, изоляции и предотвращения эмиссий. Эксплуатация объектов атомной энергетики сопровождается незначительным радиационным воздействием. Многолетние систематические измерения и контроль радиационной обстановки не обнаружили серьезного влияния на состояние объектов окружающей природной среды. Дозы облучения населения, проживающего в окрестностях АЭС, не превышают 10 мкЗв/год, что в 100 раз меньше установленного допустимого уровня. Вероятность радиационных аварий реакторов АЭС сейчас оценивается как 10 -4 --10 -5в год.

1.2 ПО «Маяк»

ПО «Маяк».Самое крупное из известных сейчас скоплений радионуклидов находится на Урале, в 70 км к северо-западу от Челябинска на территории производственного объединения «Маяк». ПО «Маяк» было создано на базе промышленного комплекса, построенного в 1945--1949 гг. Здесь в 1948 г. был пущен первый в стране промышленный атомный реактор, в 1949 г. -- первый радиохимический завод, изготовлены первые образцы атомного оружия. В настоящее время в производственную структуру ПО «Маяк» входят ряд производств ядерного цикла, комплекс по захоронению высокоактивных материалов, хранилища и могильники РАО. Многолетняя деятельность ПО «Маяк» привела к накоплению огромного количества радионуклидов и сильному загрязнению районов Челябинской, Свердловской, Курганской и Тюменской областей. В результате сброса отходов радиохимического производства непосредственно в открытую речную систему Обского бассейна через р. Теча (1949--1951 гг.), а также вследствие аварий 1957 и 1967 гг. в окружающую среду было выброшено 23 млн. Ки активности. Радиоактивное загрязнение охватило территорию в 25 тыс. км2с населением более 500 тыс. человек. Официальные данные о десятках поселков и деревень, подвергшихся загрязнению в результате сбросов радиоактивных отходов в р. Теча, появились только в 1993 г.

В 1957 г. в результате теплового взрыва емкости с РАО произошел мощный выброс радионуклидов (церий-144, цирконий-95, стронций-90, цезий-137 и др.) с суммарной активностью 2 млн. Ки. Возник «Восточно-Уральский радиоактивный след» длиной до 110 км (в результате последующей миграции даже до 400км) и шириной до 35--50 км (рис. 1.1). Общая площадь загрязненной территории, ограниченной изолинией 0,1 Ки/км2по стронцию-90, составила 23 тыс. км2. Около 10 тыс. человек из 19 населенных пунктов в зоне наиболее сильного загрязнения с большой задержкой были эвакуированы и переселены.

Зона радиационного загрязнения на Южном Урале расширилась вследствие ветрового разноса радиоактивных аэрозолей с пересохшей части технологического водоема № 9 ПО «Маяк» (оз. Карачай) в 1967 г. В настоящее время в этом резервуаре находится около 120 млн Ки активности, преимущественно за счет стронция-90 и цезия-137. Под озером сформировалась линза загрязненных подземных вод объемом около 4 млн м3и площадью 10 км2. Существует опасность проникновения загрязненных вод в другие водоносные горизонты и выноса радионуклидов в речную сеть.

По данным радиационного мониторинга, выпадения цезия-137 из атмосферы в районах, расположенных в зоневлияния ПО «Маяк», в течение 1994г. были в 50--100 раз больше, чем в среднем по стране. Высоким остается и уровень загрязнения местности цезием-137 в пойме р. Теча. Концентрации стронция-90 в речной воде и в донных отложениях в 100--1000 раз превышают фоновые значения. В каскаде промышленных водоемов в верховьях Течи содержится 350 млн м3 загрязненной воды, являющейся по сути низкоактивными отходами. Суммарная активность твердых и жидких РАО, накопленных в ходе деятельности ПО «Маяк», достигает 1 млрд Ки. Сосредоточение огромного количества РАО, загрязнение поверхностных водоемов, возможность проникновения загрязненных подземных вод в открытую гидрографическую систему Обского бассейна создают исключительно высокую степень радиационного риска на Южном Урале.

1.3 Чернобыль

Не только нынешнее, но и последующие поколения будут помнить Чернобыль и ощущать последствия этой катастрофы. В результате взрывов и пожара при аварии на четвертом энергоблоке ЧАЭС с 26 апреля по 10 мая 1986 г. из разрушенного реактора было выброшено примерно 7,5 т ядерного топлива и продуктов деления с суммарной активностью около 50 млн Ки. По количеству долгоживущих радионуклидов (цезий-137, стронций-90 и др.) этот выброс соответствует 500--600 Хиросимам.

Из-за того, что выброс радионуклидов происходил более 10 суток при меняющихся метеоусловиях, зона основного загрязнения имеет веерный, пятнистый характер (рис. 1.2). Кроме 30-километровой зоны, на которую пришлась большая часть выброса, в разных местах в радиусе до 250 км были выявлены участки, где загрязнение достигло 200 Ки/км2. Общая площадь «пятен» с активностью более 40 Ки/км2составила около 3,5 тыс. км2, где в момент аварии проживало 190 тыс. человек. Всего радиоактивным выбросом ЧАЭС в разной степени было загрязнено 80% территории Белоруссии, вся северная часть Правобережной Украины и 19 областей России. В целом по РФ загрязнение, обусловленное аварией на ЧАЭС, с плотностью 1 Ки/км2и выше охватывает более 57 тыс. км2, что составляет 1,6% площади ЕТР (табл. 1.1). Уточненные в 1994 г. границы площадей, загрязненных цезием-137, по сравнению с 1993 г. почти не изменились. Следы Чернобыля обнаружены в большинстве стран Европы (табл. 1.2), а также в Японии, на Филиппинах, в Канаде. Катастрофа приобрела глобальный характер.

И сегодня спустя полтора десятилетия после чернобыльской трагедии существуют противоречивые оценки ее поражающего действия и причиненного экономического ущерба. Согласно опубликованным в 2000 г. данным из 860 тыс. человек, участвовавших в ликвидации последствий аварии, более 55 тыс. ликвидаторов умерли, десятки тысяч стали инвалидами. Полмиллиона человек до сих пор проживает на загрязненных территориях.

