Состав, строение, структура, свойства нуклеиновых кислот

Рассмотрение свойств регулярных и нерегулярных биополимеров. Роль нуклеиновых кислот в процессах жизнедеятельности. Изучение соединений, состоящих из нескольких нуклеотидовых молекул. Структура главных азотистых оснований. Основные типы РНК и ДНК.

Рубрика Химия
Вид доклад
Язык русский
Дата добавления 07.11.2016
Размер файла 83,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Костанайский государственный педагогический институт

Факультет дистанционного обучения

Кафедра естественных наук

Доклад на тему «Состав, строение, структура, свойства НК»

Подготовил: Кравченко Ж.А.,

студент (ка) 2 курса

специальности «Биология»

Костанай, 2016

Биополимемры -- класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев -- мономеров. Мономеры белков -- аминокислоты, нуклеиновых кислот --нуклеотиды, в полисахаридах -- моносахариды.

Выделяют два типа биополимеров -- регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

· Первичная структура ДНК -- это линейная последовательность нуклеотидов в цепи. Как правило, последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5'- на 3'-конец цепи.

· Вторичная структура -- это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипараллельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований -- образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105?106. Исходными веществами, из которых построены нуклеотиды -- звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой -- дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.

Нуклеозиды -- это гликозиламины, содержащие азотистое основание, связанное с сахаром(рибозой или дезоксирибозой).

Нуклеозиды могут быть фосфорилированы киназами клетки по первичной спиртовой группе сахара, при этом образуются соответствующие нуклеотиды.

Нуклеотимды (нуклеозидфосфаты) -- фосфорные эфиры нуклеозидов. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.

Нуклеотиды являются сложными эфирами нуклеозидов и фосфорных кислот. Нуклеозиды, в свою очередь, являются N-гликозидами, содержащими гетероциклический фрагмент, связанный через атом азота с C-1 атомом остатка сахара.

В природе наиболее распространены нуклеотиды, являющиеся в-N-гликозидами пуринов или пиримидинов и пентоз -- D-рибозы или D-2-дезоксирибозы. В зависимости от структуры пентозы различают рибонуклеотиды и дезоксирибонуклеотиды, которые являются мономерами молекул сложных биологическихполимеров (полинуклеотидов) -- соответственно РНК или ДНК.

Фосфатный остаток в нуклеотидах обычно образует сложноэфирную связь с 2?-, 3?- или 5?-гидроксильными группами рибонуклеозидов, в случае 2?-дезоксинуклеозидов этерифицируются 3?- или 5?-гидроксильные группы.

Большинство нуклеотидов являются моноэфирами ортофосфорной кислоты, однако известны и диэфиры нуклеотидов, в которых этерифицированы два гидроксильных остатка -- например, циклические нуклеотиды циклоаденин- и циклогуанин монофосфаты (цАМФ и цГМФ). Наряду с нуклеотидами -- эфирами ортофосфорной кислоты (монофосфатами) в природе также распространены и моно- и диэфиры пирофосфорной кислоты (дифосфаты, например,аденозиндифосфат) и моноэфиры триполифосфорной кислоты (трифосфаты, например, аденозинтрифосфат).

Соединения, состоящие из двух нуклеотидовых молекул, называются динуклеотидами, из трёх -- тринуклеотидами, из небольшого числа -- олигонуклеотидами, а из многих -- полинуклеотидами, или нуклеиновыми кислотами.

Названия нуклеотидов представляют собой аббревиатуры в виде стандартных трёх- или четырёхбуквенных кодов.

Если аббревиатура начинается со строчной буквы «д» (англ. d), значит подразумевается дезоксирибонуклеотид; отсутствие буквы «д» означает рибонуклеотид. Если аббревиатура начинается со строчной буквы «ц» (англ. c), значит речь идёт о циклической форме нуклеотида (например, цАМФ).

Первая прописная буква аббревиатуры указывает на конкретное азотистое основание или группу возможных нуклеиновых оснований, вторая буква -- на количество остатков фосфорной кислоты в структуре (М -- моно-, Д -- ди-, Т -- три-), а третья прописная буква -- всегда буква Ф («-фосфат»; англ. P).

Латинские и русские коды для нуклеиновых оснований:

· A -- А: Аденин;

· G -- Г: Гуанин;

· C -- Ц: Цитозин;

· T -- Т: Тимин (5-метилурацил), встречается у бактериофагов в ДНК, занимает место урацила в РНК;

· U -- У: Урацил, встречается в РНК, занимает место тимина в ДНК.

