Характеристика сооружения трубопроводов

Исследование основных этапов развития отраслевой строительной индустрии. Характеристика сооружения линейной части трубопроводов погрузочно-разгрузочных и транспортных работ. Особенность построения переходов под железными и автомобильными дорогами.

Рубрика Строительство и архитектура
Вид лекция
Язык русский
Дата добавления 22.10.2018
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СООРУЖЕНИЕ ТРУБОПРОВОДОВ

1. Основные этапы развития отраслевой строительной индустрии

В развитии техники и технологии строительства магистральных трубопроводов и газонефтехранилищ можно выделить три этапа:

I этап - период до образования Миннефтегазстроя СССР (до 1972 г.);

II этап - период до распада СССР (с 1972 по 1991 гг.);

III этап - современный период (с 1991 г.)

Период до образования Миннефтегазстроя СССР

Первые стальные резервуары в нашей стране были клепанными.

При строительстве первого в России магистрального трубопровода Баку-Батуми трубы соединялись между собой на резьбовых муфтах. Роль антикоррозионного покрытия играла джутовая ткань, окрашенная свинцовым суриком.

В период после окончания гражданской войны страна испытывала острую нехватку труб. Поэтому приходилось разбирать старые бездействующие трубопроводы для строительства новых. При проектировании так и не построенного нефтепровода от Эмбы до Саратова всерьез обсуждался вопрос о применении деревянных труб.

В 1928...1932 гг. на строительстве нефтепродуктопровода Армавир-Трудовая впервые в мировой практике была применена электродуговая сварка. Трубы очищали металлическими щетками вручную. В качестве антикоррозионного покрытия использовались каменноугольный пек и битум, наносившиеся вручную с помощью квачей. Для усиления изоляции ее обматывали сверху мешковиной. Опускали трубопровод в траншею при помощи талей, подвешенных на треногах, и ваг. Вплоть до 1940 г. почти все строительно-монтажные работы на трассах трубопроводов осуществлялись при отсутствии какой-либо техники. Земляные работы выполнялись вручную.

В 1942 г. был построен бензопровод через Ладожское озеро. Его строительство вела ОСМЧ-104 (особая строительно-монтажная часть) Наркомстроя совместно с ЭПРОНом Балтийского флота. Прокладка подводной части бензопровода осуществлялась способом буксировки отдельных секций в створ перехода, сварки межсекционных стыков на плаву и укладки их отстроповкой бревен, игравших роль понтонов. Переходы бензопровода через болота сооружались методом протаскивания трубных секций.

На строительстве керосинопровода Астрахань-Саратов в 1943 г. использовались трубы, арматура и насосыо-силовое оборудование разобранной второй нитки нефтепровода Баку-Батуми. Поскольку автомобилей не хватало элементы демонтированного нефтепровода от железнодорожных станций разгрузки на расстояние до 50 км развозились на верблюдах и лошадях. После сварки секций труб длиной до 80 м выполнялась их стяжка (с помощью трактора, автомобиля или специального ворота) и сборка в плети длиной 1...3 км. За смену удавалось монтировать в нитку до 3 км трубопровода. 85 % стыков было выполнено ручной электродуговой сваркой. При укладке трубопровода в траншею плети надвигали на лежки и опускали с помощью автокрана. Участки трубопровода длиной до 37 км подвергали гидравлическому испытанию под давлением 6,2 МПа.

В 1943 г. было завершено строительство газопровода Похвист-нево-Куйбышев. При этом впервые были использованы асбоцементные трубы диаметром 325 мм. Длина участка асбоцементных труб составила 21 км. Стыки между ними собирали на муфтах «симплекс» с резиновыми кольцами. Соединение асбоцементных труб со стальными осуществляли при помощи специальных патрубков и муфт «Жибо».

Газопровод Саратов-Москва, строительство которого было закончено в июле 1946 г., был впервые сварен из тонкостенных труб толщиной 6,4 мм.

В 1946 г. на нефтепроводе Баку-Батуми впервые была осуществлена катодная и дренажная защита от коррозии.

На трассе газопровода Дашава-Киев-Брянск-Москва впервые были использованы трубы большого (529 мм) диаметра. Половина объема сварочных работ была выполнена автоматами, созданными в Институте электросварки им. Е.О. Патона, т.е. автоматической сваркой под слоем флюса (ранее применяли газопрессовую и ручную электродуговую сварку).

В 1948 г. был создан первый роторный экскаватор КГ-65, выпущены роторные экскаваторы ЭР-1 и ЭР-2 на базе трактора С-80.

Строительство крупного газопровода Серпухов-Ленинград и трансконтинентального нефтепровода Туймазы-Омск-Новосибирск-Красноярск-Иркутск (1956-1960 гг.) положило начало широкому применению труб большого (720 мм) диаметра, а также специальных строительных машин и механизмов, приспособленных для работы с ними. Уровень механизации основных работ при сооружении линейной части трубопроводов за период с 1949 по 1961 г. возрос в среднем на 65 %.

В 1959 г. на газотранспортной системе Северный Кавказ-Центр ввели в эксплуатацию третью нитку из труб диаметром 1020 мм. Это были трубы самого большого в мире диаметра.

В сентябре 1963 г. был сдан в эксплуатацию газопровод Орджоникидзе-Тбилиси, трасса которого пересекла главный Кавказский хребет в районе Крестового перевала. На значительном протяжении трубопровод был уложен в узких ущельях рек с крутыми, а порой почти отвесными берегами. Строители построили 165 переходов через препятствия, в том числе 27 через горные реки и свыше 70 - через балки и овраги.

К концу 1965 г. на строительстве магистральных трубопроводов уровень механизации строительно-монтажных линейных работ составил 98...99 %. Были созданы новые роторные экскаваторы, трубовозы-плетевозы, очистные и изоляционные машины, краны-трубоукладчики, сварочное оборудование.

В 1967 г. на системе газопроводов Вуктыл-Ухта-Торжок впервые в мировой практике были применены трубы диаметром 1220 мм, а в 1970 г. на строительстве газопровода Надым-Ухта - трубы диаметром 1420 мм.

В период с 1965 по 1970 гг. был построен ряд северных газопроводов (Игрим-Серов, Мессояха-Норильск, Северные районы Тюменской области-Центр). Для прокладки и обеспечения надежной работы трубопроводов в тяжелых северных условиях потребовалось решение многочисленных проблем технического, технологического и организационного характера. При этом были разработаны конструктивные решения прокладки трубопроводов, технология сварки при низких температурах, созданы специальные сварочные и изоляционные материалы, комплекс машин для строительства в районах вечной мерзлоты и болот.

Для комплексной механизации строительства трубопроводов диаметром 1220 и 1420 мм были созданы специальные машины и механизмы пятидесяти наименований.