Таблица 1.1. Площади областей и республик России, загрязненных цезием-137 (по состоянию на январь 1995 г.)

Областиреспублики

Общаяплощадьобласти и республики

тыс.км

Площадь загрязнений цезием-137, км2

Ки/км2

1-5

5-15

15-40

>40

1.

Белгородская

27,1

1 620

2.

Брянская

34,9

6 750

2628

2 130

310

3.

Воронежская

52,4

1 320

4.

Калужская

29,9

3 500

1 419

5.

Курская

29,8

1 220

6.

Липецкая

24,1

1 619

7.

Ленинградская

85,9

850

8.

Нижегородская

74,8

250

9.

Орловская

24,7

8 840

132

10.

Пензенская

43,2

4 130

11.

Рязанская

39,6

5 320

12.

Саратовская

100,2

150

13.

Смоленская

49,8

100

14.

Тамбовская

34,3

510

15.

Тульская

25,7

1 320

1 271

16.

Ульяновская

37,3

1 100

17.

Мордовия

26,2

1 900

18.

Татарстан

68,0

110

19.

Чувашия

18,0

80

Итого

49 760

5450

2 130

310

Точных данных о количестве облученных и полученных дозах нет. Нет и однозначных прогнозов о возможных генетических последствиях. Подтверждается тезис об опасности длительного воздействия на организм малых доз радиации. В районах, подвергшихся радиоактивному заражению, неуклонно растет число онкологических заболеваний, особенно выражен рост заболеваемости раком щитовидной железы детей.

Таблица 1.2. Средние эффективные эквивалентные дозы радиации для ряда стран Европы в течение первого года после Чернобыльской аварии, мкЗв

Страна

Эффективная эквивалентная доза за первый год

Ожидаемая эффективная эквивалентная доза

Австрия

670

3200

Финляндия

360

2000

Болгария

940

1800

Румыния

570

1700

Югославия

380

1700

Греция

590

1200

Чехия и Словакия

390

890

Италия

300

810

Норвегия

230

790

Польша

240

740

Венгрия

250

400

СНГ (СССР)

260

820

2. Причины

2.1 Две точки зрения

Различных объяснений причин Чернобыльской аварии много. Их уже набралось свыше 110. А научно-разумных всего две. Первая из них появилась в августе 1986г. [1]. Суть её сводится к тому, что в ночь на 26 апреля 1986г. персонал 4-го блока ЧАЭС в процессе подготовки и проведения электротехнических испытаний 6 раз грубо нарушил Регламент, т.е. правила безопасной эксплуатации реактора. Причём в шестой раз так грубо, что грубее и не бывает - вывел из его активной зоны не менее 204 управляющих стержней из 211 штатных, т.е. более 96%. В то время, как Регламент требовал от них: «При снижении оперативного запаса реактивности до 15 стержней реактор должен быть немедленно заглушен» [2, стр.52]. А до этого они преднамеренно отключили почти все средства аварийной защиты. Тогда, как Регламент требовал от них: «11.1.8. Во всех случаях запрещается вмешиваться в работу защиты, автоматики и блокировок, кроме случаев их неисправности...» [2, стр.81]. В результате этих действий реактор попал в неуправляемое состояние, и в какой-то момент в нём началась неуправляемая цепная реакция, которая закончилась тепловым взрывом реактора. В [1] также отмечались «небрежность в управлении реакторной установкой», недостаточное понимание «персоналом особенностей протекания технологических процессов в ядерном реакторе» и потерю персоналом «чувства опасности».Кроме этого, были указаны некоторые особенности конструкции реактора РБМК, которые «помогли» персоналу довести крупную аварию до размеров катастрофы. В частности, «Разработчики реакторной установки не предусмотрели создания защитных систем безопасности, способных предотвратить аварию при имевшем место наборе преднамеренных отключений технических средств защиты и нарушений регламента эксплуатации, так как считали такое сочетание событий невозможным». И с разработчиками нельзя не согласиться, ибо преднамеренно «отключать» и «нарушать» означает рыть себе могилу. Кто же на это пойдёт? И в заключение делается вывод, что «первопричиной аварии явилось крайне маловероятное сочетание нарушений порядка и режима эксплуатации, допущенных персоналом энергоблока» [1].В 1991г. вторая государственная комиссия, образованная Госатомнадзором и состоящая в основном из эксплуатационщиков, дала другое объяснение причин Чернобыльской аварии [3]. Его суть сводилась к тому, что у реактора 4-го блока имеются некоторые «конструкционные недостатки», которые «помогли» дежурной смене довести реактор до взрыва. В качестве главных из них обычно приводят положительный коэффициент реактивности по пару и наличие длинных (до 1м) графитовых вытеснителей воды на концах управляющих стержней. Последние поглощают нейтроны хуже, чем вода, поэтому их одновременный ввод в активную зону после нажатия кнопки АЗ-5, вытеснив воду из каналов СУЗ, внёс такую дополнительную положительную реактивность, что оставшиеся 6...8 управляющих стержней уже не смогли её скомпенсировать. В реакторе началась неуправляемая цепная реакция, которая и привела его к тепловому взрыву.При этом исходным событием аварии считается нажатие кнопки АЗ-5, которое вызвало движении стержней вниз. Вытеснение воды из нижних участков каналов СУЗ привело к возрастанию потока нейтронов в нижней части активной зоны. Локальные тепловые нагрузки на тепловыделяющие сборки достигли величин, превышающих пределы их механической прочности. Разрыв нескольких циркониевых оболочек тепловыделяющих сборок привёл к частичному отрыву верхней защитной плиты реактора от кожуха. Это повлекло массовый разрыв технологических каналов и заклинивание всех стержней СУЗ, которые к этому моменту прошли примерно половину пути до нижних концевиков.Следовательно, в аварии виноваты учёные и проектировщики, которые создали и спроектировали такой реактор и графитовые вытеснители, а дежурный персонал здесь не причём.В 1996г. третья государственная комиссия, в которой тоже тон задавали эксплуатационщики, проанализировав накопленные материалы, подтвердили выводы второй комиссии.

