Почвенный покров. Антропогенное воздействие на почву

Строение, состав почвы. Загрязнение почвенного покрова. Приоритетные загрязняющие вещества. Методы оценки загрязнения почв тяжёлыми металлами, их влияние на организм животных и человека. Изменения, наблюдаемые у растений, при накоплении тяжёлых металлов.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 02.02.2010
Размер файла 41,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Глава I. Почвенный покров. Антропогенное воздействие на почву

§1 Строение, состав и свойства почвы

Почвенный покров является важнейшим природным образованием. Его значение для жизни общества определяется тем, что почва является основным источником продовольствия, обеспечивающим 97-98% продовольственных ресурсов населения планеты. Вместе с тем, почвенный покров является местом деятельности человека, на котором размещается промышленное и сельскохозяйственное производство.

Чтобы правильно использовать почву, надо знать, как она образовывалась, ее строение состав и свойства. Почва образовывалась из выходящих на поверхность земли горных пород под влиянием различных факторов. Под действием ветра, атмосферной влаги, в связи с изменением климата и температурными колебаниями горные породы, например, гранит, постепенно трескались и превращались в рухляк. На рухляке поселялись микроорганизмы, питающиеся преимущественно углеродом и азотом атмосферы и минеральными соединениями, которые они получали из горной породы. Микроорганизмы разрушали ее своими выделениями, и химический состав горной породы постепенно изменялся. Затем здесь поселялись лишайники и мхи. Микроорганизмы разлагали их остатки, образуя гумус основное органическое вещество почвы, содержащее питательные вещества, необходимые высшим растениям. Животные и растения окончательно разрушали горную породу, превращая верхний ее слой в почву. Растительный опад в лесах и отмершая травянистая растительность после разложения микроорганизмами дает много органического вещества, увеличивая мощность почвы. Лучшие почвы, влагоемкие и воздухопроницаемые, имеют мелкокомковатую или мелкозернистую структуру из комочков диаметром от 1 до 10 мм. От состава и свойств горной породы, на которой формируется почва, в значительной степени зависят состав и свойства почвы.

Почва состоит из твердой, жидкой, газообразной и живой частей:

1. Твердая часть это минеральные и органические частицы. Они составляют от 80-98 % почвенной массы. У большинства почв (исключая торфяники) минеральная часть, образованная в результате длительного разрушения и выветривания различных горных пород и минералов, преобладает над органической. Твердая фаза состоит из частиц различной величины, начиная от камней и кончая частицами меньше 0,0001 мм. Частицы крупнее 3 мм составляют каменистую часть почвы, от 3 до 1 мм -- гравийную, от 1 до 0,05 -- песок, от 0,05 до 0,001 -- пыль, мельче 0,001 -- ил и, наконец, менее 0,0001 мм -- коллоидную часть. Частицы мельче 0,01 мм называют «физической» глиной, от 0,01 до 1 мм -- «физическим» песком. Содержание всех этих частиц определяет механический состав почвы, т. е. принадлежность почвы к пескам, суглинкам или глинам [4].

В наиболее мелких, глинистых частицах содержится основное количество питательных веществ, необходимых растениям: калий, фосфор, кальций, магний, сера, железо, медь. Наиболее ценны по питательности мельчайшие коллоидные частицы, в которых питательные вещества наиболее доступны растениям. Поэтому глинистые, иловатые почвы обычно более плодородны. Песчаные частицы почвы содержат в большом количестве минерал кварц, который не может обеспечить питание растений. Однако в песке помимо кварца находятся зерна слюды, полевого шпата и другие минералы. Такие пески более плодородны, чем чисто кварцевые. Соотношение этих частиц характеризует механический состав почвы.

2. Жидкая часть почвы, или почвенный раствор, вода с растворенными в ней органическими и минеральными соединениями. Воды в почве содержится от долей процента до 40-60 %. Жидкая часть участвует в снабжении растений водой и растворенными элементами питания.

3. Газообразная часть, почвенный воздух, заполняет поры, не занятые водой. Почвенный воздух содержит больше углекислого газа и меньше кислорода, чем атмосферный воздух, а также метан, летучие органические соединения и др.

4. Живая часть почвы состоит из почвенных микроорганизмов (бактерии, грибы, водоросли, актиномицеты и др.), представителей беспозвоночных (простейших, червей, моллюсков, насекомых и их личинок), роющих позвоночных. Они обитают в основном в верхних слоях почвы, около корней растений, где добывают себе пищу. Некоторые почвенные организмы могут жить только на корнях.

Почва содержит макроэлементы (азот, фосфор, калий, кальций, сера, железо и др.) и микроэлементы (бор, марганец, молибден, цинк и др.), которые растения потребляют в ограниченных количествах. Их соотношение определяет химический состав почвы.

Из физических свойств почвы наибольшее значение имеет:

ь Влагоемкость - способность почвы поглощать и удерживать определённое количество влаги. Выражается в процентах к массе сухой почвы или к её объёму, а также в миллиметрах водного слоя.