Широкое распространение не только в Тюменской области, но и в других районах страны получили индустриальные методы строительства с применением блочных и блочно-комплектных устройств.

Период до распада СССР

В сентябре 1972 г. было создано Министерство строительства объектов нефтяной и газовой промышленности (Миннефтегазстрой) СССР. Оно стало играть роль мощного организатора и координатора строительных работ в отрасли.

Нефтепровод Самотлор-Альметьевск (1973 г.) был построен за 18 месяцев вместо предусмотренных нормативами 48. Таких темпов строительства мировая практика трубопроводного строительства не знала. Впервые в стране траншею под трубы на заболоченных участках отрывали с помощью взрыва, а в качестве изоляционного материала использовали полимерную пленку.

В период с 1971 по 1975 гг. были разработаны и полностью освоены технические средства для механизации работ по сооружению линейной части магистральных трубопроводов диаметром 1420 мм, в том числе машины для очистки и изоляции труб ОМ 1422, ИМ 1422 и ИЛ 1422. Также разработаны и освоены роторный траншейный экскаватор ЭТР 253, передвижные комплексы типа «Север», обеспечивающие сварку в автоматическом режиме одного стыка за 6...8 мин., плетевоз ПВ361 грузоподъемностью 36 т для транспортировки секций длиной 24 м и т.д.

Достигнутый темп сварки, изоляции и укладки труб большого диаметра механизированными комплексами составил 1,7 км за смену, а при двухсменной работе - 2,5 км.

Крупнейшей стройкой начала 80-х годов стала 6-ниточная система магистральных газопроводов, берущих начало в Уренгое. Энергетический потенциал транспортируемого по ним газа превышает мощность электростанций на Ангаре и Енисее вместе взятых.

Строителями было доставлено на трассу и уложено 12 млн. т стальных труб большого диаметра, длина сварных швов превысила 9 тыс. км. Объем вынутого и перемещенного грунта составил 590 млн. м3. На трассе газопроводов построен 3181 переход через водные преграды, в том числе 96 переходов через такие крупные реки как Волга, Кама, Обь, Вятка. Работы по расчистке леса были выполнены па площади 27 тыс. га.

Каждый из газопроводов диаметром 1420 мм и протяженностью от 2297 до 3429 км был построен в рекордно короткий срок - от 1 года до 2 лет.

Для сравнения приведем информацию о строительстве одного из крупнейших в США Трансаляскинского нефтепровода (TAPS) диаметром 1220 мм и протяженностью 1280 км с 12 перекачивающими станциями и конечным пунктом в бухте Валдиз, где осуществляется перевалка нефти в танкеры.

Подготовка строительства началась в 1969 г. На Аляску были завезены строительные машины, трубы и материалы. Однако в ходе подготовки выяснилось, что проект трубопровода имеет ряд недостатков. В частности, не были разработаны мероприятия по защите вечной мерзлоты от теплового воздействия трубопровода, не изучено его влияние на пути миграции диких животных. Задержка начала строительства составила 5 лет. Это привело к его удорожанию только вследствие инфляции на 3,2 млрд. долл. (удорожание материалов, земли, строительно-монтажных работ).

В соответствии с новым проектом часть TAPS была проложена на 80000 свайных опор надземно. На это потребовалось 120 тыс. т стальных труб. Для изоляции надземного участка нефтепровода было израсходовано 12700 т стекловолокна, 8200 т полиэфирной смолы и 4500 т полиуретана.

Сооружение TAPS показало, что не все отрасли США были полностью готовы к такому крупному строительству. В частности, заказ на 500 тыс. т труб для нефтепровода пришлось разместить среди японских фирм. Даже трубы диаметром 450 мм для свайных опор заказывались в других странах - по 60 тыс. т в Японии и в Канаде. У иностранных компаний были закуплены и некоторые виды оборудования. Так, 14 газовых турбин «Каберра» для привода насосов были закуплены в Великобритании.

Сам период строительства этого относительно короткого в сравнении с уренгойскими трубопровода составил еще 5 лет.

В 70-80-е годы СССР не только рекордными темпами строил магистральные трубопроводы на своей территории, но и оказывал содействие в строительстве аналогичных объектов за рубежом.

В 1974 г. в Иране был построен магистральный газопровод диаметром 1016 мм и протяженностью 487 км. В конце 70-х годов в Нигерии было построено 2 нефтепродуктопровода общей протяженностью более 900 км, а в Ираке нефтепродуктопровод Багдад-Басра протяженностью 584 км и диаметром 250 мм. В конце 1983 г. в Анголе завершено сооружение двух нефтебаз в г. Маланисе и г. Порто-Амбо-им. В 1983...1987 гг. наши специалисты по контрактам, заключенным с Алжирским национальным обществом «Сонотрак», построили крупный газопровод диаметром 1067...1261 мм и протяженностью 653 км. В 1986 г. на условиях генерального подряда завершено строительство газопровода Марса-Эль-Брега-Мисургата в Ливии протяженностью 570 км, диаметром 864 мм, предназначенного для снабжения металлургического завода в г. Мисургата. А в 1988... 1991 гг. было завершено строительство нефтепровода Западный Аяд-морское побережье Аденского залива (Йемен) протяженностью 204 км и диаметром 530 мм.

Всего за период с 1972 по 1991 гг. было построено 229 тыс. км трубопроводов, в том числе магистральных 206,4 тыс. км. Введены в действие 1012 насосных и компрессорных станции, газоперерабатывающие заводы общей мощностью 41 млрд. м3 в год, установки комплексной подготовки 508 млн. т нефти и 750 млрд. м! газа в год. Было освоено строительство трубопроводов с заводской изоляцией. Широко применялись блочно-ком-плектный и экспедиционно-вахтовый методы сооружения промысловых объектов, насосных и компрессорных станций, установок комплексной подготовки нефти и газа, систем их сбора и транспортирования.

Современный период

В 1991 г. Министерство строительства объектов нефтяной и газовой промышленности было преобразовано в Государственный концерн «Роснефтегазстрой», а впоследствии в одноименное акциоверное общество. Его учредителями стали более 140 компаний, на которых трудятся свыше 200000 рабочих и специалистов.

Обладая значительным научно-техническим потенциалом, развитой сетью производственных организаций, высокой энерговооруженностью и мощной индустриальной базой, АО «Рос-нефтегазстрой» играет ведущую роль в выполнении строительных программ в нефтяной и газовой промышленности.

Научный комплекс отрасли составляет 20 научных и проект -но-конструкторских институтов. Для сокращения сроков внедрения и повышения эффективности разработок созданы отраслевые научно-производственные объединения. Это дает свои результаты.