Азомтистые основамния -- гетероциклические органические соединения, производные пиримидина и пурина, входящие в состав нуклеиновых кислот. Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.[1]

Аденин и гуанин являются производными пурина, а цитозин, урацил и тимин -- производными пиримидина.

Тимин, который присутствует только в ДНК, и урацил, который встречается только в РНК, обладают сходной химической структурой. Урацил отличается от тимина отсутствием метильной группы у 5-го атома углерода.

Азотистые основания, соединяясь ковалентной связью с 1' атомом рибозы или дезоксирибозы, образуют N-гликозиды, которые называют нуклеозиды. Нуклеозиды, в которых к 5'-гидроксильной группе сахара присоединены одна или несколько фосфатных групп, называются нуклеотидами. Эти соединения являются строительными блоками молекул нуклеиновых кислот -- ДНК и РНК.

После образования молекулы нуклеиновой кислоты входящие в её состав азотистые основания могут вступать в различные химические реакции под действием ферментов а также факторов внешней среды. Таким образом, нуклеиновые кислоты часто содержат модифицированные азотистые основания. Типичной модификацией такого рода является метилирование.

В таблице приведена структура главных азотистых оснований.

Азотистое

основание

Аденин

Гуанин

Тимин

Цитозин

Урацил

Нуклеозид

Аденозин

A

Гуанозин

G

Тимидин

T

Цитидин

C

Уридин

U

Выделяют три основных типа РНК, различающихся по структуре, величине молекул, расположению в клетке и выполняемым функциям.

Рибосомные РНК (рРНК) синтезируются в основном в ядрышке и составляют примерно 85% всех РНК клетки. Они входят в состав рибосом и участвуют в формировании активного центра рибосомы, где происходит процесс биосинтеза белка. нуклеиновый кислота биополимер молекула

Транспортные РНК (тРНК) образуются в ядре на ДНК, затем переходят в цитоплазму. Они составляют около 10% клеточной РНК и являются самыми небольшими по размеру РНК, состоящими из 70-- 100 нуклеотидов. Каждая тРНК присоединяет определенную аминокислоту и транспортирует ее к месту сборки полипептида в рибосоме.

Все известные тРНК за счет комплементарного взаимодействия образуют вторичную структуру, по форме напоминающую лист клевера. В молекуле тРНК есть два активных участка: триплет-антикодон на одном конце и акцепторный конец на другом.

Каждой аминокислоте соответствует комбинация из трех нуклеотидов -- триплет. Кодирующие аминокислоты триплеты -- кодоны ДНК -- передаются в виде информации триплетов (кодонов) иРНК. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Этот триплет различен для тРНК, переносящих разные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной тРНК. Он получил название антикодон.

Акцепторный конец является «посадочной площадкой» для аминокислоты.

Информационные, или матричные, РНК (иРНК) составляют около 5% всей клеточной РНК. Они синтезируются на участке одной из цепей молекулы ДНК и передают информацию о структуре белка из ядра клеток к рибосомам, где эта информация реализуется. В зависимости от объема копируемойинформации молекула иРНК может иметь различную длину.

Таким образом, различные типы РНК представляют собой единую функциональную систему, направленную на реализацию наследственной информации через синтез белка.

Молекулы РНК находятся в ядре, цитоплазме, рибосомах, митохондриях и пластидах клетки.

Все типы РНК, за исключением генетической РНК вирусов, не способны к самоудвоению и самосборке.

Прамвила Чамргаффа -- система эмпирически выявленных правил, описывающих количественные соотношения между различными типами азотистых оснований вДНК. Были сформулированы в результате работы группы биохимика Эрвина Чаргаффа в 1949--1951 гг.

До работ группы Чаргаффа господствовала так называемая «тетрануклеотидная» теория, согласно которой ДНК состоит из повторяющихся блоков по четыре разных азотистых основания (аденин, тимин, гуанин и цитозин). Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажнойхроматографии и определить точные количественные соотношения нуклеотидов разных типов. Они значительно отличались от эквимолярных, которых можно было бы ожидать, если бы все четыре основания были представлены в равных пропорциях. Соотношения, выявленные Чаргаффом для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказались следующими:

1. Количество аденина равно количеству тимина, а гуанина -- цитозину: А=Т, Г=Ц.

2. Количество пуринов равно количеству пиримидинов: А+Г=Т+Ц.

