Производство нитратной кислоты АК-72. Анализ стадий переработки оксидов азота в HNO3

Рассмотрение особенностей производства азотной кислоты по схеме АК-72. Анализ стадий переработки оксидов. Окисление окиси азота и нитрозных газов. Утилизации азотной кислоты и оксидов. Производство слабой азотной кислоты под повышенным давлением.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 02.06.2016
Размер файла 607,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНЕСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ,МОЛОДЕЖИ И СПОРТА УКРАИНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ

“УКРАИНСКИЙ ГОСУДАРСТВЕННЫХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ”

Индивидуальное задание по ОХТ

На тему: "Производство нитратной кислоты АК-72. Анализ стадий переработки оксидов азота в HNO3"

Выполнил

Ст.гр 3-ТВМС-69

Дубас Родион

Проверил

Проф. Барский В.Д

Днепропетровск 2016

Содержание

  • Введение
  • 1. Производство нитратной кислоты АК-72
  • 1.1 Методы получения азотной кислоты
  • 1.2 Производство азотной кислоты по схеме АК-72
  • 1.3 Производство слабой азотной кислоты под повышенным давлением
    • 1.4 Производство концентрированной азотной кислоты прямым синтезом из оксидов азота
    • 1.5 Концентрирование азотной кислоты с помощью нитрата магния
  • 1.6 Технологическая схема производства азотной кислоты под давлением 0,7 МПа
  • 1.7 Агрегат АК-72м

2. Анализ стадий переработки оксидов азота в HNO3

  • 2.1 Выбор метода производства (или выделение) готового продукта
    • 2.2 Окисление окиси азота и переработка нитрозных газов в азотную кислоту
    • 2.3 Утилизации азотной кислоты и оксидов азота
      • Вывод
      • Список использованной литературы

Введение

Азотная кислота - одна из важнейших минеральных кислот. По объему производства в химической промышленности она занимает второе место после серной кислоты. Азотная кислота широко применяется для производства многих продуктов, используемых в промышленности и сельском хозяйстве:

· около 40% ее расходуется на получение сложных и азотных минеральных удобрений;

· азотная кислота используется для производства

· синтетических красителей,

· взрывчатых веществ,

· нитролаков,

· пластических масс,

· лекарственных синтетических веществ и др.;

· железо хорошо растворяется в разбавленной азотной кислоте. Концентрационная азотная кислота образует на поверхности железа тонкий, но плотный слой нерастворимого в концентрированной кислоте оксида, защищающего металл от дальнейшего разъедания. Эта способность железа пассивироваться используется для защиты его от коррозии.

Применение азотной кислоты

Концентрированную азотную кислоту (особенно с добавлением 10% H2SO4) перевозят обычно в стальных цистернах. Многие органические вещества (в частности животные и растительные ткани) при действии HNO3 разрушаются, а некоторые из них от соприкосновения с очень концентрированной кислотой могут воспламеняться. В лабораторной практике обычно применяется азотная кислота, содержащая около 65% HNO3 (пл.1,40). В промышленности применяют два сорта азотной кислоты: разбавленную с содержанием 50-60% HNO3 и концентрированную, содержащую 96-98% HNO3.

Раньше, когда не существовало производства синтетического аммиака, азотную кислоту получали действием серной кислоты на чилийскую селитру. Объемы производств были очень небольшими, и кислота использовалась только для производства взрывчатых веществ, красителей и некоторых других химических продуктов.

1. Производство нитратной кислоты АК-72

азотный кислота утилизация оксид

1.1 Методы получения азотной кислоты

Первый завод по производству HNO3 из аммиака коксохимического производства был пущен в России в 1916 г. В 1928 г. было освоено производство азотной кислоты из синтетического аммиака.

Различают производство слабой (разбавленной) азотной кислоты и производство концентрированной азотной кислоты.