2.2 Равновесие мнений

Шли годы. Обе стороны оставались при своём мнении. В результате сложилось странное положению, когда три официальные государственные комиссии, в состав которых входили авторитетные каждый в своей области люди, изучали, фактически, одни и те же аварийные материалы, а пришли к диаметрально противоположным выводам. Чувствовалось, что там было что-то не то, или в самих материалах, или в работе комиссий. Тем более, что в материалах самих комиссий ряд важных моментов не доказывалось, а просто декларировалось. Наверно, поэтому бесспорно доказать свою правоту не могла ни одна сторона.Само соотношение вины между персоналом и проектировщиками оставалось невыясненным, в частности, из-за того, что во время испытаний персоналом «регистрировались только те параметры, которые были важны с точки зрения анализа результатов проводимых испытаний» [4]. Так они потом объяснялись. Странное это было объяснение, ибо не была зарегистрирована даже часть основных параметров реактора, которые измеряются всегда и непрерывно. Например, реактивность. «Поэтому процесс развития аварии восстанавливался расчётным путём на математической модели энергоблока с использованием не только распечаток программы ДРЕГ, но и показаний приборов и результатов опроса персонала» [4].Столь долгое существование противоречий между учёными и эксплуатационщиками поставило вопрос об объективном изучении всех накопленных за 16 лет материалов, связанных с Чернобыльской аварией. С самого начала представлялось, это надо сделать на принципах, принятых в Национальной академии наук Украины, - любое утверждение должно быть доказанным, а любое действие должно быть естественно объяснено.При внимательном анализе материалов вышеуказанных комиссий становится очевидным, что при их подготовке явно сказались узковедомственные пристрастия глав этих комиссий, что, в общем-то, естественно. Поэтому автор убеждён, что в Украине действительно объективно и официально разобраться в истинных причинах Чернобыльской аварии реально способна только Национальная академия наук Украины, которая реактор РБМК не придумывала, не проектировала, не строила и не эксплуатировала. И поэтому ни в отношении реактора 4-го блока, ни в отношении его персонала у неё просто нет и быть не может каких-либо узковедомственных пристрастий. А её узковедомственный интерес и прямая служебная обязанность - поиск объективной истины, независимо от того, нравится она или не нравится отдельным чиновникам от украинской атомной энергетики.Наиболее важные результаты такого анализа излагаются ниже.

2.3 О нажатии кнопки АЗ-5(сомнения перерастают в подозрения)

Было замечено, что когда знакомишься с объёмными материалами Правительственной Комиссии по расследованию причин Чернобыльской аварии (далее - Комиссия) быстро, то возникает ощущение, что она сумела построить довольно стройную и взаимосвязанную картину аварии. Но когда начинаешь читать их медленно и очень внимательно, то в отдельных местах возникает ощущение какой-то недосказанности. Как будто Комиссия что-то недорасследовала или что-то недосказала. Особенно это относится к эпизоду нажатия кнопки АЗ-5.

«В 1ч 22мин 30с оператор на распечатке программы увидел, что оперативный запас реактивности составлял величину, требующую немедленной остановки реактора. Тем не менее, это персонал не остановило, и испытания начались.В 1ч 23мин 04с были закрыты СРК (стопорно-регулирующие клапаны - авт.) ТГ (турбогенератор - авт.) №8. Имеющаяся аварийная защита по закрытию СРК... была заблокирована, чтобы иметь возможность повторить испытание, если первая попытка окажется неудачной... Через некоторое время началось медленное повышение мощности. В 1ч 23мин 40с начальник смены блока дал команду нажать кнопку аварийной защиты АЗ-5, по сигналу от которой в активную зону вводятся все регулирующие стержни аварийной защиты. Стержни пошли вниз, однако через несколько секунд раздались удары...» [4]. Кнопка АЗ-5 - это кнопка аварийного глушения реактора. Её нажимают в самом крайнем случае, когда в реакторе начинает развиваться какой-либо аварийный процесс, остановить который другими средствами нельзя. Но из цитаты ясно видно, что особых причин нажимать кнопку АЗ-5 не было, так как не было отмечено ни одного аварийного процесса. Сами испытания должны были длиться 4 часа. Как видно из текста, персонал намеревался повторить свои испытания. А это заняло бы ещё 4 часа. То есть, персонал собирался проводить испытания 4 или 8 часов. Но вдруг уже на 36-й секунде испытаний его планы поменялись, и он стал срочно глушить реактор. Напомним, что 70 секунд назад, отчаянно рискуя, он этого не сделал вопреки требованиям Регламента. Практически все авторы отметили эту явную немотивированность нажатия кнопки АЗ-5 [5, 6, 9]. Более того, «Из совместного анализа распечаток ДРЕГ и телетайпов, в частности, следует, что сигнал аварийной защиты 5-й категории... АЗ-5 появлялся дважды, причём, первый - в 01ч 23мин 39с» [7]. Но есть сведения, что кнопка АЗ-5 нажималась три раза [8]. Спрашивается, зачем нажимать её два или три раза, если уже с первого раза «стержни пошли вниз»? И если всё идёт по порядку, то почему персонал проявляет такую нервозность? И у физиков зародились подозрения, что в 01ч 23мин 40с. или чуть раньше что-то очень опасное всё-таки произошло, о чём умолчала Комиссия и сами «экспериментаторы» и что заставило персонал резко поменять свои планы на прямо противоположные. Даже ценою срыва программы электротехнических испытаний со всеми вытекающими для них неприятностями - административными и материальными. Эти подозрения усилились, когда учёные, изучавшие причины аварии по первичным документам (распечаткам ДРЕГ и осциллограммам), обнаружили отсутствие в них синхронизации во времени. Подозрения ещё больше усилились, когда обнаружилось, что для изучения им подсунули не подлинники документов, а их копии, «на которых отсутствуют отметки времени» [6]. Это сильно смахивало на попытку ввести учёных в заблуждение в отношении истинной хронологии аварийного процесса. И учёные вынуждены были официально отметить, что «наиболее полная информация по хронологии событий имеется лишь... до начала испытаний в 01ч 23мин 04с 26.04.86г.» [6]. А дальше «фактическая информация имеет существенные пробелы... и в хронологии восстановленных событий имеются существенные противоречия» [6]. В переводе с научно-дипломатического языка это означало выражение недоверия представленным копиям.

