Crystal structure of compound

Analyzing the results obtained, it can be assumed that studied structure of compound crystallizes in its own structural type. The study of crystal structure of a compound contributes to a better understanding of its physical properties (ferroelectric).

Рубрика Химия
Вид статья
Язык английский
Дата добавления 05.09.2022
Размер файла 550,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Kherson State Agrarian and Economic University

Crystal structure of compound

Zavodyannyi V.V. - Candidate of Physical and Mathematical Sciences, Associate Professor at the Department of Hydraulic Engineering

The object of research is the crystal structure of the K3TiOF5 compound. It is known from the literature that this material is ferroelectric. The dielectric constant of materials is very high. Therefore, this material can be used in capacitors, which are much smaller in dielectric size. Relatively recently, a number of materials with ferroelectric properties have been synthesized, including K3TiOF. The diffraction spectrum of the compound was taken by the powder method with the Bragg-Bertrand shooting geometry and is presented in the PDF-2 database for 2009 under the number 00-023-0506 indexed in the tetragonal system, with lattice periods a=6,102°A, c=8,655°A. To date, there is no complete information on the crystal structure of this compound.

The study used a 2009 PDF-2 database. And also, the HighScorePlus 3.0 program (Netherlands), which allows to refine the microstructural parameters of the structural model by the Rietveld method.

The diffraction spectrum for the study was generated using the HighScorePlus 3.0 program and the attached pdf-2 database for 2009 in UDF format.

As a result, it was found that the given diffraction spectrum of the compound under study can correspond to the following structural model: the diffraction spectrum of the K3TiOF5 compound is indexed in the tetragonal system with lattice periods a = 6.086A°; b = 6.086A°; c = 8.675 A°. The space group of symmetry I41 (80) is possible:

- microstructural parameters K1 8b x/a = 0.252 (9), y/b = 0.588 (4), z/c = 0.2 (4);

- position filling factor 0.5 K2 8b x/a = 0.233 (5), y/b = 0.233 (5), z/c = 0.4 (4);

- position filling factor 1.0 F1 8b x/a = -0.900 (8), y/b = 0.393 (4), z/c = 0.1 (4);

- position filling factor 1.0 F2 8b x/a = 0.749 (7), y/b = 0.262 (7), z/c = 0.8 (4);

- position filling factor 1.0 F3 8b x/a = 0.47 (1), y/b = 0.696 (9), z/c = -0.1 (4);

- position filling factor 0.5; Ti1 8b x/a = 0.247 (5), y/b = 0.803 (4), z/c = 0.1 (4);

- position filling factor 0.5; O1 8a x/a = 0.0, y/b = 0.0, z/c = 0.1 (4);

- position filling factor 1.0;

- disagreement factor R = 7.311%.

Analyzing the results obtained, it can be assumed that the studied structure of the compound crystallizes in its own structural type.

The study of the crystal structure of a compound contributes to a better understanding of its physical properties, in particular, ferroelectric.

Key words: X-ray structural analysis, Bragg-Bertrand survey geometry, Rietveld method, crystal structure, K3TiOFcomposition.

Заводянний В.В. Кристалічна структура сполуки K3TiOF5

Об'єктом дослідження є кристалічна структура сполуки K3TiOF5. З літературних даних відомо, що цей матеріал - сегнетоелектрик. Діелектрична проникність матеріалів дуже велика. Тому такий матеріал може бути використаний у конденсаторах, які значно менші за розмірами за діелектричні. Порівняно недавно було синтезовано низку матеріалів, що мають сегнетоелектричні властивості, до яких належить і K3TiOF. Дифракційний спектр сполуки, що знятий по методу порошку з геометрією зйомки Брег-Бертрано, представлений у базі даних PDF-2 за 2009 рік під номером 00-023-0506, індексується в тетрагональній сингонії з періодами решітки a=6,102°A, c=8,655°A. Повні відомості про кристалічну структуру такої сполуки натепер відсутні.

У ході дослідження використовувалася база даних PDF-2 за 2009 рік. А також програма HighScorePlus 3.0 (Нідерланди), яка дозволяє уточнювати мікроструктурні параметри структурної моделі методом Ритвельда.

Дифракційний спектр для дослідження генерували за допомогою програми HighScorePlus 3.0 та приєднаної до неї бази даних PDF-2 за 2009 р. у форматі UDF.