Процесс производства разбавленной азотной кислоты складывается из трех стадий:

1) конверсии аммиака с целью получения оксида азота

4NH3 + 5О2 > 4NO + 6Н2О

2) окисления оксида азота до диоксида азота

2NO + О2 > 2NO2

3) абсорбции оксидов азота водой

4NO2 + О2 + 2Н2О > 4HNO3

Суммарная реакция образования азотной кислоты выражается

NH3 + 2О2 > HNO3 + Н2О

1.2 Производство азотной кислоты по схеме АК-72

В основу схемы АК-72, разработанной в СССР, положен замкнутый энерготехнологический цикл с двухступенчатой конверсией аммиака и охлаждением нитрозных газов под давлением 0,42-0,47 МПа и абсорбцией оксидов азота при давлении 1,1--1,26 МПа; продукция выпускается в виде 60%-ной HNO3. Первый агрегат АК-72 мощностью 380 тыс. т/год был пущен в 1976 г.

Принципиальная технологическая схема процесса приведена на рисунке 1.1.

Рисунок 1.1 Технологическая схема производства азотной кислоты АК-72: 1 - ресивер; 2 - испаритель; 3, 24 - фильтры; 4, 15 - подогреватели; 5 - рекуперационная турбина; 6 - реактор каталитической очистки; 7 - смеситель; 8 - топочное устройство; 9 - продувочная колонна; 10 - абсорбционная колонна, 11, 14 - водяные холодильники; 12, 23 - компрессоры; 13 - газовый промыватель; 16, 18 - холодильники нитрозных газов; 17 - деаэрационная колонна; 19 - котел-утилизатор; 20 - контактный аппарат; 21 - барабан с сепарационным устройством; 22 - смесительная камера; 25 - труба для забора воздуха

Воздух забирают из атмосферы через трубу 25, очищают от пыли в фильтре 24, сжимают воздушным компрессором 23 до 0,42 МПа и, разделив на два потока, подают в контактный аппарат и подогреватель аммиака. Жидкий аммиак (парожидкостная смесь) через ресивер 1 поступает в испаритель 2, где испаряется при 10-16 °С и давлении 0,6 МПа.

После испарителя газообразный аммиак очищают от масла и механических примесей в фильтре 3 и направляют в подогреватель аммиака 4, где он нагревается до 80-120 °С воздухом.

Очищенный воздух и аммиак поступают в смесительную камеру 22 контактного аппарата 20. Образующаяся аммиачно-воздушная смесь содержит 9,6-10,0% NH3. Пройдя тонкую очистку в фильтре, встроенном в контактный аппарат, аммиачно-воздушная смесь поступает на двухступенчатый катализатор, состоящий из трех платиноидных сетоь и слоя неплатинового катализатора. Нитрозные газы при температуре 840-860 °С поступают в котел-утилизатор 19, расположенный под контактным аппаратом, где за счет их охлаждения получают пар давлением 40 МПа с температурой 440 °С. Котел питают химически очищенной водой, деаэрированной в колонне 17. Деаэрированная вода проходит теплообменник 16, где нагревается нитрозными газами до 150 °С, экономайзер 18 и затем поступает в барабан котла-утилизатора 21. Нитрозные газы после котла-утилизатора охлаждаются в экономайзере 18, отдают свою теплоту в подогревателе 15 и затем поступают в водяной холодильник 14 для дальнейшего охлаждения до 55 СС. При охлаждении нитрозных газов происходит конденсация паров воды с образованием 40-45%-ной азотной кислоты, которая подается в газовый промыватель 13. Сюда же поступают нитрозные газы.

В промывателе происходит одновременно с охлаждением промывка нитрозных газов от нитрит-нитратных солей и дальнейшая конденсация азотной кислоты. Кислота из нижней части промывателя подается в абсорбционную колонну 10, а нитрозные газы сжимаются в компрессоре 12 до 11-12,6 МПа, нагреваясь при этом до 210-230 °С. После сжатия нитрозные газы охлаждают в холодильнике 16 до 155-165 °С. в холодильнике 11 второй ступени до 60-65 °С и подают в абсорбционную колонну 10. На тарелках колонны расположены земеевики для охлаждения кислоты. Сверху в колонну поступает паровой конденсат (Н2O) с температурой не выше 40 °С. Снизу колонны выводится 58-60%-ная азотная кислота; она поступает в продувочную колонну 9 для удаления растворенных в ней оксидов азота и далее направляется в хранилище.