2.4 О движении управляющих стержней

И больше всего этих противоречий можно, пожалуй, найти в информации о движении управляющих стержней в активную зону реактора после нажатия кнопки АЗ-5. Напомним, что после нажатия кнопки АЗ-5 в активную зону реактора должны были погрузиться все управляющие стержни. Из них 203 стержня от верхних концевиков. Следовательно, к моменту взрыва они должны были погрузиться на одну и ту же глубину, что и должны были отразить стрелки сельсинов на БЩУ-4. А на самом деле картина совсем другая. Для примера процитируем несколько работ. СЕЛЬСИН (англ. selsyn, от англ. self - сам и греч. synchronos - одновременный), электрическая машина для дистанционной передачи информации об угле поворота вала др. машины. Применяется, напр., для дистанционного управления, передачи на расстояние показаний измерительных приборов; обычно используется пара - сельсин-датчик и сельсин-приемник, которые электрически соединяются между собой так, что при повороте ротора сельсин-датчика синфазно и синхронно с ним поворачивается ротор сельсин-приемника. «Стержни пошли вниз...» и больше ничего [1]. «01ч 23мин: сильные удары, стержни СУЗ остановились, не дойдя до нижних концевиков. Выведен ключ питания муфт». Так записано в оперативном журнале СИУР [9]. «...около 20 стержней остались в верхнем крайнем положении, а 14...15 стержней погрузились в активную зону не более, чем на 1...2м...» [16]. «...вытеснители аварийных стержней СУЗ прошли расстояние 1,2м и полностью вытеснили столбы воды, расположенные под ними...» [9]. «Поглощающие нейтроны стержни пошли вниз и почти сразу же остановились, углубившись в АЗ на 2...2,5м вместо положенных 7м» [6]. «Изучение конечных положений стержней СУЗ по датчикам сельсинов показало, что около половины стержней остановились на глубине от 3,5 до 5,5м» [12]. Спрашивается, а где же остановилась другая половина, ведь после нажатия кнопки АЗ-5 вниз должны пойти все(!) стержни? «Сохранившееся после аварии положение стрелок указателей положения стержней позволяет предположить, что ...некоторые из них достигли нижних концевых выключателей (всего 17 стержней, из которых 12с верхних концевых выключателей)» [7].Из приведенных цитат видно, что разные официальные документы описывают процесс движения стержней по-разному. А из устных рассказов персонала следует, что стержни дошли до отметки примерно 3,5м, а затем остановились. Таким образом, основными доказательствами движения стержней в активную зону являются устные рассказы персонала и положение стрелок сельсинов на БЩУ-4. Других доказательств найти не удалось. Если бы положение стрелок было документально зафиксировано в момент аварии, тогда на этой основе можно было бы уверено восстанавливать процесс её протекания. Но, как было выяснено позже, это положение было «зафиксировано по показаниям сельсинов днём 26.04.86» [5], т.е. через 12...15 часов после аварии. И это очень важно, ибо физикам, работавшим с сельсинами, хорошо известны два их «коварных» свойства. Первое - если сельсин-датчики подвергаются неконтролируемому механическому воздействию, то стрелки сельсин-приёмников могут занять любое положение. Второе - если с сельсинов снято электропитание, то стрелки сельсин-приёмников тоже могут со временем занять любое положение. Это не механические часы, которые, разбившись, фиксируют, к примеру, момент падения самолёта. Поэтому определение глубины ввода стержней в активную зону в момент аварии по положению стрелок сельсин-приёмников на БЩУ-4 через 12...15 часов после аварии является очень ненадёжным способом, ибо на 4-м блоке на сельсины воздействовали оба фактора. И на это указывают данные работы [7], согласно которой 12 стержней после нажатия кнопки АЗ-5 и до взрыва прошли путь длиной 7м от верхних концевиков до нижних. Естественно спросить, как они ухитрились это сделать за 9 секунд, если штатное время такого движения составляет 18...21 секунд [1]? Тут имеют место явно ошибочные показания. И как могли 20 стержней остаться в крайнем верхнем положении, если после нажатия кнопки АЗ-5 в активную зону реактора вводятся все(!) управляющие стержни? Это тоже явно ошибочные показания. Таким образом, положение стрелок сельсин-приёмников на БЩУ-4, зафиксированное после аварии, вообще нельзя считать объективным научным доказательством ввода управляющих стержней в активную зону реактора после нажатия кнопки АЗ-5. Что же тогда остаётся из доказательств? Только субъективные показания сильно заинтересованных лиц. Поэтому вопрос о вводе стержней было бы более правильно оставить пока открытым.

2.5 Сейсмический толчок

В 1996г. в СМИ появилась новая гипотеза, согласно которой. Чернобыльскую аварию вызвало узконаправленное землетрясение силой 3...4 балла, которое произошло в районе ЧАЭС за 16...22с до аварии, что и было подтверждено соответствующим пиком на сейсмограмме [10]. Однако эту гипотезу учёные-атомщики сразу отвергли как ненаучную. К тому же они знали от сейсмологов, что землетрясение силой 3...4 бала с эпицентром на севере Киевской области - нонсенс. Но в 1997г. вышла серьёзная научная работа [21], в которой на основании анализа сейсмограмм, полученных сразу на трёх сейсмостанциях, расположенных на расстоянии 100...180км от ЧАЭС, были получены наиболее точные данные об этом происшествии. Из них следовало, что в 1ч 23мин. 39с (±1с) по местному времени в 10км к востоку от ЧАЭС произошло «слабое сейсмическое событие». Магнитуда MPVA источника, определённая по поверхностным волнам, хорошо согласовывалась по всем трём станциям и составила 2,5. Тротиловый эквивалент его интенсивности составил 10т. Оценить глубину источника по имевшимся данным оказалось невозможным. Кроме этого, из-за низкого уровня амплитуд на сейсмограмме и одностороннего расположения сейсмостанций относительно эпицентра этого события погрешность определения его географических координат не могла быть более ±10км. Поэтому это «слабое сейсмическое событие» вполне могло произойти и в месте расположения ЧАЭС [21].