У результаті отримано, що цей дифракційний спектр досліджуваної сполуки може відповідати такій структурній моделі: дифракційний спектр сполуки K(TiOFs індексується в тетрагональній сингонії з періодами решітки a=6.086A°; b=6.086A°; c=8.675 A°. Можлива просторова група симетріїI41 (80):

- мікроструктурні параметри K1 8b x/a=0.252(9), y/b=0.588(4), z/c=0.2(4);

- коефіцієнт заповнення позицій 0.5 K2 8b x/a=0.233(5), y/b=0.233(5), z/c=0.4(4);

- коефіцієнт заповнення позицій 1,0 F1 8b x/a=-0.900(8), y/b=0.393(4), z/c=0.1(4);

- коефіцієнт заповнення позицій 1,0F2 8b x/a=0.749(7), y/b=0.262(7), z/c=0.8(4);

- коефіцієнт заповнення позицій 1,0 F3 8b x/a=0.47(1), y/b=0.696(9), z/c=-0.1(4);

- коефіцієнт заповнення позицій 0,5; Ti1 8b x/a=0.247(5), y/b=0.803(4), z/c=0.1(4);

- коефіцієнт заповнення позицій 0,5; O1 8ax/a=0.0, y/b=0.0, z/c=0.1(4);

- коефіцієнт заповнення позицій 1,0;

- фактор розбіжності R=7,311%.

Аналізуючи отримані результати, можна припустити, що досліджувана структура з'єднання кристалізується у власному структурному типі.

Вивчення кристалічної структури сполуки сприяє кращому розумінню його фізичних властивостей, зокрема смегнетоелектричних.

Ключові слова: рентгеноструктурний аналіз, геометрія зйомки Брег-Бертран, метод Ритвельда, кристалічна структура, склад K3TiOF.

Introduction

Ferroelectric materials are used in variable capacitors. The dielectric constant of ferroelectric materials is not only tunable but also very high. Therefore, ferroelectric capacitors are much smaller in size and have a higher electrical capacity than dielectric capacitors. In comparison, a number of materials with ferroelectric properties have recently been synthesized, including K3TiOF5 [1]. Starting materials KF (Ventron, purity > 99.9%), oxides TiO2, Nb2O5, Ta2O5, WO3 (Cerac, 99,95%) pre-dried in vacuum at 473K for 20 hours. Oxyfluorides TiOF2, NbO2F, TaO2F are obtained by the action of a 40% solution of hydrofluoric acid on the corresponding oxides in a Teflon bath, after complete evaporation of the solution in a sand bath at 373K. Residual solids are degassed in vacuum at a temperature of 473K. About 18 g of the mixture is weighed in stoichiometric proportions, ground in an agate mortar in an oven, then placed in a Biconical platinum 10% rhodium crucible. The compound is obtained in the following reaction 3KF+TiOF2^ K3TiOF5. After degassing in vacuum for 20 hours at 473K and then sealing in a dry oxygen atmosphere, the crucible is fired at a reaction temperature for 24 hours and then at a melting temperature of + 50K [1].

The object of research is the crystal structure of the K3TiOF5compound.

PDF-2 database for 2009 contains indexed diffraction spectrum obtained for the K3TiOF5 compound. The crystal structure of this spectrum is unknown.

The aim and objectives of research

The aim of research is to propose a structural model for the diffraction spectrum of the K3TiOF5 compound under the number 00-023-0506 in the PDF-2 database for 2009.

To achieve this aim, it is necessary to solve the following objectives:

1. Determine the periods of the lattice and the crystal system in which the studied compound crystallizes.

2. Select the space group of symmetry and propose a structural model for the given spectrum of the compound.

3. Carry out the refinement of microstructural parameters for the selected model by the Rietveld method.

Solvothermal synthesis of K3TiOF5 was carried out in a stainless steel autoclave with a Teflon lining at reduced pressure. All reagents (K0H, KF-2H20, Ti02, Ti, NH4HF2, H202) and methanol were analytically pure and used without further purification (purchased by Shanghai Chemical Reagent Company). The mixture is placed in a stoichiometric ratio in a teflon-lined stainless steel autoclave of milliliters, which is then filled with methanol to 80 times the total volume. The autoclave was quickly closed and heated at 200°C for 24 or 36 hours and cooled naturally to room temperature. The precipitates were collected and washed with ethanol, distilled water, and dried in a vacuum at 60°C for 2 hours [3].