ь Водопроницаемость - способность почвы пропускать через себя воду. Определяется слоем воды (в мм), поступающей в почву через её поверхность в единицу времени. В. п. зависит от генетического типа почвы, гранулометрического состава и влажности почвы. Высока водопроницаемость рыхлых (песчаных) и структурных почв. В бесструктурные почвы влага обильных дождей часто не успевает впитаться, в результате этого образуется поверхностный сток и связанная с ним водная эрозия почвы. Более водопроницаемы верх. горизонты почвы, менее -- уплотнённые иллювиальные горизонты.

ь Скважность (пористость) - это объем всех открытых пространств (пор) между твердыми частицами породы. Определяет объем воды, который может удерживать почва [13].

Состав и свойства почвы постоянно меняются под влиянием жизнедеятельности, климата, деятельности человека. При внесении удобрений почва обогащается питательными для растений веществами, изменяет свои физические свойства. Неправильная эксплуатация может привести к нарушению почвенного покрова к эрозии почвы, засолению, заболачиванию [1].

Улучшение всех свойств почвы происходит при сочетании минеральной части и органической части -- гумуса, который обладает способностью удерживать воду и биогенные элементы, а комковатая агрегированная структура улучшает ее аэрацию, инфильтрацию воды и обрабатываемость почв. Гумус образуется за счет потребления детрита почвенными организмами. Помимо питания почвенные животные способствуют перемешиванию гумуса и минеральной части, формируя почвенную структуру [5].

Важнейшее свойство почвенного покрова -- его плодородие, под которым понимается совокупность свойств почвы, обеспечиваю-щих урожай сельскохозяйственных культур. Естественное плодородие почвы регулируется запасом питательных веществ в почве и ее водным, воздушным и тепловым режимами. Велика роль почвенного покрова в продуктивности наземных экологических систем, так как почва питает сухопутные растения водой и многими соединениями и является важнейшим компонентом фотосинтетической деятельности растений. Плодородие почвы зависит и от аккумулированной в ней величины солнечной энергии. Живые организмы, растения и животные, населяющие Землю, фиксируют солнечную энергию в форме фито- или зоомассы. Продуктивность наземных экологических систем зависит от теплового и водного баланса земной поверхности, которым определяется многообразие форм обмена материей и веществом в пределах географической оболочки планеты [2].

Анализируя значение земли для общественного производства, К. Маркс выделял два понятия: земля-материя и земля-капитал. Под первым из них следует понимать землю, возникшую в процессе ее эволюционного развития помимо воли и сознания людей и являющуюся местом поселения человека и источником его пиши. С того момента, когда земля в процессе развития человеческого общества становится средством производства, она выступает в новом качестве--капитала, без которого немыслим процесс труда, “потому что она дает рабочему место, на котором он стоит, а его процессу--сферу действия”. Именно по этой причине земля является универсальным фактором любой человеческой деятельности [3].

Роль и место земли неодинаковы в различных сферах материального производства, прежде всего в промышленности и сельском хозяйстве. В обрабатывающей промышленности, в строительстве, на транспорте земля является местом, где совершаются процессы труда независимо от естественного плодородия почвы. В ином качестве выступает земля в сельском хозяйстве. Под воздействием человеческого труда естественное плодородие из потенциального превращается в экономическое. Земля в сельском хозяйстве выступает в качестве производительной силы благодаря своему естественному плодородию, которое не остается постоянным. При рациональном использовании земли такое плодородие может быть повышено за счет улучшения ее водного, воздушного и теплового режима посредством проведения мелиоративных мероприятии и увеличения содержания в почве питательных веществ. Напротив, при нерациональном использовании земельных ресурсов их плодородие падает, вследствие чего происходит снижение урожайности сельскохозяйственных культур. Широкое использование земель, особенно возросшее в эпоху НТР, привело к увеличению распространения водной и ветровой эрозий (дефляции). Под их воздействием происходит вынос (водой либо ветром) почвенных агрегатов из верхнего, наиболее ценного слоя почвы, который приводит к снижению ее плодородия. Водная и ветровая эрозии, вызывая истощение почвенных ресурсов, являются опасным экологическим фактором [6].

§2. Загрязнение почвенного покрова. Приоритетные загрязняющие вещества

Когда земля является местом, где совершаются процессы труда, то это неизбежно приводит к загрязнению почвенного покрова. Под загрязнением необходимо понимать нежелательное изменение её свойств в результате антропогенного (внесённых человеком) поступления различных веществ и соединений. Прогрессирующее воздействие деятельности человечества на природную среду достигло уровня, при котором происходят существенные изменения в химическом составе почвенного покрова обширных территорий[9].

Процессы агрогенного почвообразования начинаются с импактного механического воздействия на верхнюю часть профиля с нарушением ее природного сложения. Смена естественной растительности на культурную, регулярное механическое перемешивание верхнего слоя почвы, внесение органических и минеральных удобрений, различных мелиорантов, приводят к существенным сдвигам в водном и тепловом режимах, биохимических реакциях, составе почвенного воздуха и др. В результате вступают в действие процессы последовательного преобразования почвенной массы, приводящие к частичному стиранию многих естественных свойств и формированию новых. Происходит структурная переорганизация почвенной массы, изменение ее вещественного состава, водно-физических, физико-химических, химических и биологических параметров. Важную роль в общем процессе антропогенного преобразования почв играет загрязнение их технологическими отходами [14].