На машиностроительных предприятиях АО «Роснефте-газстрой» разработана и освоена в трассовых условиях высокопроизводительная землеройная техника. Роторные экскаваторы ЭТР 254 АМ-01 и ЭТР АМ-02, предназначенные для прокладки траншей под трубопроводы различных диаметров, по мощности и производительности не уступают своим аналогам, производимым в США. Фрезерные экскаваторы ЭФ-151 и ЭФКУ-121 существенно превосходят по производительности такие всемирно известные модели как Dallas Letco «Rock-Saw» (США) и Inter Drain 2030 GP (Нидерланды).

Используя в качестве базы отечественные автомобили высокой проходимости и мощные тракторы, АО «Роснефтегазстрой» выпускает транспортные средства, незаменимые при перевозке труб, трубных секций, крупногабаритных грузов и материалов, применяемых в нефтегазовом строительстве, в любых природно-климатических условиях. Блоковозы БТА-301 способны транспортировать грузы массой до 36 т. Мощные битумозаправщики БВ-43, БВ-46, БВ-47 отличаются надежностью и простотой в эксплуатации, развивают высокую скорость на дорогах с твердым покрытием, легко преодолевают бездорожье. Уникальным транспортным средством является болотоход «Ямал», грузоподъемность которого составляет 70 т.

Разработаны новые методы балластировки трубопроводов с использованием вмораживаемых анкеров и нетканых синтетических материалов.

За последние годы лицензию на использование сварочных технологий АО «Роснефтегазстрой» приобрели такие ведущие мировые фирмы как «Маннесман» и «Кликнер» (ФРГ), «Ниппон Кокан», «Ниппон Стил», «Сумимото» и «Кавасаки» (Япония), «Италсиндер» и «Дальмино» (Италия) и целый ряд других.

Каковы дальнейшие перспективы развития отраслевой строй-индустрии?

Во-первых, АО «Роснефтегазстрой» будет продолжать строить магистральные трубопроводы с соответствующей инфраструктурой. До 2000 г. намечается построить 48,7 тыс. км газопроводов со 196 компрессорными станциями. Будут проложены три магистрали от месторождений Надым-Пур-Тазовского региона и три - с полуострова Ямал. Они станут началом двух газопроводов: СРТО-Польша-Германия и Ямал-Польша-Германия с отводом на Калининград. Кроме того, будут сооружаться морские и сухопутные трубопроводы от Штокмановского газоконден-сатного месторождения в Баренцевом море, газопроводы с морского шельфа на о. Сахалин. Предполагается строительство газопровода из республики Саха (Якутия) на российский Дальний Восток и в Южную Корею.

В связи с падением добычи нефти программа строительства новых магистральных нефтепроводов будет весьма скромной. Это строительство нефтяной магистрали на Сахалине, трубопроводов для перекачки нефтей Азербайджана и Казахстана, а также нефти Европейского Севера России.

Во-вторых, важным направлением деятельности АО «Роснеф-тегазстрой» является газификация сельской местности и малых городов. Наша страна занимает первое место в мире по запасам и добыче газа. Однако на коммунальные и бытовые нужды направляется лишь 10 % объема добычи, тогда как в США и в странах Западной Европы этот показатель достигает 25...30 %. Одной из причин такого положения является то, что соотношение протяженности магистральных и газораспределительных трубопроводов в США составляет 1:3, а в нашей стране 1:1. Природный газ в сельской местности России подведен только к 11 % домов (квартир). Чтобы исправить положение в ближайшие 10...15 лет необходимо построить 275 тыс. км газораспределительных сетей.

Для успешного сооружения газопроводов-отводов, газораспределительных сетей и других трубопроводов малого диаметра необходимо решить ряд технологических, организационных и материально-технических проблем. Эта задача не менее ответственная, чем стоявшая в конце 60-х - начале 70-х годов задача сооружения трубопроводов больЕюго диаметра и высокого давления, которая, как известно, была успешно решена.

В-третьих, одним из приоритетных направлений деятельности АО «Росиефтегазстрой» является реконструкция магистральных трубопроводов. На начало 1993 г. в России эксплуатировалось 138 тыс. км магистральных газопроводов, 48 тыс. км магистральных нефтепроводов АК «Транснефть» и 13 тыс. км нефтепродуктопроводов АК «Транснефтепродукт». Многие трубопроводы значительно постарели. Так, в 1990 г. за пределами нормативного срока службы (33 года) работало около 2,5 тыс. км нефтепроводов, со сроком эксплуатации более 20 лет - 16,5 тыс. км. Хотя газопроводы в среднем моложе, 5 % из них также уже отработало нормативный срок.

Эксплуатирующие организации (РАО «Газпром», АК «Транснефть» и «Транснефтепродукт») собственными силами ежегодно выполняют ремонт лишь 2...3 тыс. км трубопроводов. Поэтому для подразделений АО «Роснефтегазстрой» есть достаточно большой фронт работ.

В ходе реконструкции предстоит выполнить капитальный ремонт линейной части трубопроводов и заменить устаревшее оборудование НПС и КС.

2. Состав работ, выполняемых при строительстве линейной части трубопроводов

При сооружении линейной части трубопроводов выделяют два периода - подготовительный и основной.

В ходе подготовительного периода выполняют следующие виды работ:

- разбивку трассы;

- отвод земель;

- подготовку строительной полосы;

- устройство временных и постоянных дорог.

Разбивку трассы производит специальная бригада, включающая представителей проектной организации (изыскателей), генподрядчика и заказчика. При разбивке трассы через каждые 3...5 км устанавливают временные реперы, связанные нивелирными ходами с постоянными реперами, и постоянные реперы на переходах через реки, болота, железные и автомобильные дороги. Кроме того, закрепляют и привязывают оси и углы поворота трассы. В местах пересечения трассой трубопровода подземных сооружений на поверхности земли устанавливают соответствующие знаки.

Одновременно с разбивкой трассу передают генподрядчику.

Отвод земель под строительство у землепользователей осуществляется заблаговременно, чтобы не нанести им ущерба (например, посевам или плановым заготовкам древесины). Ширина полосы отвода земли для строительства магистрального трубопровода ограничена действующими нормативами. При прокладке трубопровода без рекультивации (восстановления плодородного слоя) земель она составляет от 19 до 45,5 м, а с рекультивацией - до 60 м. Общая ширина строительной полосы складывается из следующих зон (рис. 1): I - прохода строительной колонны; II - разработки траншеи и отвала грунта; III, VI - работы бульдозера; [V - рекультивации; V -отвала плодородного слоя.

В ходе подготовки строительной полосы осуществляется ее расчистка и планировка. При расчистке мелкий лес (диаметром до 20 см) и кустарник удаляют бульдозерами, кусторезами, корчевателями-собирателями и другими машинами. Крупные деревья спиливают бензомоторными пилами. Камни и валуны удаляют со строительной полосы целиком или после дробления взрывами.