МАГНИТУДА ЗЕМЛЕТРЯСЕНИЯ (от лат. magnitudo - величина), условная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясениями или взрывами; пропорциональна логарифму энергии землетрясений; позволяет сравнивать источники колебаний по их энергии (см. Рихтера шкала). Максимальное значение - ок. 9.

Эти результаты заставили учёных более внимательно отнестись к геотектонической гипотезе, так как сейсмические станции, где они были получены, оказались не обычными, а сверхчувствительными, ибо следили за подземными ядерными взрывами во всём мире. И факт сотрясения земли за 10...16с до официального момента аварии стал неоспоримым аргументом, игнорировать который уже было нельзя. Но сразу показалось странным, что на этих сейсмограммах отсутствуют пики от взрыва 4-го блока в его официальный момент. Объективно получалось, что сейсмические колебания, которые никто в мире не заметил, станционные приборы зарегистрировали. А вот взрыв 4-го блока, который потряс землю так, что его почувствовали многие, эти же приборы, способные обнаружить взрыв всего 100т тротила на расстоянии 12000км, почему-то не зарегистрировали. А ведь должны были зарегистрировать взрыв с эквивалентной мощностью 10тонн тротила на расстояния 100...180км. И это тоже никак не укладывалось в логику.

2.6 Новая версия

Все эти противоречия и многие другие, а также отсутствие ясности в материалах аварии по ряду вопросов только усилили подозрения учёных, что эксплуатационщики от них что-то скрывают. И со временем в голову стала закрадываться крамольная мысль, а не произошло ли на самом деле всё наоборот? Сначала грохнул двойной взрыв реактора. Над блоком взметнулось светло-фиолетовое пламя высотой 500м. Всё здание 4-го блока содрогнулось. Бетонные балки заходили ходуном. В помещение пульта управления (БЩУ-4) «ворвалась взрывная волна, насыщенная паром». Потух общий свет. Остались гореть только три лампы, запитанные от аккумуляторов. Персонал на БЩУ-4 не мог этого не заметить. И только после этого, оправившись от первого шока, бросился нажимать свой «стоп-кран» - кнопку АЗ-5. Но уже было поздно. Реактор ушёл в небытие. На всё это могло уйти 10...20...30 секунд после взрыва. Тогда, получается, что аварийный процесс начался не в 1ч 23мин 40с, с нажатия кнопки АЗ-5, а несколько раньше. А это означает, что неуправляемая цепная реакция в реакторе 4-го блока началась до нажатия кнопки АЗ-5. В таком случае явно противоречащие логике пики сейсмической активности, зарегистрированные сверхчувствительными сейсмостанциями в районе ЧАЭС в 01ч 23мин 39с, получают естественное объяснение. Это был сейсмический отклик на взрыв 4-го блока ЧАЭС. Также получают естественное объяснение и экстренное неоднократное нажатие кнопки АЗ-5 и нервозность персонала в условиях, когда он собирался спокойно работать с реактором, по крайней мере, ещё 4 часа. И наличие пика на сейсмограмме в 1ч 23мин 39с и его отсутствие в официальный момент аварии. Кроме того, такая гипотеза естественно объяснила бы необъяснённые до сих пор события, случившиеся перед самым взрывом, такие, например, как «вибрации», «нарастающий гул», «гидроудары» со стороны ГЦН [10], «подпрыгивание» двух тысяч 80-килограмовых чушек «сборки 11» в Центральном зале реактора и многое другое [11].

2.7 Количественные доказательства

Способность новой версии естественно объяснить ряд необъяснённых ранее явлений, безусловно, являются прямыми аргументами в её пользу. Но эти аргументы носят, скорее, качественный характер. А непримиримых оппонентов могут убедить только количественные аргументы. Поэтому воспользуемся методом «доказательство от противного». Предположим, что реактор взорвался «через несколько секунд» после нажатия кнопки АЗ-5 и введения в активную зону реактора графитовых наконечников. Такая схема заведомо предполагает, что до этих действий реактор находился в управляемом состоянии, т.е. его реактивность явно была близка к 0в. Известно, что ввод сразу всех графитовых наконечников может внести дополнительную положительную реактивность от 0,2в до 2в в зависимости от состояния реактора [5]. Тогда при такой последовательности событий суммарная реактивность в какой-то момент могла превысить величину 1в, когда в реакторе начинается неуправляемая цепная реакция на мгновенных нейтронах, т.е. взрывного типа. Если всё так и происходило, то проектировщики и учёные должны разделить ответственность за аварию вместе с эксплуатационщиками. Если же реактор взорвался до нажатия кнопки АЗ-5 или в момент её нажатия, когда стержни ещё не дошли до активной зоны, то это означает, что его реактивность уже до этих моментов превышала 1в. Тогда со всей очевидностью вся вина за аварию ложится только на персонал, который, попросту говоря, упустил контроль над цепной реакцией после 01ч 22мин 30с, когда Регламент требовал от них заглушить реактор. Поэтому вопрос, какой величины была реактивность в момент взрыва, приобрёл принципиальное значение. Помочь ответить на него определённо позволили бы показания штатного реактиметра ЗРТА-01. Но их не удалось найти в документах. Поэтому этот вопрос решался разными авторами с применением математического моделирования, в процессе которого были получены возможные значения полной реактивности, находящиеся в пределах от 4в до 10в [12]. Баланс полной реактивности в этих работах складывался, в основном, из эффекта положительного выбега реактивности при движении всех стержней СУЗ в активную зону реактора от верхних концевиков - до +2в, из парового эффекта реактивности - до +4в и из эффекта обезвоживания - до +4в. Эффекты от остальных процессов (кавитация и др.) считались эффектами второго порядка.Во всех этих работах схема развития аварии начиналась с формирования сигнала аварийной защиты 5-й категории (АЗ-5). Дальше последовал ввод всех управляющих стержней в активную зону реактора, который внёс свой вклад в реактивность до +2в. Это привело к разгону реактора в нижней части активной зоны, который привёл к разрыву топливных каналов. Дальше сработали паровой и пустотный эффекты, которые, в свою очередь, могли довести полную реактивность до +10в в последний момент существования реактора.Наши собственные оценки полной реактивности в момент взрыва, проведенные методом аналогий на основании американских экспериментальных данных [13], дали близкую величину - 6в...7в. Теперь, если взять наиболее правдоподобную величину реактивности 6в и вычесть из неё максимально возможные 2в, вносимые графитовыми наконечниками, то получится, что реактивность перед самым вводом стержней уже составляла 4в. А такая реактивность сама по себе вполне достаточна для практически мгновенного разрушения реактора. Время жизни реактора при таких величинах реактивности составляет 1...2 сотых долей секунды. Никакой персонал, даже самый отборный, не в состоянии так быстро отреагировать на возникшую угрозу. Таким образом, и количественные оценки реактивности перед аварией показывают, что неуправляемая цепная реакция началась в реакторе 4-го блока до нажатия кнопки АЗ-5. Поэтому её нажатие не могло быть причиной теплового взрыва реактора. Более того, при вышеописанных обстоятельствах уже вообще не имело значения, когда была нажата эта кнопка - за несколько секунд до взрыва, в момент взрыва или после взрыва.