С загрязнением почв тесно связано загрязнение атмосферы и гидросферы. В почву попадают твердые и жидкие промышленные и бытовые отходы. Основными загрязняющими веществами являются металлы и их соединения. По пищевым цепям эти загрязнения попадают в организм человека, оказывая токсическое, канцерогенное, мутагенное действие, подавляя иммунитет [7].

Различные почвенные загрязнения, антропогенного происхождения, можно разделить по способу поступления этих загрязнений в почву:

С атмосферными осадками.

Многие химические соединения, попадающие в атмосферу в результате работы предприятий, затем растворяются в капельках атмосферной влаги и с осадками выпадают в почву. Выделяющиеся в процессе человеческой деятельности двуокись серы (SO2) и окислы азота (NОx) трансформируются в атмосфере земли в кислотообразующие частицы. Эти частицы вступают в реакцию с водой атмосферы, превращая ее в растворы кислот, которые и понижают рН дождевой воды. Таким образом и образуются кислотные дожди. Эти вещества выбрасываются в атмосферу автомобильным транспортом, в результате деятельности металлургических предприятий и электростанций. Кислотный дождь наносит вред не только водной флоре и фауне.

Осаждающиеся в виде пыли и аэрозолей.

Твёрдые и жидкие соединения при сухой погоде обычно оседают непосредственно в виде пыли и аэрозолей. Такие загрязнения можно наблюдать визуально, например, вокруг котельных зимой снег чернеет, покрываясь частицами сажи. Автомобили, особенно в городах и около дорог, вносят значительную лепту в пополнение почвенных загрязнений.

При непосредственном поглощении почвой газообразных соединений. В сухую погоду газы могут непосредственно поглощаться почвой, особенно влажной.

С растительным опадом.

Различные вредные соединения, в любом агрегатном состоянии, поглощаются листьями через устьица или оседают на поверхности. Затем, когда листья опадают, все эти соединения поступают опять-таки в почву [8].

Промышленные загрязнения почвы трудно классифицируются, в разных источниках их деление даётся по-разному. Если обобщить и выделить главное, то наблюдается следующая картина по загрязнению почвы:

Мусором, выбросами, отвалами, отстойными породами.

В эту группу входят различные по характеру загрязнения смешанного характера, включающие как твёрдые, так и жидкие вещества, не слишком вредные для организма человека, но засоряющие поверхность почвы, затрудняющие рост растений на этой площади.

Тяжёлыми металлами.

Данный вид загрязнений уже представляет значительную опасность для человека и других живых организмов, так как тяжёлые металлы нередко обладают высокой токсичностью и способностью к кумуляции в организме. Наиболее распространённое автомобильное топливо - бензин - содержит очень ядовитое соединение - тетраэтилсвинец, содержащее тяжёлый металл свинец, который попадает в почву.

Радиоактивными веществами.

Радиоактивные соединения стоят несколько обособленно по своей опасности, прежде всего потому, что по своим химическим свойствам они практически не отличаются от аналогичных не радиоактивных элементов и легко проникают во все живые организмы, встраиваясь в пищевые цепочки. Из радиоактивных изотопов можно отметить в качестве примера один наиболее опасный - 90Sr. Данный радиоактивный изотоп имеет высокий выход при ядерном делении (2 - 8%), большой период полураспада (28,4 года), химическое сродство с кальцием, а, значит, способность откладываться в костных тканях животных и человека, относительно высокую подвижность в почве. Совокупность вышеназванных качеств делают его весьма опасным радионуклидом. 137Cs, 144Ce и 36Cl также являются опасными радиоактивными изотопами. Хотя существуют природные источники загрязнений радиоактивными соединениями, но основная масса наиболее активных изотопов с небольшим периодом полураспада попадает в окружающую среду антропогенным путём: в процессе производства и испытаний ядерного оружия, из атомных электростанций, особенно в виде отходов и при авариях, при производстве и использовании приборов, содержащих радиоактивные изотопы и. т. д. [10].

При нормировании химических веществ в почве учитывается не только та опасность, которую представляет почва при непосредственном контакте с ней, но и последствия вторичного загрязнения контактирующих с почвой сред.

Установление предельно допустимых концентраций (ПДК) загрязняющих веществ в почве находится в первоначальной стадии, поэтому к настоящему времени установлены ПДК лишь для 30 вредных веществ, преимущественно ядохимикатов.

Таблица №1

Источники поступления загрязняющих веществ в окружающую среду

Вещества

Источники загрязнения

промышленность

транспорт

ТЭС

Газы (СО2, SO2, NO2, NO, H2S) и пыль

+

+

+

Тяжелые металлы (около 40 элементов) и их соединения (Hg, Pb, Cd и др.)

+

+

+

Циклические углеводороды, бенз(а)пирен

+

+

-

Радиоактивные вещества

+

-

+

В связи с тем, что вредные вещества поступают в организм человека по пищевым целям, установлены допустимые остаточные количества (ДОК) пестицидов в почве, пищевых и кормовых продуктах.