Diffraction patterns were taken from the obtained sample by the powder method with the Bragg-Bertrand geometry. The diffraction spectrum corresponds to K3TiOF5 numbered 00-023-0506 in the PDF-2 database [2; 3], indexed in the tetragonal system, with lattice periods a=6,102°A, c=8,655°A.

The results of the analysis of the literature indicate that the crystal structure of the test compound is unknown. With its electrical properties it can be used as a ferroelectric.

Methods of research

The diffraction spectra of the compounds for the study were generated using High- ScorePlus 3.0 and the attached PDF-2 database for 2009 in UDF format.

Analysis of the proposed structural model of this spectrum was performed using the program HighScorePlus 3.0 by the Rietveld method.

Research results

The diffraction spectrum of the compound K3TiOF5 is indexed in tetragonal syngony with lattice periods a=6.086 A°; b=6.086 A°; c=8.675 A. Possible symmetry group I41 (80).

The correct system of points and their specified coordinates for this spectrum are presented in Table 1.

Table 1 Microstructural parameters of K3TiOF5 for spectrum 00-023-0506 in PDF-2 database up to 2009

Atom

Wyck.

s.o.f.

X

y

z

U a iso

K1

8b

0.500000

0.252(9)

0.588(4)

0.2(4)

0(1)

K2

8b

1.000000

0.233(5)

0.233(5)

0.4(4)

5.8(4)

F1

8b

1.000000

-0.900(8)

0.393(4)

0.1(4)

10(1)

O1

4a

1.000000

0.000000

0.000000

0.1(4)

0(1)

F2

8b

1.000000

0.749(7)

0.262(7)

0.8(4)

0(1)

F3

8b

0.500000

0.47(1)

0.696(9)

-0.1(4)

0(2)

Ti1

8b

0.500000

0.247(5)

0.803(4)

0.1(4)

0(1)

Note: Wyck. - correct point system; s.o.f. - position filling factor with atoms; x, y, z - coordinates of atoms in the fate of lattice periods (x=X/a; y=Y/b; z=Z/c); Uisoa - temperature factor

The values of observed and calculated interplanar distances and integral intensities of the diffraction spectra are given in Table 2.

Table 2 The values of interplanar distances and intensities are given in [2], and calculated according to this model

dcal (A°)

dobs (A°)

I, cal

Ib obs

H

K

L

1

2

3

4

5

6

7

4.94655

4.94993

13.62

10.18

0

1

1

4.31978

5.07

4.27702

4.27999

6.24

5.11

1

1

0

3.04189

1.25

1

1

2

3.03006

3.02998

100.00

100.00

0

2

0

2.60241

0.75

0

1

3

2.58765

0.58

1

2

1

2.58765

1.10

2

1

1

2.48259

2.48098

14.95

20.18

0

2

2

2.16240

2.16201

14.37

15.10

0

0

4

2.14553

2.14599

26.43

30.39

2

2

0

1.97672

1.93400

0.30

5.12

1

2

3

1.97672

1.74

2

1

3

1.97024

1.13

0

3

1

1.93177

5.98

1

1

4

1.92271

0.89

2

2

2

1.91972

0.10

1

3

0

1.91972

0.89

3

1

0

1.76209

4.91

0

2

4

1.75521

1.75600

1.48

15.23

3

1

2

1.75521

8.14

0

1

5

1.66499

1.66301

1.08

5.06

0

3

3

1.65726

1.65299

0.62

5.15

2

3

1

1.65343

4.07

3

2

1

1.65343

0.63

2

2

4

1.52462

1.52501

8.86

15.18

0

4

0

1.51868

1.51800

8.66

10.14

1

2

5

1.46044

0.06

2

1

5

1.46044

0.33

2

3

3

1.45522

1.45400

0.50

5.10

3

2

3

1.45522

0.44

1

4

1

1.45263

0.87

4

1

1

1.45263

0.50

1

3

4

1.43702

1.43200

0.59

5.11

3

1

4

1.43702

0.53

0

4

2

1.43328

1.94

3

3

0

1.43204

0.43

1

1

6

1.36835

1.36900

0.16

5.04

3

3

2

1.35979

1.35900

0.34

10.21

2

4

0

1.35873

1.15

4

2

0

1.35873

1.68

0

3

5

1.31656

0.23

1

4

3

1.31273

0.20

4

1

3

1.31273

1.35

0

2

6

1.30398

1.04

2

4

2

1.29657

0.09

4

2

2

1.29657

0.07

0

1

1

Disagreement factor R = 7.311%.