2.8 А что говорят свидетели

Во время следствия и суда свидетели, находившиеся в момент аварии на пульте управления, фактически разделились на две группы. Те, кто юридически отвечал за безопасность реактора, говорили, что реактор взорвался после нажатия кнопки АЗ-5. Те, кто юридически не отвечал за безопасность реактора, говорили, что реактор взорвался то ли до, то ли сразу после нажатия кнопки АЗ-5. Естественно, что в своих воспоминаниях и показаниях и те, и другие стремились всячески оправдаться. Поэтому ктакого рода материалам следует относиться с некоторой осторожностью, что автор и делает, рассматривая их только как вспомогательные материалы. Тем не менее, сквозь этот словесный поток оправданий довольно хорошо проявляется справедливость наших выводов. Процитируем ниже некоторые из показаний. «Проводивший эксперимент главный инженер по эксплуатации второй очереди АЭС... доложил мне, что он, как это обычно делается, для глушения реактора при возникновении любой аварийной ситуации, нажал на кнопку аварийной защиты АЗ-5» [14]. Эта цитата из воспоминаний Б.В.Рогожкина, работавшего в аварийную ночь начальником смены станции, ясно показывает, что на 4-м блоке сначала возникла «аварийная ситуация», а уж потом персонал стал нажимать на кнопку АЗ-5. А «аварийная ситуация» при тепловом взрыве реактора возникает и проходит очень быстро - в течение секунд. Если она уже возникла, то персонал просто не успевает отреагировать. «Все события происходили в течение 10...15 секунд. Появилась какая-то вибрация. Гул стремительно нарастал. Мощность реактора сначала упала, а потом стала увеличиваться, не поддаваясь регулированию. Затем - несколько резких хлопков и два «гидроудара». Второй мощнее - со стороны центрального зала реактора. На блочном щите погасло освещение, посыпались плиты подвесного потолка, отключилось всё оборудование» [15].Так он же описывает ход самой аварии. Естественно, без привязки к временной шкале. А вот другое описание аварии, данное Н.Поповым. «...послышался гул совершенно незнакомого характера, очень низкого тона, похожий на стон человека (о подобных эффектах рассказывали обычно очевидцы землетрясений или вулканических извержений). Сильно шатнуло пол и стены, с потолка посыпалась пыль и мелкая крошка, потухло люминесцентное освещение, затем сразу же раздался глухой удар, сопровождавшийся громоподобными раскатами...» [17]. «И.Киршенбаум, С.Газин, Г.Лысюк, присутствовавшие на пульте управления, показали, что команду глушить реактор они слышали непосредственно перед взрывом или сразу после него» [16]. «В это время услышал команду Акимова - глушить аппарат. Буквально сразу же раздался сильный грохот со стороны машзала» (Из показаний А.Кухаря) [16].

Из этих показаний уже следует, что взрыв и нажатие кнопки АЗ-5 практически совпали во времени.

На это важное обстоятельство указывают и объективные данные. Напомним, что первый раз кнопка АЗ-5 нажималась в 01ч 23мин 39с, а второй раз на две секунды позже (данные телетайпов). Анализ сейсмограмм показал, что взрыв на ЧАЭС произошёл в период от 01ч 23мин 38с ... 01ч 23мин 40с [21]. Если теперь учесть, что сдвиг временной шкалы телетайпов по отношению временной шкале общесоюзного эталонного времени мог составить ±2с [21], то можно уверенно прийти к тому же выводу - взрыв реактора и нажатие кнопки АЗ-5 практически совпали во времени. А это прямо означает, что неуправляемая цепная реакция в реакторе 4-го блока началась на самом деле до первого нажатия кнопки АЗ-5. Но о каком взрыве идёт речь в показаниях свидетелей, о первом или втором? Ответ на этот вопрос содержится и в сейсмограммах, и в показаниях. Если из двух слабых взрывов сейсмостанции зарегистрировали только один, то, естественно, считать, что они зарегистрировали более сильный. А таким по показаниям всех свидетелей был именно второй взрыв. Таким образом, можно уверенно принять, что именно второй взрыв произошёл в период от 01ч 23мин 38с ... 01ч 23мин 40с.