Отходящий газ из абсорбционной колонны нагревается в подогревателе (топочном устройстве) 8, смешивается в смесителе 7 с природным газом и подогретый до 480 °С направляется на каталитическую очистку от оксидов азота в реактор. Катализатором очистки служит алюмопалладиевый катализатор АПК-2. После каталитического разложения выхлопные газы, содержащие до 0,008% оксидов азота при температуре 750 °С, поступают в рекуперационную турбину 5, входящую в состав газотурбинного агрегата. Здесь тепловая энергия выхлопных газов преобразуется в механическую с одновременным снижением давления газа до 0,95-1,05МПа. Энергия, вырабатываемая в газовой турбине, используется для привода компрессоров 12 и 23 (нитрозного и воздушного).

1.3 Производство слабой азотной кислоты под повышенным давлением

В 1960-х годах разработан агрегат по производству азотной кислоты мощностью 120 тыс. т год под давлением 0,716 МПа с использованием высокотемпературной каталитической очистки выхлопных газов, выпускающий продукцию в виде 53-58%-ной HNO3 [1]. При разработке этой схемы были пересмотрены вопросы экономической эффективности производства по схеме АК-72, в результате чего уменьшена мощность установки с 380 тыс. тонн до 120 тыс. тонн в год и снижено давление во всей схеме. В частности, абсорберы работают при давлении 0,5-0,7 МПа. Улучшена схема очистки хвостовых газов.

1.4 Производство концентрированной азотной кислоты прямым синтезом из оксидов азота.

Прямой синтез HNО3 основан на взаимодействии жидких оксидов азота с водой и газообразным кислородом под давлением до 5 МПа по уравнению

2N2O4 + O2 + 2H2O > 4HNO3

100%-ный диоксид азота при атмосферном давлении и температуре 21,5 °С полностью переходит в жидкое состояние. При окислении аммиака полученный NOокисляется в NO2, содержание которого в газовой смеси составляет около 11%. Перевести диоксид азота такой концентрации в жидкое состояние при атмосферном давлении не представляется возможным, поэтому для сжижения оксидов азота применяют повышенное давление. Концентрирование азотной кислоты с помощью водоотнимающих веществ. Получить концентрированную азотную кислоту перегонкой разбавленной кислоты невозможно. При кипении и перегонке разбавленной азотной кислоты ее можно упарить лишь до содержания 68,4 % HNO3 (азеотропная смесь), после чего состав перегоняемой смеси не изменится [1].

В промышленности перегонку разбавленных водных растворов азотной кислоты осуществляют в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота, концентрированные растворы нитратов и др.). Применение водоотнимающих веществ дает возможность понизить содержание водяных паров над кипящей смесью и увеличить содержание паров азотной кислоты, при конденсации которых получается 98%-ная HNО3.

Технологическая схема концентрирования азотной кислоты с применением серной кислоты показана на рисунке 1.2.

Рисунок 1.2 Схема концентрирования разбавленной азотной кислоты в присутствии серной кислоты: 1, 4 - напорные баки для азотной и серной кислоты; 2 - контрольные фонари; 3 - испаритель разбавленной азотной кислоты; 5 - коробка для регулировании подачи кислоты,;6 - концентрационная колонна, 7 - холодильник конденсатор; 8 - холодильник кислоты, циркулирующей в башне; 9 -вентилятор: 10 - поглотительная башня; 11 - сборник; 12 - насос; 13 - холодильник концентрированной азотной кислоты, 14 - холодильник отработанной серной кислоты

Разбавленная азотная кислота из напорного бака 1 подается в колонну 6 через два расходомера 2, включенные параллельно. Один поток кислоты проходит в испаритель 3 и подается в виде смеси жидкости и пара на 10-ю тарелку колонны 6, другой поток без подогрева поступает на вышележащую тарелку [1].

Серная кислота из напорного бака 4 через регулятор 5 подается в верхнюю часть колонны 6 выше ввода холодного потока азотной кислоты. В нижнюю часть колонны вводится острый пар, при нагревании которым из тройной смеси начинает испаряться азотная кислота.