С гигиенической позиций опасность загрязнения почвы определяется уровнем возможного ее отрицательного влияния на контактирующие среды, пищевые продукты и непосредственно на человека, а также на биологическую активность почвы и процессы ее самоочищения.

И именно ПДК химических веществ в почве является основным критерием гигиенической оценки опасности загрязнения почв вредными веществами.

Если нет возможности учесть весь комплекс химических веществ, загрязняющих почву, оценку проводят по наиболее токсичным веществам, то есть относящиеся к наиболее высокому классу опасности.

Одну из приоритетных групп загрязняющих веществ, что наглядно отображено в таблице №1, образуют тяжелые металлы (ТМ), основная масса которых поступает с выбросами индустриальных предприятий в нижние слои тропосферы, вовлекается в аэральную миграцию и осаждается на поверхность почвы. Наблюдения за тяжёлыми металлами обязательны во всех средах.

К промышленному загрязнению в г. Комсомольске-на-Амуре приводят результаты деятельности заводов, ТЭЦ (1,2,3) и автотранспортных средств, работающие на угле, мазуте, дизельном топливе, природном газе и бензине. Как итог - загрязнение воздуха, воды и почвы. В городе 5 действующих заводов: «Амурметалл», Нефтеперерабатывающий завод (ОАО «КНПЗ-Роснефть»), завод «Амурлитмаш», Амурский Судостроительный завод, завод КнААПО. Вследствие работы, закрытых на сегодняшний день Сернокислотного и Аккумуляторного заводов, химикаты, когдато поступивший в окружающую среду, по истечении времени оседали на поверхности почвы, накапливались и сейчас практически не выводится из неё.

Глава II: Загрязнение почв тяжёлыми металлами

§1. Способы поступления тяжёлых металлов в почву

Тяжёлые металлы сейчас значительно опережают такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду. Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

Термин тяжелые металлы, характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации.

По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg.

Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества. Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ. Так, в ставших уже классическими работах Ю.А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы поименованы Pb, Hg, Cd, As. С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым металлам [9].

Нормирование содержания тяжелых металлов в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Найденные, приводимые исследователями результаты различаются иногда в 5-10 раз.

Распределение металлов-загрязнителей в пространстве весьма сложно и зависит от многих факторов, но в любом случае именно почва является главным приемником и аккумулятором техногенных масс тяжелых металлов[9].

Поступление тяжелых металлов в литосферу вследствие техногенного рассеяния осуществляется разнообразными путями. Важнейшим из них является выброс при высокотемпературных процессах (черная и цветная металлургия, обжиг цементного сырья, сжигание минерального топлива). Кроме того, источником загрязнения биоценозов могут служить орошение водами с повышенным содержанием тяжёлых металлов, внесение осадков бытовых сточных вод в почвы в качестве удобрения, вторичное загрязнение вследствие выноса тяжёлых металлов из металлургических предприятий водными или воздушными потоками, поступление больших количеств тяжёлых металлов при постоянном внесении высоких доз органических, минеральных удобрений и пестицидов. В приложении №1 отражено соответствие между источниками техногенного загрязнения и металлами загрязнителями.

Для характеристики техногенного загрязнения тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации. При загрязнении несколькими тяжелыми металлами степень загрязнения оценивается по величине суммарного показателя концентрации (Zc) [7].

В приложении №1 цветом выделены отрасли промышленности, которые сейчас действуют на территории г.Комсомольска-на-Амуре. Из таблицы видно, что такие элементы как цинк, свинец, кадмий требуют обязательного контроля над уровнем ПДК, особенно учитывая тот факт, что они входят в список основных загрязнителей из тяжелых металлов (Hg, Pb, Cd, As - по Ю.А. Израэлю), главным образом потому, что техногенное накопление их в окружающей среде идет высокими темпами [15].

Исходя из этих данных познакомимся подробней с особенностями этих элементов.

Цинк

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДКв Zn2+ составляет 1 мг/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр Zn2+ - 0.01 мг/дм3 (лимитирующий признак вредности - токсикологический) (Биогеохимические свойства См. Прил. 2) [15].

Свинец

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности (Прил. 1).

Свинец содержится в выбросах предприятиями металлургии, которые сейчас являются главным источником загрязнений, металлообработки, электротехники, нефтехимии. Значительным источником свинца являются выхлопные газы автомобилей, использующих этилированный бензин [16].

В настоящее время продолжает увеличиваться количество автомобилей и интенсивность их движения, что также увеличивает количество свинцовых выбросов в окружающую среду.

Комсомольский-на-Амуре Аккумуляторный завод в период своей деятельности являлся мощным источником свинцового загрязнения городских территорий. Элемент, через атмосферу оседал на поверхности почвы, накапливался и сейчас практически не выводится из неё. На сегодняшний день одним из источников загрязнения является также металлургический завод. Происходит дальнейшее накопление свинца, наряду с неликвидированными ранее «запасами». При содержании 2-3г свинца на 1кг грунта - почва становится мёртвой [17].