Этот вывод подтверждается свидетелями следующим эпизодом:

«Оператор реактора Л.Топтунов закричал об аварийном увеличении мощности реактора. Акимов громко крикнул: «Глуши реактор!» и метнулся к пульту управления реактором. Вот эту вторую команду глушить уже слышали все. Было это, видимо, после первого взрыва...». [16].Отсюда следует, что к моменту второго нажатия кнопки АЗ-5 первый взрыв уже произошёл. И это очень важно для дальнейшего анализа. Как раз здесь полезно будет провести несложный расчёт времени. Достоверно известно, что первое нажатие кнопки АЗ-5 было сделано в 01ч 23мин 39с, а второе - в 01ч 23мин 41с [12]. Разница во времени между нажатиями составила 2 секунды. А на то, чтобы увидеть аварийные показания прибора, осознать их и закричать «об аварийном увеличении мощности», необходимо затратить не менее 4...5с. На то, чтобы выслушать, затем принять решение, отдать команду «Глуши реактор!», метнуться к пульту управления и нажать кнопку АЗ-5, необходимо затратить ещё не менее 4...5с. Итак, мы уже имеем запас в 8...10 секунд перед вторым нажатием кнопки АЗ-5. Напомним, что к этому моменту первый взрыв уже произошёл. То есть, он состоялся ещё раньше и явно до первого нажатия кнопки АЗ-5. А насколько раньше? Учитывая инертность реакции человека на неожиданно возникшую опасность, измеряемую обычно несколькими и более секундами, набросим на неё ещё 8...10 секунд. И получаем отрезок времени, прошедший между первым и вторым взрывами, равный 16...20с. Эта наша оценка в 16...20с подтверждается показаниями сотрудников ЧАЭС РоманцеваО.А., и РудыкаА.М., рыбачивших в аварийную ночь на берегу пруда-охладителя. В своих показаниях они практически повторяют друг друга. Поэтому приведём здесь показания только одного из них - РоманцеваО.А. Пожалуй, именно он описал картину взрыва в наибольшей подробности, как она виделась с большого расстояния. В этом, как раз и заключается их большая ценность. «Я увидел очень хорошо пламя над блоком №4, которое по форме было похоже на пламя свечи или факел. Оно было очень тёмным, тёмно-фиолетовым, со всеми цветами радуги. Пламя было на уровне среза трубы блока №4. Оно вроде как пошло назад и раздался второй хлопок, похожий на лопнувший пузырь гейзера. Секунд через 15...20 появился другой факел, который был более узким, чем первый, но в 5...6 раз выше. Пламя также медленно выросло, а потом исчезло, как в первый раз. Звук был похож на выстрел из пушки. Гулкий и резкий. Мы поехали» [25]. При этом интересно отметить, что оба свидетеля звука после первого появления пламени не слышали. Это означает, что первый взрыв был очень слабый. Естественное объяснение этому будет дано ниже. Правда, в показаниях РудыкаА.М. указывается несколько другое время, прошедшее между двумя взрывами, а именно 30с. Но этот разброс легко понять, если учесть, что оба свидетеля наблюдали картину взрыва без секундомера в руках. Поэтому их личные временные ощущения можно объективно охарактеризовать так - временной интервал между двумя взрывами был довольно заметен и составил время, измеряемое десятками секунд. Кстати, сотрудник ИАЭ им. И.В.Курчатова ВасилевскийВ.П., ссылаясь на свидетелей, тоже приходит к выводу, что время, прошедшее между двумя взрывами, составляет 20с [25]. Более точная оценка времени, прошедшего между двумя взрывами, проведена в данной работы выше - 16...20с.Поэтому никак нельзя согласиться с оценками величины этого отрезка времени в 1...3с, как это делается в [22], ибо эти оценки делались на основании только показаний свидетелей, которые в момент аварии находились в различных помещениях ЧАЭС, общую картину взрывов не видели и руководствовались в показаниях лишь своими звуковыми ощущениями. Хорошо известно, что неуправляемая цепная реакция взрывом заканчивается. Значит, началась она ещё на 10...15 секунд раньше. Тогда получается, что момент её начала лежит в интервале времени от 01ч 23мин 10с до 01ч 23мин 05с. Как это не удивительно, но именно этот момент времени главный свидетель аварии почему-то счёл необходимым выделить, когда обсуждал вопрос о правильности или неправильности нажатия кнопки АЗ-5 именно в 01ч 23мин 40с (по ДРЕГ): «я тогда не придавал этому никакого значения - взрыв бы произошёл на 36 секунд ранее» [16]. Т.е. в 01ч 23мин 04с. Как уже обсуждалось выше, на этот же момент времени ещё в 1986г. указали учёные ВНИИАЭС как на момент, после которого хронология аварии, восстановленная по представленным им официальным копиям аварийных документов, вызвала у них сомнения. Не слишком ли много совпадений? Такого не бывает просто так. По-видимому, первые признаки аварии («вибрации» и «гул совершенно незнакомого характера») появились примерно за 36 секунд до первого нажатия кнопки АЗ-5. Такой вывод подтверждается показаниями начальника предаварийной, вечерней смены 4-го блока Ю. Трегуба, который остался на ночную смену, чтобы помочь при проведении электротехнического эксперимента: «Начинается эксперимент на выбег. Отключают турбину от пара и в это время смотрят - сколько будет длиться выбег. И вот была дана команда... Мы не знали, как работает оборудование от выбега, поэтому в первые секунды я воспринял... появился какой-то нехороший такой звук... как если бы «Волга» на полном ходу начала тормозить и юзом бы пошла. Такой звук: ду-ду-ду... Переходящий в грохот. Появилась вибрация здания... БЩУ дрожал. Но не как при землетрясении. Если посчитать до десяти секунд - раздавался рокот, частота колебаний падала. А мощность их росла. Затем прозвучал удар... Удар этот был не очень. По сравнению с тем, что было потом. Хотя сильный удар Сотрясло БЩУ. И когда СИУТ крикнул, я заметил, что заработала сигнализация главных предохранительных клапанов. Мелькнуло в уме: «Восемь клапанов... открытое состояние!». Я отскочил, и в это время последовал второй удар. Вот это был очень сильный удар. Посыпалась штукатурка, всё здание заходило... свет потух, потом восстановилось аварийное питание... Все были в шоке...». Большая ценность этих показаний обусловлена тем, что свидетель, с одной стороны, работал начальником вечерней смены 4-го блока и, следовательно, хорошо знал его реальное состояние и трудности работы на нём, а, с другой стороны, в ночную смену он уже работал просто добровольным помощником и, следовательно, юридически ни за что не отвечал. Поэтому он смог запомнить и наиболее подробно из всех свидетелей воссоздать общую картину аварии. В этих показаниях обращает на себя внимание слова: «в первые секунды... появился какой-то нехороший такой звук». Отсюда ясно следует, что аварийная ситуация на 4-м блоке, закончившаяся тепловым взрывом реактора, возникла уже «в первые секунды» после начала проведения электротехнических испытаний. А из хронологии аварии известно, что они начались в 01ч 23мин 04с. Если теперь к этому моменту добавить несколько «первых секунд» то получится, что неуправляемая цепная реакция на запаздывающих нейтронах в реакторе 4-го блока началась примерно в 01ч 23мин 8...10с, что довольно хорошо совпадает с нашими оценками этого момента, приведенными выше. Таким образом, из сопоставления аварийных документов и процитированных выше показаний свидетелей можно сделать вывод, что первый взрыв произошёл примерно в период от 01ч 23мин 20с до 01ч 23мин 30с. Именно он и послужил причиной первого аварийного нажатия кнопки АЗ-5. Напомним, что ни одна официальная комиссия, ни один автор многочисленных версий не смогли дать естественного объяснения этому факту. Но почему оперативный персонал 4-го блока, не являвшийся новичком в деле и к тому же работавший под руководством опытного зам главного инженера по эксплуатации, всё-таки упустил контроль над цепной реакцией? Воспоминания дают ответ и на этот вопрос. «Нарушать ОЗР мы не собирались и не нарушали. Нарушение - когда сознательно игнорируется показание, а 26 апреля никто не видел запаса менее 15 стержней... Но, видимо, мы просмотрели...» [16]. «Почему Акимов задержался с командой на глушение реактора, теперь не выяснишь. В первые дни после аварии мы ещё общались, пока не разбросали по отдельным палатам...». [16]. Эти признания были написаны непосредственным, можно сказать, главным участником аварийных событий через много лет после аварии, когда никакие неприятности ему уже не грозили ни от правоохранительных органов, ни от бывшего начальства, и он мог писать откровенно. Из них для любого непредвзятого человека становится очевидным, что во взрыве реактора 4-го блока виноват только персонал. Скорее всего, увлёкшись рискованным процессом поддержания мощности реактора, попавшего в режим самоотравления по его же вине, на уровне 200МВт, оперативный персонал сначала «просмотрел» недопустимо опасный вывод управляющих стержней из активной зоны реактора в запрещённом Регламентом количестве, а затем «задержался» с нажатием кнопки АЗ-5. Это и есть непосредственная техническая причина Чернобыльской аварии. А всё остальное - дезинформация от лукавого. И на этом пора заканчивать все эти надуманные споры о том, кто виноват в Чернобыльской аварии, и сваливать всё на науку, как это очень любят делать эксплуатационщики. Учёные были правы ещё в 1986г.