Пары азотной кислоты при температуре 70-85 °С, поднимаясь вверх, выходят через штуцер в крышке колонны и поступают в холодильник-конденсатор 7. В этих парах имеются примеси оксидов азота и воды.

В холодильнике-конденсаторе пары азотной кислоты при температуре около 30 °С конденсируются с образованием 98-99%-ной HNО3, при этом оксиды азота частично поглощаются этой кислотой. Концентрированная азотная кислота, содержащая оксиды азота, направляется на две верхние тарелки и проходит их последовательно, причем оксиды выдуваются из раствора парами азотной кислоты, поступающими в конденсатор 7. Несконденсировавшиеся пары азотной кислоты и выделившиеся оксиды азота направляют на абсорбцию в башню 10, орошаемую водой. Полученная 50%-ная кислота поступает в сборник 11 и вновь направляется на концентрирование. Концентрированную азотную кислоту после охлаждения направляют на склад готовой продукции.

Отработанная серная кислота, содержащая 65-85% H2SO4, поступает на концентрирование. При концентрировании азотной кислоты с применением 92-93%-ной серной кислоты расход последней значительно сокращается при подаче на концентрирование 59-60%-ной HNO3 вместо 48-50%-ной. Поэтому в некоторых случаях выгодно проводить предварительное концентрирование 50%-ной HNO3 до 60%-ной путем простого упаривания.

Большим недостатком концентрирования азотной кислоты с помощью серной кислоты является высокое содержание паров и тумана H2SO4 в выхлопных газах после электрофильтров (0,3-0,8 г/м3 газа). Поэтому серную кислоту заменяют, например, нитратом магния или цинка.

1.5 Концентрирование азотной кислоты с помощью нитрата магния

Этот способ концентрирования обеспечивает получение чистой концентрированной азотной кислоты без вредных выбросов в атмосферу. Однако у него есть ряд существенных недостатков, не позволяющих использовать такой способ повсеместно. В первую очередь это связано с повышенной по сравнению с другими способами себестоимостью получаемого продукта и проблемы утилизации трудно перерабатываемых твердых отходов.

Одним из способов уменьшения выбросов и повышения эффективности производства аммиака является применение энерготехнологической схемы с парогазовым циклом, в котором в качестве рабочей теплоты используется не только теплота водяного пара, но и продуктов сгорания топлива.

Такая схема реализована в ряде производств химической технологии. К достоинствам этого химико-технологического процесса относятся: 1) использование теплоты промежуточных реакций для сжатия сырья

1.6 Технологическая схема производства азотной кислоты под давлением 0,7 Мпа

Атмосферный воздух проходит тщательную очистку в двухступенчатом фильтре 1 (первая ступень фильтра выполнена из лавсановой ткани, вторая - из ткани Петрянова). Очищенный воздух сжимают двухступенчатым воздушным компрессором. В первой ступени 18 воздух сжимают до 0,35 МПа, при этом он нагревается до 165-175 °С за счет адиабатического сжатия. После охлаждения воздух направляют на вторую ступень сжатия 16, где его давление возрастает до 0,716 МПа.

Рисунок 1.3 Схема производства азотной кислоты под давлением 0,7 МПа: 1 - фильтр воздуха; 2 - реактор каталитической очистки; 3 - топочное устройство; 4 - подогреватель метана; 5 - подогреватель аммиака; 6 - смеситель аммиака и воздуха; 7 - холодильник-конденсатор; 8 - сепаратор; 9 - абсорбционная колонна: 10 - продувочная колонна; 11 - подогреватель отходящих газов; 12 - подогреватель воздуха; 13- сосуд для окисления нитрозных газов; 14 - контактный аппарат; 15 - котел-утилизатор; 16, 18 - двухступенчатый турбокомпрессор: 17 - газовая турбина

Основной поток воздуха после сжатия нагревают в подогревателе воздуха 12 до 250-270 °С теплотой нитрозных газов и подают на смешение с аммиаком в смеситель 6.