Белая книга, опубликованная российскими специалистами, сообщает, что свинцовое загрязнение покрывает всю страну и является одним из многочисленных экологических бедствий в бывшем Советском Союзе, которые стали известны в последние годы. Большая часть территории России испытывает нагрузку от выпадения свинца, превышающую критическую для нормального функционирования экосистемы. В десятках городов уже в 90-х годах отмечалось превышение концентраций свинца в воздухе и почве выше величин, соответствующих ПДК. На сегодняшний день, несмотря на усовершенствование технической аппаратуры ситуация не сильно изменилась [16] (Прил. 3).

Загрязнение окружающей среды свинцом оказывает влияние на состояние здоровья людей. Поступление химиката в организм происходит при вдыхании воздуха, содержащего свинец, и поступлении свинца с пищей, водой, на пылевых частицах. Химикат накапливается в теле, в костях и поверхностных тканях. Влияет на почки, печень, нервную систему и органы кровообразования. Воздействие свинца нарушает женскую и мужскую репродуктивную систему. Для женщин беременных и детородного возраста повышенные уровни свинца в крови представляют особую опасность, так как под его действием нарушается менструальная функция, чаще бывают преждевременные роды, выкидыши и смерть плода вследствие проникновения свинца через плацентарный барьер. У новорожденных детей высока смертность. Низкий вес у детей при рождении, отставание в росте и потеря слуха также являются результатом свинцового отравления.

Для маленьких детей отравление свинцом чрезвычайно опасно, так как он отрицательно действует на развитие мозга и нервной системы. Даже при низких дозах свинцовое отравление у детей дошкольного возраста вызывает снижение интеллектуального развития, внимания и умения сосредоточиться, отставание в чтении, ведет к развитию агрессивности, гиперактивности и другим проблемам в поведении ребенка. Эти отклонения в развитии могут носить длительный характер и быть необратимыми. Высокие дозы интоксикации ведут к умственной отсталости, вызывают кому, конвульсии и смерть [15].

Лимитирующий показатель вредности - санитарно-токсилогический. ПДКв свинца составляет 0.03 мг/дм3, ПДКвр - 0.1 мг/дм3 [15].

Кадмий

Антропогенные источники поступления кадмия в окружающую среду можно разделить на две группы:

§ локальные выбросы, которые связаны с промышленными комплексами, производящими (к ним относится ряд химических предприятий, особенно по производству серной кислоты) или использующими кадмий.

§ диффузно рассеянные по Земле источники разной мощности, начиная от тепловых энергетических установок и моторов и заканчивая минеральными удобрениями и табачным дымом.

Два свойства кадмия определяют его важность для окружающей среды:

1. Сравнительно высокое давление паров, обеспечивающее легкость его испарения, например, при плавлении или при сгорании углей;

2. Высокая растворимость в воде, особенно при небольших кислотных значениях рH (особенно при рН5).

Поступивший в почву кадмий в основном присутствует в ней в подвижной форме, что имеет негативное экологическое значение. Подвижная форма обуславливает сравнительно высокую миграционную способность элемента в ландшафте и приводит к повышенной загрязненности потока веществ из почвы в растения [15].

Загрязнение почвы Cd сохраняется длительное время и после того, как этот металл перестает поступать вновь. До 70% попадающего в почву кадмия связывается с почвенными химическими комплексами, доступными для усвоения растениями. В процессах образования кадмиево-органических соединений участвует и почвенная микрофлора. В зависимости от химического состава, физических свойств почвы и формы поступающего кадмия его превращения в почве завершаются в течение нескольких суток. В итоге кадмий накапливается в ионной форме в кислых водах или в виде нерастворимых гидроксида и карбоната. Он может находиться в почве и в виде комплексных соединений. В зонах повышенного содержания кадмия в почве устанавливается 20-30 кратное увеличение его концентрации в наземных частях растений по сравнению с растениями незагрязненных территорий. Видимые симптомы, вызванные повышенным содержание кадмия в растениях, - это хлороз листьев, красно-бурая окраска их краев и прожилок, а также задержка роста и повреждения корневой системы.

Кадмий очень токсичен. Высокая фитотоксичность кадмия объясняется его близостью по химическим свойствам к цинку. Поэтому кадмий может замещать цинк во многих биохимических процессах, нарушая работу большого количества ферментов. Фитотоксичность кадмия проявляется в тормозящем действии на фотосинтез, нарушении транспирации и фиксации углекислого газа, а также в изменении проницаемости клеточных мембран [15].

Специфическое биологическое значение кадмия как микроэлемента не установлено. В организм человека кадмий проникает двумя путями: на производстве и с пищей. Пищевые цепочки поступления кадмия формируются в районах повышенного загрязнения кадмием почвы и водоемов. Кадмий снижает активность пищеварительных ферментов (трипсина и в меньшей степени -пепсина), изменяет их активность, активирует ферменты. Кадмий влияет на углеводный обмен, вызывая гипергликемию, угнетая синтез гликогена в печени [12].

ПДКв составляет 0.001 мг/дм3, ПДКвр -- 0.0005 мг/дм3 (лимитирующий признак вредности -- токсикологический) [15].

§2. Трансформация тяжёлых металлов в почве

Несмотря на значительное разнообразие соединений тяжёлых металлов, поступающих в почву из окружающей среды, фазовый состав элементов в составе газопылевых выбросов предприятий металлургии довольно однотипен; они представлены преимущественно оксидами.