Table 3 shows the interatomic distances of the proposed structural model for the K3TiOF5 compound for spectrum 00-023-0506 in the PDF-2 database for 2009.

Table 3 Interatomic distances of the 3TiOF5 compound

Atom1

Atom2

Distance, A°

1

2

3

K1

- Ti1

1.343

- F2

1.421

- F1

1.558

- F2

1.576

- Ti1

2.130

- F1

2.177

- K2

2.235

- F1

2.278

- O1

2.300

- F3

2.360

- F3

2.479

- K1

2.578

- K2

2.661

- Ti1

2.684

- F1

2.800

- O1

2.988

- F3

3.018

- F3

3.126

- K1

3.206

- K2

3.208

- K1

3.246

- F2

3.267

- K2

3.357

- K2

3.389

K2

- F1

1.394

- F3

1.787

- O1

2.133

- K2

2.176

- F3

2.195

- K1

2.235

- F1

2.344

- Til

2.634

- K1

2.661

- F1

2.682

- O1

2.946

- F2

2.973

- F2

3.003

- Til

3.011

- F3

3.021

- Til

3.116

- O1

3.166

- F1

3.170

- K1

3.208

- F2

3.219

- F2

3.248

- Til

3.260

- F2

3.348

- K1

3.357

- K1

3.389

- F3

3.399

- F3

3.430

- F2

3.458

- Til

3.480

- Til

3.494

F1

- K2

1.394

- Kl

1.558

- Fl

1.783

- Kl

2.177

- O1

2.211

- Kl

2.278

- K2

2.344

- Til

2.425

- O1

2.469

- F2

2.509

- F2

2.536

1

2

3

- Til

2.656

- F2

2.679

- K2

2.682

- F2

2.771

- Kl

2.800

- Fl

2.808

- F3

2.910

- Ti1

3.016

- F3

3.098

- F3

3.106

- K2

3.170

- Ti1

3.182

- Ti1

3.264

- F3

3.324

- Ti1

3.331

- F3

3.355

O1

- Ti1

1.939

- F3

1.994

- K2

2.133

- F1

2.211

- K1

2.300

- F2

2.302

- F1

2.469

- F2

2.569

- K2

2.946

- K1

2.988

- Ti1

3.065

- Ti1

3.098

- F3

3.137

- K2

3.166

F2

- Ti1

0.976

- Ti1

1.274

- K1

1.421

- F3

1.519

- K1

1.576

- F3

1.958

- F2

2.171

- O1

2.302

- F1

2.509

- F1

2.536

- O1

2.569

- F1

2.679

- F1

2.771

- K2

2.973

- K2

3.003

- Ti1

3.114

- K2

3.219

- K2

3.248

- F3

3.252

- K2

3.253

- F3

3.263

- K1

3.267

- K2

3.348

- Ti1

3.434

- F3

3.438

- K2

3.458

F3

- Ti1

1.184

- F2

1.519

- K2

1.787

- F2

1.958

- O1

1.994

- K2

2.195

- Ti1

2.259

- K1

2.360

- F3

2.415

- K1

2.479

- F1

2.910

- F3

2.921

- Ti1

2.970

- K1

3.018

- K2

3.021

- F1

3.098

- Ti1

3.099

- F1

3.106

- K1

3.126

- O1

3.137

- F2

3.252

- F2

3.263

- F3

3.269

- F1

3.324

- F1

3.355

- K2

3.399

- K2

3.430

- F2

3.438

Ti1

- F2

0.976

- F3

1.184

- F2

1.274

- K1

1.343

- O1

1.939

- K1

2.130

- Ti1

2.216

- F3

2.259

- F1

2.425

- K2

2.634

- F1

2.656

- K1

2.684

- F3

2.970

- K2

3.011

- F1

3.016

- O1

3.065

- O1

3.098

- F3

3.099

- F2

3.114

- K2

3.116

- F1

3.182

- K2

3.260

- F1

3.264

- F1

3.331

- F2

3.434

- K2

3.480

- K2

3.494

Fig. 1 shows diffraction patterns generated and calculated from the structural simulator for the K3TiOF compound.

Fig. 2 shows an image of the proposed model of the crystal structure of the investigated compound.

The space group of symmetry І4г (80) has a rotary axis of symmetry of the 2nd order parallel to 001, a helical axis of the 4th order with translation 1/3 с parallel to 001. crystal ferroelectric physical

Also, partial filling of the correct systems of points in the structure under study may indicate that the stoichiometric composition of the compound may be slightly changed. So, the structure of the connection requires further investigation.