Необходимость планировки полосы строительства связана с созданием условий для обеспечения проезда строительных машин, а также с тем, что радиус изгиба трубопровода в вертикальной плоскости не должен быть меньше некоторого минимально допустимого значения.

Устройство временных и постоянных дорог необходимо для выполнения основных работ на трассе трубопровода, для доставки материалов и грузов, передвижения строительных машин и механизмов, а также для ухода за трубопроводом в процессе его эксплуатации.

Часть дорог функционирует только в период строительства (временные), другие используются и после его окончания (постоянные).

При спокойном рельефе и достаточной несущей способности земной поверхности дороги сооружают путем разравнивания грунта грейдером. При необходимости их несущая способность может быть повышена подсыпкой гравия, каменной мелочи, металлургического шлака. На болотах дороги сооружают из бревен, дощатых щитов, железобетонных плит, а зимой сооружают зимники путем намораживания льда толщиной 15...20 см с изготовлением настила из бревен.

Ширина дорог должна быть не менее 3,5 м.

В ходе основного периода выполняются следующие виды работ:

- погрузочно-разгрузочные и транспортные работы;

- земляные работы;

- сварочно-монтажные работы;

- изоляционно-укладочные работы;

- очистка внутренней полости и испытание трубопроводов.

Общая технологическая схема производства работ на строительстве линейной части трубопровода и комплекс используемых при этом машин приведены на рис. 2.

3. Сооружение линейной части трубопроводов Погрузочно-разгрузочные и транспортные работы

В состав данных видов работ входят выгрузка труб из железнодорожных вагонов, барж, судов; транспортировка их от пунктов назначения (станций, портов, пристаней) к трубосварочным базам, местам промежуточного складирования или непосредственно на трассу трубопровода.

На погрузо-разгрузочных работах наиболее часто используют автокраны и трубоукладчики. При подъеме труб, изолированных в заводских условиях, используют мягкие полотенца, траверсы и клещевые захваты.

Рис. 1. Зоны полосы отвода земель для строительства магистрального трубопровода:

а - расстановка механизмов без выполнения рекультивации; б - то же, при выполнении рекультивации; зоны:

1 - прохода строительной колонны и трактора; II - разработки траншеи и отвала грунта; III, VI - работы бульдозера; IV- рекультивации; V- отвала плодородного слоя;

1 -траншея; 2 - ось траншеи; 3,5 - отвал соответственно минерального грунта и плодородного слоя; 4 - трубопровод;

Рис.2. Общая технологическая схема производства работ на строительстве трубопровода и комплекс машин для строительства:

1 - роторный траншейный экскаватор; 2 - бульдозер; 3 - автокран; 4, 17-автотрубовозы; 5, 11, 16,18 - трубоукладчики; 6 - трубогибочный станок; 7 - битумоплавильные котлы; 8 - траншеезасыпатель; 9 - автобитумовоз; 10 - изоляционная машина; 12 - очистная машина; 13 -трубосварочная база; 14, 15 - сварочные генераторы

Транспортировку отдельных труб и секций из нескольких труб, сваренных на трубосварочной базе, осуществляют на специальнообо-рудованных машинах - трубовозах или плетевозах, изготавливаемых на базе автомобилей марок «Урал», ЗИЛ, КрАЗ, МАЗ или тракторов типа К700, К701. В последние годы при строительстве магистральных трубопроводов для перевозки материалов, оборудования и конструкций широко используют вертолеты.

Земляные работы

Объем земляных работ на линейной части зависит от схемы прокладки трубопровода и профиля траншеи.

В настоящее время применяют следующие схемы прокладки магистральных трубопроводов: подземная, полуподземная, наземная и надземная. Выбор схемы прокладки определяется условиями строительства и окончательно принимается на основании технико-экономического сравнения различных вариантов.

Подземная схема (рис. 3) предусматривает укладку трубопровода в грунт на глубину превышающую диаметр труб. При подземной прокладке не загромождается территория и после окончания строительства используются пахотные земли, отсутствует влияние атмосферных условий на изоляционное покрытие и свойства перекачиваемого продукта. Однако на участках с вечномерзлыми, скальными и болотистыми грунтами данная схема прокладки является не экономичной из-за высокой стоимости земляных работ. Кроме того, на участках с высоким уровнем грунтовых вод требуются дополнительные затраты на балластировку трубопроводов.

Полуподземная схема прокладки (рис. 4) применяется при пересечении трубопроводом заболоченных или солончаковых участков, при наличии подстилающих скальных пород. Трубопровод укладывается в грунт на глубину менее диаметра с последующим обвалованием выступающей части.

Наземная схема прокладки (рис. 5) в насыпи используется преимущественно в сильно обводненных и заболоченных районах. Ее недостатками являются слабая устойчивость грунта насыпи и необходимость устройства большого числа водопропускных сооружений.

Надземная прокладка трубопроводов или их отдельных участков применяется в пустынных и горных районах, местах распространения вечномерзлых грунтов (рис. 6), а также на переходах через естественные и искусственные препятствия (рис. 7). При надземной прокладке объем земляных работ сводится к минимуму, не провоцируется начало растепления вечномерзлых грунтов, отпадает необходимость в устройстве защиты от почвенной коррозии и блуждающих токов. Однако надземная прокладка имеет недостатки: загромождается территория, требуются дополнительные затраты на устройство опор, удерживающих трубопровод, специальных проходов для миграции животных и проездов для техники и т.д.

Рис. 3. Подземные схемы прокладки трубопровода:

а - прямоугольная форма траншеи; б - трапецеидальная форма траншеи; в - смешанная форма траншеи; г - укладка с балластировкой седловидными пригрузами; д - укладка с использованием винтовых анкеров для закрепления против всплытия

Наиболее распространенной (98 % от общей протяженности) является подземная прокладка трубопроводов. В этом случае к земляным работам относят рытье траншеи и обратную засыпку уложенного в траншею трубопровода.

Выбор метода разработки грунтов зависит от их прочности. Мягкие грунты разрабатывают послойным срезанием с помощью экскаваторов, бульдозеров или скреперов, скальные - взрывным способом, мерзлые - с применением предварительного рыхления.

Экскаватор - это землеройная машина с рабочим органом в виде одного или нескольких ковшей, снабженных режущими кромками в виде ножа или отдельных зубьев. При углублении в грунт и движении ковша происходит сначала его заполнение срезаемым грунтом, а затем удаление грунта в отвал, после чего цикл повторяется.