Первым этапом трансформации оксидов тяжёлых металлов в почвах является взаимодействие их с почвенным раствором и его компонентами. Даже в такой простой системе, как вода, находящаяся в равновесии с СО2 атмосферного воздуха, оксиды тяжёлых металлов подвергаются изменениям и существенно различаются по своей устойчивости.

Процесс трансформации тяжелых металлов, поступивших в почву в процессе техногенеза, включает следующие стадии:

1) преобразование оксидов тяжёлых металлов в гидроксиды (карбонаты, гидрокарбонаты);

2) растворение гидроксидов (карбонатов, гидроксокарбонатов) тяжёлых металлов и адсорбция соответствующих катионов твердыми фазами почв;

3) образование фосфатов тяжёлых металлов и их соединений с органическими веществами почвы.

Часть техногенных выбросов тяжелых металлов, поступающих в атмосферу в виде тонких аэрозолей, переносится на значительное расстояние и вызывает глобальное загрязнение. Другая часть с гидрохимическим стоком попадает в бессточные водоемы, где накапливается в водах и донных отложениях и может стать источником вторичного загрязнения. Основная масса выбросов осаждается в непосредственной близости от источника загрязнения. Теоретически техногенные аномалии представляют систему концентрических колец, в которых концентрация тяжёлых металлов убывает от центра к периферии. В реальной природной обстановке форма и размеры зон загрязнения существенно отличаются от теоретических; обычно наблюдается неплохая корреляция формы и размеров зон загрязнения с конфигурацией розы ветров. Вокруг крупных предприятий цветной металлургии образуются сильные техногенные аномалии металлов.

В зонах максимального загрязнения нередко формируется "техногенная пустыня" территория сильно эродированная, лишённая верхнего гумусового горизонта, растительности. Вокруг промышленных предприятий меньшей мощности зона максимального загрязнения простирается на расстояние до 1-2 км, и площадь загрязненных земель значительно меньше.

Локальные техногенные геохимические аномалии образуются также вокруг предприятий, которые перерабатывают сырье, содержащее тяжелые металлы и другие загрязняющие вещества в виде примесей. Вокруг крупных тепловых электростанций образуются зоны загрязнения металлами 10--20 км в диаметре. Любые городские территории являются значительным источником загрязнения тяжёлыми металлами.

Вблизи автострад обнаружено сильное загрязнение тяжёлыми металлами, особенно свинцом, а также цинком, кадмием [11].

§3. Изменения, наблюдаемые у растений, при накоплении тяжёлых металлов

Главным источником элементов для растений является почва. Различные растения аккумулируют разное число микроэлементов. Так, медь накапливают растения семейства гвоздичных, кобальт - перцы. Высокий коэффициент биологического поглощения цинка характерен для березы карликовой и лишайников, никеля и меди -- для лишайников.

Химические элементы неравномерно распределены по органам растений. Значительная часть элементов накапливается в наземных частях растений (листьях, стеблях): Mn, Mo, Sr, La, Cu, Ti, Ni, в меньшей степени Fe, Al, Co. В корнях растений аккумулируются такие элементы, KaKAg, Pb, Sn, W, Cr, V, U. Равномерно распределены в органах растений цинк (в растительности таежной зоны), олово и цинк (в альпийских и субальпийских лугах), хром (в растительности альпийских регионов) [11].

На усвоение и поглощение химических элементов растениями влияют природные и антропогенные факторы:

ь К природным факторам относятся: уровень инсоляции, колебания температуры, количество выпадающих осадков. Например, в засушливые годы некоторые растения аккумулируют железо, во влажные - марганец, медь, цинк, молибден. На поступление тяжелых металлов в растения оказывают влияние химический состав почв, кислотно-основные и окислительно-восстановительные процессы, физические свойства, уровень микробиологической активности. Степень влияния общего химического состава почвы обусловливается совместным влиянием элементов. Так, под влиянием алюминия понижается поступление в растения хлора, кальция, железа, азот тормозит усвоение растениями марганца.

ь В результате воздействия антропогенных факторов происходят существенные изменения в растениях. При химическом загрязнении биосферы нарушаются естественно сложившиеся фитоценозы, нормальные процессы органогенеза, появляются специфические изменения у растений различных систематических групп, улучшается качество сельскохозяйственной продукции. В золе растений возрастает содержание тяжелых металлов: свинца, ртути. Существенную опасность представляет в основном отсутствие визуальных признаков поражения растений при иных для человека и животных содержаниях токсинов.

Тяжелые металлы являются протоплазматическими, токсичность которых возрастает по мере увеличения атомной массы. Токсичность тяжелых металлов проявляется по-разному. Многие металлы при токсичных уровнях концентраций ингибируют деятельность ферментов (медь, ртуть). Некоторые тяжелые металлы образуют комплексы с обычными метаболитами, нарушая нормальный обмен веществ (железо). Такие металлы, как кадмий, медь, железо (II), взаимодействуют с клеточными мембранами, изменяя их проницаемость и другие свойства (например, разрыв клеточных мембран). Некоторые тяжелые металлы конкурируют с необходимыми растениям элементами, нарушая их функциональные роли. Например, кадмий замещает цинк, что приводит к цинковой недостаточности, вызывает угнетение и гибель растений.