Fig. 1. The resulting X-ray diffraction pattern of the K3TiOF5 compound generated and calculated from the structural modeling

Fig. 2. Crystal structure of the K3TiOF5 compound for the investigated diffraction spectrum

Conclusions

1. Using the TREOR program, the diffraction spectrum of the K3TiOF5 compound is indexed in the tetragonal system with lattice periods a=6.086 A°; b=6.086 A°; c=8.675 A°. The diffraction spectrum of the Я-phase (compound 00-049-0903) is indexed in the orthorhombic system with lattice periods a=8.668(7) A°; b=8.677(8) A°; c=8.685(7) A°.

2. The space group of symmetry I41 (80).) Is possible and proposed for the calculation of the structural model.

3. Using the HighScorePlus 3.0 software, the parameters of the structural model of the compound under study were refined by the Rietveld method. Microstructural parameters are given in Table 1.

References

1. M.A. Fouad, J.P. Chaminade, J. Ravez, and A. Sadel. Ferroelastic domain study in crystals with formula K3TiOF5, K3MO2F4and K3M'O3F3 (M= Nb, Ta; M'= Mo, W). In Advanced Materials Research. 1994. V. 1, p. 469-478. URL: https://doi.org/10.4028/ www.scientific.net/amr.1-2.469.

2. PDF-2 data bases for 2009. URL: https://www.icdd.com/pdf-2/.

3. Jie Sheng, Kaibin Tang, Wei Cheng, Junli Wang, Yanxiang Nie, and Qing Yang. Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)uorides K2TiOF4, K3TiOF5, K7Ti4O4F7 and K2TiF6. Journal of Hazardous Materials. 2009. V 171. No. 13. Р 279-287. URL: https://doi.org/10.1016/ jjhazmat.2009.05.141.

Размещено на Allbest.ru


Подобные документы

  • Description of the general laws of physical and colloid chemistry of disperse systems and surface phenomena. The doctrine of adsorption, surface forces, stability of disperse systems. Mathematical description. Methods of research. Double electric layer.

    контрольная работа [688,2 K], добавлен 15.11.2014

  • History of application of aluminium. The characteristic, chemical and physical properties of aluminium, industrial production and clarification. Aluminium application in the industry, in household appliances. Prospects of development of manufacture.

    реферат [21,6 K], добавлен 11.11.2009

  • The concept and scope of the practical application of the distillation process at the present stage: industry, medicine, food production. The main stages of distillation. The results of global warming and the assessment of its negative consequences.

    презентация [1,3 M], добавлен 16.09.2014

  • Theory, instrumentation, tips, results. Local surface modification. As it can be seen from this paper, STM can be extremely useful in electrochemical studies. It is capable of providing atomic resolution images of samples in water.

    реферат [6,8 K], добавлен 24.10.2002

  • The necessity of description of compound adjectives in the English and the Ukrainian languages in respect of their contrastive analysis. The differences and similarities in their internal structure and meaning of translation of compound adjectives.

    курсовая работа [39,0 K], добавлен 10.04.2013

  • Specific features of English, Uzbek and German compounds. The criteria of compounds. Inseparability of compound words. Motivation in compound words. Classification of compound words based on correlation. Distributional formulas of subordinative compounds.

    дипломная работа [59,2 K], добавлен 21.07.2009

  • Understanding of the organization and its structure. Any organization has its structure. Organizational structure is the way in which the interrelated groups of the organization are constructed. Development of management on the post-Soviet area.

    реферат [24,7 K], добавлен 18.01.2009

  • What is social structure of the society? The concept of social structure was pioneered by G. Simmel. The main attributes of social structure. Social groupings and communities. Social status. Structural elements of the society’s fundamental institutions.

    реферат [25,4 K], добавлен 05.01.2009

  • Social structure as one of the main regulators of social dynamic. The structure of the social system: social communities, social institutions, social groups, social organizations. The structure of social space. The subsystem of society by T. Parsons.

    презентация [548,2 K], добавлен 06.02.2014

  • Study of different looks of linguists on an accentual structure in English. Analysis of nature of pressure of the English word as the phonetic phenomenon. Description of rhythmic tendency and functional aspect of types of pressure of the English word.

    курсовая работа [25,7 K], добавлен 05.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.