Для рытья траншей при сооружении магистральных трубопроводов применяют одноковшовые и многоковшовые (роторные) экскаваторы. Одноковшовые (с обратной лопатой) экскаваторы (рис. 8) применяют в основном при ведении земляных работ в особых случаях: в условиях болот, в местах установки запорной арматуры, на переходах магистральных трубопроводов через естественные и искусственные препятствия и т.д. Однако одноковшовые экскаваторы относятся к машинам циклического действия, у которых рабочий цикл (разработка грунта) чередуется с холостым циклом (выгрузка ковша), поэтому их производительность невысока.

Наибольшее применение при рытье траншей в необводненных грунтах получили высокопроизводительные многоковшовые (роторные) экскаваторы (рис. 9). Основным рабочим органом многоковшового экскаватора служит ротор с 14...24 ковшами малой вместимости (0,12...0,25 м1). Ротор закрепляют на раме в задней части гусеничного трактора. Для приема грунта из ковшей и удаления его в отвал за бровку траншеи служит ленточный транспортер. При рытье траншеи ротор, вращающийся от двигателя через передаточный механизм, сначала погружают в грунт на проектную глубину, а затем машинист включает передний ход экскаватора.

Областью преимущественного применения многоковшовых (роторных) экскаваторов является рытье траншей в относительно сухих грунтах на прямолинейных участках сравнительно большой протяженности.

В условиях болот сооружение траншей может производиться одним из следующих способов: 1) обычным одноковшовым экскаватором со щитов, понтонов, салазок; 2) экскаватором в болотном исполнении; 3) подрывом удлиненных зарядов.

Рис. 4. Полуподземная схема прокладки трубопровода

Рис. 5. Наземная схема укладки:

1 - трубопровод; 2 - хворостяная подготовка; 3 - насыпь (обвалование); 4 - лежневая дорога; 5 - противопожарная канава-резерв

Рис.6. Надземные схемы укладки линейной части магистрального трубопровода:

а - прямолинейная прокладки с П-образными компенсаторами; б - зигзагообразная прокладка; в - упругоискривленный самокомпенсирующийся трубопровод; г - прямолинейная прокладка со слабо-изогнутыми компенсационными участками;

1 - трубопровод; 2 - неподвижная (анкерная) опора;

3 - промежуточная продольно-подвижная опора;

4 - П-образный компенсатор; 5 - промежуточная свободноподвижная опора; 6 - шарнирная опора; 7 - слабоизогнутый компенсационный участок а - однопролетный балочный переход; б - арочный переход; в - многопролетный балочный переход с компенсатором; г - трапецеидальный переход; д - вантовый переход; е - висячий переход; ж - переход в виде самонесущей провисающей нити;

Рис. 7. Надземные схемы переходов через естественные и искусственные препятствия:

1 - трубопровод; 2 - опора; 3 - пилон; 4 - якорь; 5 - несущий трос

Рис.1 9.8. Схема одноковшового экскаватора:

1 - ковш; 2 - гидравлический цилиндр ковша; 3 - рукоять;

4 - гидравлический цилиндр рукоятки; 5 - вставка;

6 - гидравлический цилиндр стрелы; 7 - стрела;

8 - поворотная платформа; 9 - ходовая гусеничная тележка

Рис. 9. Роторный траншейный экскаватор:

Разработку траншей в скальных грунтах ведут буровзрывным методом. Сначала бурят небольшие скважины - шпуры, в которые закладывают заряды взрывчатого вещества. При одновременном подрыве зарядов скальная порода разрушается и затем удаляется в отвал одноковшовыми экскаваторами. Чтобы впоследствии не повредить изоляцию трубопровода на дне траншей в скальных грунтах устраивают постель из мягкого грунта (например, песка).

При рытье траншей в зимнее время или в условиях вечной мерзлоты используют различные методы: предварительное оттаивание мерзлых грунтов, резка мерзлых грунтов баровыми машинами, предварительное рыхление мерзлых грунтов взрывом. Однако наиболее часто применяют предварительное рыхление мерзлых грунтов с помощью специальных машин-рыхлителей. Рыхлитель - это мощный гусеничный трактор, оснащенный зубьями из прочной стали. С их помощью мерзлый грунт разрыхляют на глубину 0,3...0,5 м, а затем удаляют его в отвал экскаватором.

В условиях пустынь для рытья траншей используют мощные бульдозеры с отвалами, выполненными в форме полуковшей-полу-совков.

После того как сваренный и заизолированный трубопровод уложен в траншею ее засыпают. Для этого используют бульдозеры, роторные траншеезасыпатели, одноковшовые экскаваторы или драглайн, которые перемещают грунт из отвала.

Сварочно-монтажные работы

Сварочно-монтажные работы выполняют для соединения отдельных труб в непрерывную нитку магистрального трубопровода. При производстве сварочно-монтажных работ приняты две основные схемы их организации:

1) сварка отдельных труб длиной 6 и 12м на трубосварочной базе в трубные секции длиной 24 или 36 м с последующей их доставкой на трассу сооружаемого участка;

2) вывоз отдельных труб непосредственно на трассу, где их и сваривают.

При строительстве магистральных трубопроводов применяют, в основном, электродуговую сварку. В этом случае к трубе и к электроду подведены разноименные электрические заряды. При приближении электрода к трубе на определенное расстояние возникает непрерывный электрический разряд, называемый дугой. От тепла электрической дуги металл свариваемых деталей и электрода плавится. При этом металл электрода формирует сварочный шов, упрочняющий место сварки.

В полевых условиях сварку труб магистральных трубопроводов производят с использованием сварочных генераторов - источников постоянного тока. Сварочные генераторы работают от дизельных или карбюраторных двигателей внутреннего сгорания. Для удобства перемещения вдоль трассы строящегося трубопровода сварочный генератор устанавливают на тележку с автомобильными колесами. Широко используют также самоходные сварочные агрегаты, представляющие собой сварочный генератор, установленный на гусеничном тракторе; при этом приводом генератора является двигатель трактора.

Различают ручную и автоматическую электродуговую сварку.

Сварочный пост для ручной электродуговой сварки оборудуют источником питания электрической дуги (сварочным генератором) и двумя электрическими кабелями с прочной изоляцией, на конце одного из которых находится электрододержатель клещевого типа. Электрододержатель предназначен для крепления и подвода тока к электроду. Второй кабель от источника сварочного тока присоединяют к свариваемой трубе с помощью специального зажима. Рабочий-сварщик перемещает электрододержатель с закрепленным в нем электродом вдоль линии соприкосновения труб и формирует сварочный шов. Каждый электрод состоит из стального стержня диаметром 3...5 мм, изготовленного из малоуглеродистой проволоки, и специального покрытия на поверхности стержня. Покрытие электродов предназначено для достижения сразу нескольких целей: а) для защиты металла сварного шва от проникновения в него из воздуха азота и кислорода, что значительно повысило бы хрупкость шва; б) для обеспечения стабильного горения дуги; в) для легирования металла сварного шва и т.д. В связи с этим электродные покрытия имеют достаточно сложный состав.