По чувствительности к кадмию растения располагаются в следующий восходящий ряд: томаты < овес < салат < луговые травы < морковь < редька < фасоль < горох < шпинат.

Токсичность ртути зависит от вида ее химических соединений. Наиболее токсичны органические соединения метил-, диметил- и этилртуть.

Высокие содержания свинца могут подавлять рост растений, вызывать хлороз, обусловленный нарушением поступления железа [11].

Анализ золы различных частей растений показывает, что наибольшее количество тяжелых металлов содержится в корнях, затем в стеблях и листьях, наконец, в семенах, клубнях, корнеплодах, то есть растение обладает определенной защитной системой по отношению к токсикантам.

§4. Влияние загрязнённой тяжёлыми металлами почвы на организм животных и человека

На миграцию и аккумуляцию элементов в почве оказывают влияние почвообитающие животные.

По отношению к почвенным микроорганизмам, тяжелые металлы подавляют их биохимическую активность, вызывают изменения их общей численности. Загрязнение тяжелыми металлами проявляется и в изменении видового состава комплекса почвенных микроорганизмов. Его сокращение, либо увеличение доли токсинообразующих форм - показатель среднего уровня загрязнения почвы. Высокий уровень загрязнения - реакция на загрязнение высших растений; дополнительные признаки: снижение микробиологической активности, появление резистентных форм микроорганизмов [11].

При изучении органов и тканей у человека на содержание тяжелых металлов учитывают аккумулирующие свойства органов; чаще изучают печень, почки, легкие.

Рассмотрим влияние приоритетных тяжёлых металлов на организм человека (Прил. 4):

§ Кобальт. Малая концентрация кобальта в организме приводит к анемии, эндемическому зобу, недостаточному синтезу или отсутствию витамина В12. При высокой концентрации угнетается выработка витамина В12.

§ Медь. При малых концентрациях возможны анемия и заболевания костной системы, а избыток меди поражает печень, вызывая желтуху.

§ Цинк - «двуликий Янус». Он стимулирует деление клеток и заживление пораженных тканей, но в, то же время, способствует и образованию раковых клеток.

§ Сердечно-сосудистые заболевания могут развиваться из-за нарушения равновесия микроэлементов в организме. Цинк, магний, хром, ванадий снижают уровень холестерина в крови, кадмий повышает кровяное давление, а недостаток меди сказывается на эластичности сосудов.

§ Кадмий - бомба замедленного действия. В окружающую среду рассеивается вместе с суперфосфатом и фунгицидами. Он - спутник широко применяемого цинка и всегда присутствует в изделиях, содержащих цинк. В атмосферу кадмий попадает при сжигании изделий из пластмассы, куда его добавляют в составе красителей. В организме человека кадмий накапливается в почках, при его избытке развивается болезнь «итай-итай». Это искривление и деформация костей, сопровождающиеся сильными болями, необычайная хрупкость и ломкость костей. Кадмий повышает кровяное давление и обладает канцерогенными свойствами. В течение жизни его содержание в почках может увеличиваться в 100-1000 раз. Особенно быстро к критическому порогу приходят курильщики. Курение приводит к нарушению функций почек, болезням легких и костей. К несчастью, растения табака жадно аккумулируют кадмий из почвы. Одна сигарета содержит 1,2-2,5 мкг кадмия, в организм с ней попадает 0,1-0,2 мкг.

§ Ртуть. При вдыхании паров ртути она концентрируется в мозге. Возникают нервно-психические нарушения, головокружение и постоянные головные боли, а также снижается память, расстраивается речь, возникает скованность, общая заторможенность.

§ Свинец. Некоторые авторы считают, что свинец, поступивший при дыхании, в 10-100 раз токсичнее того, который поступает через желудок. Автомобиль - главный источник воздушного загрязнения. Свинец поступает в кровь и соединяется с эритроцитами, так происходит отравление крови и всего организма. При сгорании 1 л горючего в воздух попадает 200-400 мг свинца. Свинец, каким бы путем ни поступал в организм, главным образом аккумулируется в костях. Наблюдения за подопытными обезьянами показали, что увеличение содержания свинца в крови в 2 раза вызывает острую стрессовую ситуацию[12].

Увеличение концентрации тяжелых металлов в окружающей среде увеличивает число мутаций, передающихся по наследству. Мутанты подвержены порокам физического и умственного развития. Если проследить за мутацией рыб (они живут около 3 лет), станет очевидно, что у многих из них в загрязненных водоемах нарушается генофонд. Это телескопические потери плавников, чешуи, нижней челюсти и другие уродства.

§5. Методы оценки загрязнения почв тяжёлыми металлами

Существуют несколько методов оценки загрязнения почв: исследование при помощи специальных устройств и химический анализ, биоиндикация, фитотеститование.

Проведение исследований с помощью специального оборудования в комплексе с химическим анализом почвы даёт полную картину о содержании тяжёлых металлов в почве, но не позволяет судить о влиянии избыточных вредных веществ на теплокровных животных и человека.