3. Количество оснований, содержащих аминогруппу в положении 4 пиримидинового и 6 пуринового ядер, равно количеству оснований, содержащих в этом же положении оксогруппу: А+Ц=Г+Т.

Вместе с тем, соотношение (A+Т):(Г+Ц) может быть различным у ДНК разных видов. У одних преобладают пары АТ, в других -- ГЦ.

Правила Чаргаффа, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК Дж. Уотсоном и Фрэнсисом Криком.

В 1968 году Чаргафф выявил, что в каждой из нитей ДНК количество аденина приблизительно равно количеству тимина, а гуанина -- цитозину: А~Т, Г~Ц. В 1990-х с развитием технологии секвенирования ДНК этой правило было подтверждено

Первичная структура у РНК и ДНК одинакова - это линейная полинуклеотидная цепь, в которой нуклеотиды соединены между собой 3/5/ фосфодиэфирными связями, которые образуют остатки фосфорной кислоты между 3/ углеродным атомом одного нуклеотида и 5/углеродным атомом следующего нуклеотида.

На одном конце полинуклеотидной цепи всегда есть свободный остаток фосфорной кислоты в 5/ -положении. Этот нуклеотид обозначается как 5/ - концевой и считается началом молекулы нуклеиновой кислоты. На другом конце цепи содержится нуклеотид со свободной 3/ - гидроксильной группой. Это 3/ -концевой нуклеотид - конец молекулы. Никаких разветвлений в молекулах РНК и ДНК не обнаружено.

Геном - полное количество ДНК, несущее всю генетическую информацию для данного организма.

Размещено на Allbest.ru


Подобные документы

  • История открытия, строение и виды нуклеиновых кислот. Принцип комплементарности азотистых оснований. Структура нуклеотидов и их соединение. Параметры двойной спирали ДНК. Ее биологические функции. Отличия молекул ДНК и РНК. Свойства генетического кода.

    презентация [1,6 M], добавлен 18.05.2015

  • Структура и функция нуклеотидов. Физико-химические показатели и оптические характеристики нуклеиновых кислот. Азотистые основания. Моносахариды: рибоза и дезоксирибоза. Молекулярная масса, содержание и локализация в клетке ДНК и РНК. Правила Чаргаффа.

    курсовая работа [1,6 M], добавлен 11.12.2014

  • Изучение истории открытия нуклеиновых кислот, которые были названы так потому, что впервые были открыты в ядрах клеток, и из-за наличия в их составе остатков фосфорной кислоты. Нахождение нуклеиновых кислот в природе, их химические свойства и применение.

    реферат [312,3 K], добавлен 18.04.2010

  • Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.

    курс лекций [156,3 K], добавлен 24.12.2010

  • Изучение строение гетероциклов с конденсированной системой ядер: индол, скатол, пурин и пуриновые основания. Особенности структуры нуклеозидов и нуклеотидов. Строение АТФ и нуклеиновых кислот. Биологическая роль ДНК и РНК, их химическая структура.

    реферат [45,6 K], добавлен 22.06.2010

  • Химическое строение, кислотный и щелочной гидролиз витамина В12, роль в синтезе нуклеиновых кислот. Участие кобаламина в биохимических восстановительных процессах, клиническое применение. Противотоксическое действие витамина В15 (пангамовая кислота).

    реферат [62,6 K], добавлен 11.01.2010

  • Диссоциирование кислот на катион водорода (протон) и анион кислотного остатка в водных растворах. Классификация кислот по различным признакам. Характеристика основных химических свойств кислот. Распространение органических и неорганических кислот.

    презентация [442,5 K], добавлен 23.11.2010

  • Карбоновые кислоты — более сильные кислоты, чем спирты. Ковалентный характер молекул и равновесие диссоциации. Формулы карбоновых кислот. Реакции с металлами, их основными гидроксидами и спиртами. Краткая характеристика физических свойств кислот.

    презентация [525,6 K], добавлен 06.05.2011

  • Сущность и состав кислот, их классификация по наличию кислорода и по числу атомов водорода. Определение валентности кислотных остатков. Виды и структурные формулы кислот, их физические и химические свойства. Результаты реакции кислот с другими веществами.

    презентация [1,7 M], добавлен 17.12.2011

  • Электронная теория кислот и оснований Льюиса. Теория электролитической диссоциации Аррениуса. Протонная теория, или теория кислот и оснований Бренстеда. Основность и амфотерность органических соединений. Классификация реагентов органических реакций.

    презентация [375,0 K], добавлен 10.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.