Достоинствами ручной электродуговой сварки является возможность сварки неповоротных стыков трубопровода (т.е. отсутствует необходимость вращения труб) и менее жесткие требования к подготовке труб к сварке, чем при ее выполнении другими способами.

Автоматическая электродуговая сварка была разработана в нашей стране в 30-е годы и применяется при сооружении магистральных трубопроводов с 1948 г.

При автоматической сварке применяют не отдельные электроды, а сварочную проволоку диаметром 2...4 мм, которая подается к месту сварки из бухты. Никакого покрытия проволока не имеет. Вместо этого к месту сварки из бункера сварочной головки непрерывно поступает и укладывается слоем толщиной 40...50 мм специально приготовленный зернистый материал - флюс. Слой флюса играет ту же роль, что и покрытие электродов.

Сварка закрытой дугой под флюсом обеспечивает хорошее качество сварного шва, несмотря на высокую скорость ее выполнения - 60...100 м/ч. Однако автоматическую сварку под флюсом можно выполнять только в нижнем положении, что достигается вращением труб - то есть на трубосварочных базах. Однако и здесь автоматическую сварку применяют только после того как трубы будут «прихвачены» друг к другу, т.е. когда ручной сваркой выполнен самый первый (корневой) шов.

До начала сварочных работ проводят подготовку кромок труб: их зачистку и разделку кромок. Зачистка необходима во избежание образования большого числа пор в сварном шве. Заключается зачистка в том, что торцовую часть каждой трубы на длине около 1 м очищают от грязи, наледи и снега. Кроме того, на расстоянии 10...20 мм от торца трубы наружную и внутреннюю поверхности труб, а также их кромки очищают от окалины, ржавчины и грязи до металлического блеска стальными щетками или портативными шлифовальными машинками с абразивными кругами. Разделка кромок заключается в снятии фаски различной формы с торцов труб с целью обеспечения их полного провара. Разделка может быть односторонней, выполняемой с внешней поверхности трубы (ее делают на заводах по производству труб), и двусторонней, выполняемой снаружи и изнутри.

При сборке стыков труб необходимо обеспечить их соосность, совпадение внутренних кромок и сохранение необходимых зазоров. Для этого при проведении сборочно-центровочных операций применяют специальные устройства - внутренние или наружные центраторы. Наиболее качественную сборку стыков обеспечивает применение внутренних центраторов (рис. 10). Они снабжены специальным распорным механизмом, выравнивающим кромки труб. Достоинством внутренних центраторов является то, что стык открыт снаружи и поэтому можно вести сварку без предварительной прихватки. Если центратор достаточно мощный, то с его помощью можно даже устранить овальность концов труб. Внутри труб внутренний центратор перемещают вручную с помощью длинной штанги, либо с использованием электродвигателя.

Наружные центраторы (рис. 11) применяются в тех случаях, когда невозможно применение внутренних (например, при сварке захлестов). Они представляют собой многозвенную конструкцию, охватывающую торцы обеих труб снаружи. Стыки, собранные с помощью наружных звенных центраторов, фиксируют с помощью коротких швов длиной 60...80 мм, называемых прихватками, после чего наружный центратор снимают со стыка и накладывают сплошной шов.

С 1952 г. на строительстве магистральных трубопроводов применяется электроконтактная стыковая сварка оплавлением. Она предусматривает нагрев торцов труб до высокой температуры и их последующее соединение под воздействием осевого сдавливания. Преимуществом электроконтактной сварки является ее высокая производительность, поскольку сварное соединение в данном случае образуется сразу по всему периметру стыка в течение 5... 10 мин. При электродуговой же сварке сварное соединение формируется последовательным наложением нескольких слоев шва по периметру трубы.

Рис. 1910. Общий вид внутреннего центратора ЦВ-102:

1 - рамки; 2 - рама; 3 - центрирующий механизм; 4 - гидрораспределитель; 5 - штанга; 6 - опорные колеса; 7 - поршневой насос; 8 - электродвигатель постоянного тока; 9 - обратный клапан; 10 - предохранительный клапан

Рис. 9.11. Наружный многозвенный центратор:

1 - натяжной винт; 2 - крестовина; 3 - накидной замок; 4 - рамки; 5,6- звенья

Основой установки для электроконтактной сварки являются кольцевые трансформаторы, устанавливаемые на торцы свариваемых труб. Кроме того, в состав установки входят механизмы центровки труб, равномерного подвода тока, перемещения труб в процессе оплавления, а также снятия частиц затвердевшего металла (грата) с внутренней и наружной поверхности труб. Все перечисленные операции выполняют передвижные комплексы «Север».

Недостатком электроконтактной сварки являются более жесткие требования к торцам труб (меньшие допуски по овальности, разностенно-сти и др.), чем при электродуговой и автоматической сварке.

К перспективным методам сварки труб относятся сварка лазером, трением, взрывом и т.д.

Изоляционно-укладочные работы

Изоляционно-укладочные работы проводят после сварки трубопровода в непрерывную нить и отрывки траншеи проектного профиля.

Перед нанесением на трубопровод изоляционного покрытия его поверхность необходимо очистить от грязи, ржавчины, окалины, снега и льда, чтобы обеспечить лучшую прилипаемость изоляции.

Для очистки и изоляции трубопроводов в трассовых условиях используются специальные машины. Очистные машины предназначены для очистки наружной поверхности труб до металлического блеска и нанесения грунтовки на поверхность трубопровода. Очистная машина представляет собой цилиндрический (кольцевой) корпус, внутри которого находятся силовая и очистная установки. Машина надевается на трубу и перемещается вдоль оси с помощью двигателя внутреннего сгорания. Одновременно осуществляется механическая очистка поверхности трубопровода с помощью скребков и металлических щеток, вращающихся вокруг трубы. Битумная грунтовка подается из бачка насосом и разравнивается на поверхности трубы «полотенцами».

Изоляционные машины предназначены для нанесения на трубопровод мастичного или полимерного пленочного изоляционного покрытия. Изоляционная машина (рис. 12) также, как очистная, одевается на трубу и перемещается по ней на ходовых колесах 8 с помощью двигателя внутреннего сгорания 3. Машина для нанесения мастики (битумной, АСМОЛ и др.) снабжена емкостью, из которой горячая расплавленная мастика шестеренным насосом через сопло подается на верхнюю образующую трубы и далее - стекает по ней вниз. Формирование изоляционного покрытия необходимой толщины осуществляется с помощью специальной обечайки, перемещающейся соосно трубе. Излишки мастики собираются в бачок, из которого они вновь возвращаются в верхнюю емкость. Для намотки стеклохолста и оберточного материала изоляционная машина оборудована специальным механизмом, состоящим из большой кольцевой звездочки, на боковой поверхности которой имеются оси. На них навешивают шпули с соответствующим рулонным материалом (стеклохолстом, бризолом и т.п.). Конец рулона приклеивается к поверхности трубы и при вращении звездочки с натягом наматывается на трубу. Механизм для намотки рулонных материалов расположен в задней части изоляционной машины.