Антропогенные воздействия, с одной стороны, представляют собой новые параметры среды, с другой - обусловливают антропогенную модификацию уже имевшихся природных факторов и тем самым изменяют свойства биологических систем. Биоиндикация возможна только в том случае, когда новые параметры значительно отклоняются от соответствующих исходных величин. Биоиндикаторы суммируют действие всех без исключения биологически важных факторов антропогенного воздействия и отражают их влияние на состояние окружающей среды в целом [19].

Биоиндикация, в свою очередь, позволяет обнаруживать места скоплений в экологических системах различного рода загрязнений; проследить скорость происходящих в окружающей среде изменений; только по биоиндикаторам можно судить о степени вредности тех или иных веществ для живой природы; прогнозировать дальнейшее развитие экосистемы, сделать выводы в целом об экологическом состоянии города. В условиях хронических антропогенных нагрузок биоиндикаторы могут реагировать на относительно слабые нагрузки вследствие эффекта кумуляции дозы. Биоиндикаторами могут выступать грибы, растения и животные [19]. Хорошим биоиндикатором промышленного загрязнения почв являются дождевые черви, поглощающие значительные количества тяжелых металлов. На повышение ПДК черви реагируют характерным изменением окраски, мутацией [20].

Ботанические методы фитоиндикации и диагностики почв наиболее хорошо разработаны. Они входят в особый раздел геоботаники - “Индикационная геоботаника”. Виды, фитоценозы, или экологические ряды сообществ, которые используются как показатели определенных экологических условий, называются фитоиндикаторами. Растительные индикаторы, как правило, устанавливаются на определенных участках (ключевых или эталонных), затем полученные ботанические признаки экстраполируются на ряд аналогичных территорий или объектов.

В городских условиях, судить о присутствии тяжёлых металлов можно при подавление роста и развития Мятлика лугового (злак) на 30 и более %. На загрязнение автотранспортом, изменением формы реагирует Пастушья сумка (травянистый покров) [19].


Подобные документы

  • Типы и виды деградации пригородных почв, оценка степени деградации. Способы рекультивации загрязненных почв. Характеристика г. Ижевска как источника химического загрязнения почв. Технологические приёмы рекультивации почв, загрязнённых тяжёлыми металлами.

    курсовая работа [57,5 K], добавлен 11.06.2015

  • Систематический состав придорожной травянистой растительности Павловского района. Экологический, биоморфологический, фитоценотический анализ видов. Влияние тяжёлых металлов на растения и почвенный покров на примере растения-индикатора Plantago major.

    дипломная работа [2,5 M], добавлен 10.11.2015

  • Виды и функции городской почвы, схема строения почвенного профиля. Механическое, химическое и биологическое загрязнение почвы, характер основных загрязнителей. Техническая и биологическая рекультивация. Методы мониторинга за состоянием окружающей среды.

    реферат [37,5 K], добавлен 27.11.2009

  • Источники, характер и степень загрязнения урбанозёмов и почв. Районы г. Челябинска, подверженные наиболее интенсивному загрязнению. Влияние загрязнения почв тяжелыми металлами на растительность. Формы нахождения тяжелых металлов в выбросах и почве.

    дипломная работа [183,3 K], добавлен 02.10.2015

  • Методы оценки загрязнения почв в объективном представлении о состояние почвы. Оценка опасности загрязнения почв. Биотестирование как наиболее целесообразный метод определения интегральной токсичности почвы. Биодиагностика техногенного загрязнения почв.

    реферат [54,0 K], добавлен 13.04.2008

  • Почва как важнейший компонент окружающей природной среды. Деградация почвы, основные виды антропогенного воздействия на нее. Эрозия и загрязнение почвы. Виды пестицидов, минеральные удобрения. Отходы производства, вторичное засоление и заболачивание почв.

    презентация [3,5 M], добавлен 16.11.2012

  • Состав атмосферного воздуха. Загрязняющие вещества атмосферного воздуха - химическое, биологическое, механическое и физическое загрязнения. Характеристика загрязнителей воздуха. Влияние загрязняющих веществ на морфофизиологические показатели растений.

    курсовая работа [41,7 K], добавлен 07.10.2008

  • Микробиологическая диагностика и индикация почв. Влияние пестицидов на почвенные микроорганизмы и обеззараживание почвы. Минеральные удобрения как фактор воздействия на видовой состав почвенных микроорганизмов. Загрязнение почв тяжелыми металлами.

    курсовая работа [45,7 K], добавлен 08.05.2012

  • Строение и жизнедеятельность бактерий. Микробная индикация биологического, фекального и техногенного загрязнения водных экосистем. Микробиологическое исследование почвы. Влияние пестицидов на почвенные микроорганизмы. Загрязнение почв тяжелыми металлами.

    реферат [335,0 K], добавлен 01.10.2015

  • Трофические цепи как последовательность видов, извлекающих органические вещества и энергию из пищевого вещества. Абиотические факторы наземной среды. Загрязнение почв пестицидами, радионуклидами, тяжелыми металлами. Биологическая очистка сточных вод.

    контрольная работа [739,1 K], добавлен 11.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.