Подобные документы

  • Источники и характеристика радиационного загрязнения. ПО "Маяк". Чернобыль. Распространение радиационного загрязнения. Радиоактивное загрязнение воздушной, водной среды, почвы, растительного и животного мира. Переработка и нейтрализация радиационных отход

    реферат [32,3 K], добавлен 14.12.2005

  • Общая характеристика оружия массового поражения как оружия, предназначенного для нанесения массовых разрушений на большой площади. Опасность использования и оценка экологических последствий применения ядерного и химического оружия массового поражения.

    доклад [17,6 K], добавлен 26.06.2011

  • Техногенная катастрофа на 4-ом энергоблоке Чернобыльской АЭС 26 апреля 1986 года. Последствия взрывов, ликвидация аварии. Решение засыпать воронку теплопоглощающими материалами. Распространение загрязнения. Причины и последствия чернобыльской аварии.

    презентация [3,6 M], добавлен 15.01.2011

  • Основные типы ядерного оружия. Конструкция, мощность ядерных боеприпасов. Виды ядерных взрывов. Последовательность событий при ядерном взрыве и поражающие факторы. Применение ядерных взрывов. Экологические последствия применения ядерного оружия.

    реферат [2,4 M], добавлен 17.10.2011

  • Испытания ядерного оружия: масштабы и экологические последствия. Аварии на радиационных объектах. Чернобыльская катастрофа: опыт и предупреждение. Хранение и обезвреживание радиоактивных отходов. Экологические проблемы уничтожения химического оружия.

    реферат [38,7 K], добавлен 12.11.2008

  • Экологические проблемы Павлодарской области Республики Казахстан, источники загрязнения атмосферы, деградации кормовых угодий и эрозия почвы, дефицит пресной воды и проблема сточных вод, загрязнения из-за испытаний ядерного оружия и запуска ракет.

    реферат [24,1 K], добавлен 11.12.2010

  • Нефть и оружие массового поражения как источники загрязнения в поствоенном Ираке. Характеристика воздействия вооружений и военной техники на окружающую среду. Исследование влияния экологической ситуации в государстве на экологию Российской Федерации.

    курсовая работа [40,0 K], добавлен 13.10.2015

  • Человек и окружающая среда: история взаимодействия. Физические, химические, информационные и биологические загрязнения, нарушающие процессы круговорота и обмена веществ, их последствия. Источники загрязнения гидросферы и литосферы в Нижнем Новгороде.

    реферат [53,8 K], добавлен 03.06.2014

  • Основные источники загрязнения: промышленные предприятия; автомобильный транспорт; энергетика. Природные и техногенные источники загрязнения воды, почвы. Главные источники загрязнения атмосферы. Предельно допустимые концентрации вредных веществ в воздухе.

    презентация [1,8 M], добавлен 24.02.2016

  • Два основных источника загрязнения атмосферы: естественный и антропогенный. Последствия теплового и светового загрязнения, меры его предотвращения. Главный источник шумового загрязнения. Зона риска бытовых приборов. Источники радиации и ситуация в России.

    реферат [496,9 K], добавлен 23.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.