Изоляционная машина для нанесения на трубопровод полимерных липких лент отличается тем, что не имеет устройств для подогрева и нанесения мастики.

В последние годы появились машины, которые совмещают выполнение функций очистки поверхности трубопровода и нанесения на него полимерных лент. Они представляют собой два последовательно расположенных на общей раме агрегата - силового и изолировочного. Силовой агрегат состоит из дизельного двигателя и коробки перемены передач, а изолировочный включает очистное устройство и механизм нанесения полимерной ленты, аналогичные ранее описанным. Силовой и изолировочный агрегаты соединены на шарнирах, что обеспечивает прохождение машин по трубопроводу на криволинейных участках. Дополнительно такая машина оснащена устройством отсоса пыли, образующейся при очистке трубы. Применение комбинированных машин (комбайнов) позволяет сократить количество потребной техники (машин для изоляции и трубоукладчиков), уменьшить количество обслуживающего персонала, снизить суммарные затраты мощности и металлоемкость машин.

Изоляционно-укладочные работы на строительстве магистральных трубопроводов выполняются двумя способами: совмещенным и раздельным.

При совмещенном способе очистка наружной поверхности трубопроводов, их изоляция и укладка в траншею объединены в один процесс, выполняемый механизированной изоляционно-укладочной колонной (рис. 13). На трубопровод надевают очистную и изоляционную машины, поднимают его трубоукладчиками, установленными на определенном расстоянии друг от друга и начинают работы, перемещаясь вдоль бровки траншеи. Заизолированный трубопровод опускают на подготовленное дно траншеи. Количество и расстановка трубоукладчиков зависит от веса единицы длины трубопровода, то есть от его диаметра и толщины стенки. Основные требования при этом таковы: 1) напряжения, возникающие в трубопроводе, должны вызывать только упругие деформации металла; 2) изоляционное покрытие в момент касания дна траншеи должно иметь механическую прочность, исключающую ее повреждение частицами грунта; 3) должно быть предотвращено опрокидывание трубоукладчиков

Рис. 12. Самоходная битумоизоляционная машина:

I - шпуля; 2 - насадок; 3 - двигатель; 4 - силовая передача;

5 - рычаги управления; 6 - прижимное устройство; 7 - насос; 8 - ходовое колесо; 9 - обечайка; 10 - ванна;

II - обмоточный механизм

При раздельном способе ведения работ процессы изоляции и укладки отделены друг от друга. Благодаря этому, появляется возможность изолировать трубы еще до рытья траншей, т.е. создавать задел, обеспечивающий ускорение работ. В данном случае при строительстве используют заранее изолированные (например, в заводских условиях или на полевых базах) трубы и секции труб. Недостатками способа являются: 1) необходимость изоляции стыков при соединении труб или секций в нитку; 2) неизбежность повреждения изоляционного покрытия при погрузочно-разгрузочных и транспортных работах. Поэтому раздельный способ ведения изоляционно-укладочных работ найдет широкое применение только при применении высокопрочных изоляционных покрытий (эмалевых, эпоксидных, алюминиевых).

Областью преимущественного применения раздельного способа является проведение изоляционно-укладочных работ на болотах и на обводненных участках. В этом случае, с одной стороны, прохождение тяжелой техники изоляционно-укладочных колонн затруднено, а с другой, необходимо предотвратить всплытие пустого трубопровода, т.е. надежно закрепить его на проектных отметках.

Заизолированный трубопровод укладывают в подготовленную траншею одним из следующих способов:

- протаскиванием готового трубопровода по дну траншеи;

- протаскиванием по поверхности водоема с наращиванием секций и последующим погружением на дно траншеи;

- сплавом балластированного трубопровода на понтонах.

В первом случае на головную часть плети надевают специальный оголовок и протаскивают трубопровод по дну подводной траншеи с помощью лебедки, находящейся на противоположном берегу болота или обводненного участка. Чтобы избежать повреждения изоляции трубопровод предварительно футеруют матами из деревянных реек. Предотвращение всплытия трубопровода достигается предварительной установкой на нем чугунных и железобетонных грузов-утяжелителей.

Во втором случае готовую секцию трубопровода без грузов-утяжелителей с заглушкой на переднем торце перемещают по водной поверхности. После окончания протаскивания одной секции к ней сваркой присоединяют другую длиной 100...200 мм возобновляют протаскивание. После установки всей плети над траншеей ее погружают на дно траншеи навешиванием грузов-утяжелителей с понтонов. В третьем случае заизолированный трубопровод с закрепленными на нем грузами-утяжелителями сплавляют по воде на понтонах, удерживающих его на плаву, и устанавливают над осью траншеи. Затем трубопровод погружают на дно траншеи путем последовательного отсоединения понтонов.

сооружение трубопровод погрузочный транспортный

Рис.13. Схема проведения изоляционно-укладочных работ совмещенным способом при различных диаметрах трубопровода:

Э-529...820 мм; 6-1020 мм; в-1220 мм; г-1420 мм

1-7 места расположения кранов-трубоукладчиков

по ходу колонны;

I, II - очистная и изоляционная машина;

L 1, L2- расстояние между кранами-трубоукладчиками и их группами

Очистка внутренней полости и испытание трубопроводов

При строительстве внутрь трубопровода попадают грязь, вода, снег, инструменты и другие посторонние предметы. Кроме того, на внутренней поверхности труб имеется окалина, а порой и ржавчина. Если их не удалить, то впоследствии перекачиваемый продукт будет загрязнен и его качество ухудшится. Кроме того, могут образоваться пробки (в местах установки запорной арматуры, на фильтрах и т.п.), препятствующие движению потока. В связи с этим после выполнения сварочно-монтажных, изоляционно-укладочных и земляных работ производят очистку внутренней полости трубопроводов.

Применяют два способа очистки: продувку воздухом (или газом) и промывку водой.

В настоящее время основным способом очистки внутренней полости трубопроводов диаметром менее 219 мм является продувка трубопроводов высокоскоростным потоком воздуха или газа. Предпочтительнее осуществлять продувку сжатым воздухом. В качестве ресивера (емкости для накопления сжатого воздуха) используется смежный участок трубопровода, перекрытый с двух сторон запорной арматурой или заглушками. Воздух нагнетается в него передвижными компрессорными станциями. Геометрический объем ресивера должен быть не меньше объема очищаемого участка, а давление воздуха в нем должно быть равно 0,6... 1,2 МПа.

Для очистки трубопроводов диаметром более 219 мм их продувку выполняют с использованием очистных поршней, перемещаемых потоком сжатого воздуха.

В отдельных случаях, как исключение, по специальному согласованию продувку выполняют природным газом. Его источниками могут быть:

- месторождения газа, расположенные вблизи трассы трубопровода или питающие строящийся магистральный газопровод;

- проложенный рядом действующий магистральный газопровод.

Однако следует иметь в виду, что природный газ образует с воздухом взрывоопасную смесь. Поэтому при продувке газом с использованием очистных поршней, способных вызвать искру от столкновения с инородными предметами, из трубопроводов предварительно должен быть вытеснен воздух. Для этого очищаемый участок продувают одним газом под давлением не более 0,2 МПа. Вытеснение воздуха считается законченным, когда концентрация кислорода в газе, выходящем из трубопровода станет не более 2 %. Содержание кислорода определяют газоанализатором.

Промывка внутренней полости трубопроводов водой применяется в случаях, когда их испытание на прочность и герметичность будет проводиться гидравлическим способом. При промывке по трубопроводам в потоке пропускают поршни-разделители. Промывка заканчивается, когда очистное устройство выходит из противоположного конца трубопровода.

Испытание трубопроводов на прочность и герметичность проводят после завершения всех предшествующих работ (укладки, засыпки, очистки полости, врезки линейной арматуры).

Применяют следующие способы испытаний: гидравлический, пневматический и комбинированный.

Гидравлическое испытание выполняют главным образом водой. В качестве ее источников используют естественные или искусственные водоемы (реки, озера, водохранилища, каналы и т.п.). Трубопровод заполняется водой с помощью наполнительных агрегатов через узлы подключения. Поскольку присутствие воздуха в полости трубопровода может исказить результаты испытаний, то для его удаления в повышенные точки профиля врезаются воздуховыпускные краны.

При испытаниях на прочность в трубопроводе необходимо создать давление, на 10...25 % превышающее то, с которым будет вестись перекачка. Сначала давление в испытуемом участке повышают наполнительными агрегатами. Когда же их технические возможности будут исчерпаны, наполнительные агрегаты отключают и включают опрессовочные агрегаты. После достижения расчетного давления их отключают, закрывают задвижки и выдерживают трубопровод под испытательным давлением 24 ч.

Если в процессе подъема или выдержки давления случаются разрывы, то трубы разрушенного участка заменяют новыми, а испытание повторяют.

При испытании на герметичность измеряют снижение рабочего давления в течение определенного промежутка времени. Если оно незначительно, то делают вывод о герметичности испытуемого участка трубопровода.

Заканчиваются гидравлические испытания вытеснением воды из полости трубопровода. На магистральных газопроводах для этого пропускают не менее двух поршней-разделителей со скоростью 3...10 км/ч под давлением сжатого воздуха или газа. Воду из нефте- и неф-тепродуктопроводов после их испытания удаляют одним поршнем-разделителем, перемещаемым под давлением транспортируемого продукта.

Пневматическое испытание трубопроводов выполняют сжатым воздухом или природным газом. Их источники и средства закачки те же, что и при продувке. Повышение давления в трубопроводе производится в несколько ступеней с обязательным осмотром трассы при достижении давления, равного 30 % от испытательного. Затем давление поднимают до испытательного (1,1 Рраб) и, перекрыв запорную арматуру, выдерживают трубопровод в течение 12 ч. Допустимое снижение давления - не более 1 %. Затем давление снижается до рабочего и выдерживают его еще не менее 12 ч. В случае утечек воздуха или разрыва труб подача воздуха немедленно прекращается, давление снижается до атмосферного и выполняются работы по устранению дефектов, после чего испытание возобновляется. По окончании испытания оборудование демонтируют и перебазируют на новый участок.


Подобные документы

  • Степень строительной готовности монтажных узлов. Основные технико-экономические показатели сооружения трубопроводов. Определение объемов работ при механизированной разработке. Выбор строительных машин. Калькуляция затрат труда и машинного времени.

    курсовая работа [173,8 K], добавлен 24.05.2012

  • Этапы организации производства подготовительных работ по строительству магистральных трубопроводов. Работы, выполняемые за пределами строительной полосы. Инженерная подготовка территории к застройке. Разработка траншей. Контроль качества земляных работ.

    курсовая работа [76,6 K], добавлен 05.12.2012

  • Характеристика емкостного сооружения. Подбор монтажного крана. Расчет календарного плана производства работ. Монтаж сборных железобетонных конструкций. Калькуляция трудовых затрат и заработной платы на земляные работы. Расчет транспортных средств.

    курсовая работа [270,4 K], добавлен 06.06.2015

  • Водоподпорные сооружения. Классификация плотин: из грунтовых материалов, бетонные, а также железобетонные. Воздействия водного потока на гидротехнические сооружения. Расчет и целесообразность построения эпюры избыточного давления на бетонную плотину.

    курсовая работа [456,8 K], добавлен 09.01.2014

  • Характеристика подводного перехода, строительный расчет устойчивости трубопровода, проверочный расчет пригрузов. Особенности сооружения подводных переходов, технология и оборудование для внутритрубной инспекции. Оценка динамики русловых процессов.

    курсовая работа [279,7 K], добавлен 18.12.2011

  • Производство бетонных и железобетонных работ по устройству подземной части здания. Расстояние от наружной грани фундамента до конца земляного сооружения. Объемы работ, выбор типа экскаватора и автотранспортного средства. Указания по производству работ.

    курсовая работа [109,6 K], добавлен 01.12.2009

  • Анкерное закрепление трубопроводов - способ закрепления для предотвращения всплытия трубопроводов, прокладываемых через водные преграды. Конструкция анкерных устройств и технические требования на их изготовление. Защита анкерных устройств от коррозии.

    курсовая работа [1,0 M], добавлен 26.12.2009

  • Определение типа и параметров земляного сооружения. Подбор комплекта машин и механизмов для ведения комплексно-механизированного производства земляных работ. Геологический разрез строительной площадки. Подсчет объемов работ по срезке растительного слоя.

    курсовая работа [1,0 M], добавлен 02.12.2015

  • Производство подготовительных и земляных работ при сооружении магистральных трубопроводов. Разработка обводнённых грунтов. Сооружение трубопроводов на болотах, в горах, в условиях пустынь, на вечномёрзлых грунтах. Определение толщины стенки нефтепровода.

    курсовая работа [1,2 M], добавлен 23.03.2012

  • Подземные сооружения транспортного назначения, проектирование транспортных развязок в разных уровнях. Градостроительные, архитектурные и технические преимущества подземных комплексов. Проекты подземных и надземных многофункциональных переходов.

    презентация [12,1 M], добавлен 11.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.