Газообразный аммиак, полученный путем испарения жидкого аммиака, после очистки от влаги, масла и катализаторной пыли через подогреватель 5 при температуре 150 °С также направляют в смеситель 6. Смеситель совмещен в одном аппарате с поролитовым фильтром. После очистки аммиачно-воздушную смесь с содержанием NH3 не более 10% подают в контактный аппарат 14 на конверсию аммиака. Конверсия аммиака протекает на платинородиевых сетках при температуре 870-900 °С, причем степень конверсии составляет 96%. Нитрозные газы при 890-910 °С поступают в котел-утилизатор 15, расположенный под контактным аппаратом. В котле за сжег охлаждения нитрозных газов до 170 °С происходит испарение химически очищенной деаэрированной воды, питающей котел-утилизатор; при этом получают пар с давлением 1,5 МПа и температурой 230 °С, который выдается потребителю.

После котла-утилизатора нитрозные газы поступают в окислитель нитрозных газов 13. Он представляет собой полый аппарат, в верхней части которого установлен фильтр из стекловолокна для улавливания платинового катализатора. Частично окисление нитрозных газов происходит уже в котле-утилизаторе (до 40%).

В окислителе 13 степень окисления возрастает до 85%. За счет реакции окисления нитрозные газы нагреваются до 300-335 °С. Эта теплота используется в подогревателе воздуха 12. Охлажденные в теплообменнике 12 нитрозные газы поступают для дальнейшего охлаждения в теплообменник 11, где происходит снижение их температуры до 150 єС и нагрев выхлопных (хвостовых) газов до 110-125 °С. Затем нитрозные газы направляют в холодильник-конденсатор 7, охлаждаемый оборотной водой. При этом конденсируются водяные пары и образуется слабая азотная кислота. Нитрозные газы отделяют от сконденсировавшейся азотной кислоты в сепараторе 8, из которого азотную кислоту направляют в абсорбционную колонну 9 на 6-7-ю тарелку, а нитрозные газы - под нижнюю тарелку абсорбционной колонны. Сверху в колонну подают охлажденный паровой конденсат.

Образующаяся в верхней части колонны азотная кислота низкой концентрации перетекает на нижележащие тарелки. За счет поглощения оксидов азота концентрация кислоты постепенно увеличивается и на выходе достигает 55-58%, причем содержание растворенных в ней оксидов азота достигает ~1%. Поэтому кислота направляется в продувочную колонну 10, где подогретым воздухом из нее отдувают оксиды азота, и отбеленная азотная кислота поступает на склад. Воздух после продувочной колонны подается в нижнюю часть абсорбционной колонны 9.

Степень абсорбции оксидов азота достигает 99%. Выходящие из колонны хвостовые газы с содержанием оксидов азота до 0,11% при температуре 35 °С проходят подогреватель 11, где нагреваются до 110-145 °С и поступают в топочное устройство (камера сжигания) 3 установки каталитической очистки. Здесь газы нагреваются до температуры 390-450 °С за счет горения природного газа, подогретого предварительно в подогревателе 4, и направляются в реактор с двухслойным катализатором 2, где первым слоем служит оксид алюминия, с нанесенным на него палладием, вторым слоем - оксид алюминия. Очистку осуществляют при 760 °С.

Очищенные газы поступают в газовую турбину 17 при температуре 690-700 °С. Энергия, вырабатываемая турбиной за счет теплоты хвостовых газов, используется для привода турбокомпрессора 18. Затем газы направляют в котел-утилизатор и экономайзер (на схеме не показаны) и выбрасывают в атмосферу. Содержание оксидов азота в очищенных выхлопных газах составляет 0,005-0,008%, содержание СО2 - 0,23%.

1.7 Агрегат АК-72м

Агрегат АК-72М является модернизированным агрегатом АК-72 с изменением ряда узлов, направленным на повышение мощности и устранение выявленных в первые годы эксплуатации АК-72 недостатков в схеме и оборудовании, влияющих на стабильность работы агрегата и его технико-экономические показатели.

Основные изменения:

1. Повышена проектная производительность агрегата до 1200-1250 т/сутки мнг. HNO3 за счет установки модернизированного машинного агрегата, получившего индекс АПК-2

2. Исключен высокотемпературный реактор каталитической очистки на палладированном катализаторе АПК-2. Применена низкотемпературная каталитическая очистка хвостовых газов на катализаторе без драгметалла АМЦ.

3. Нагрев хвостовых газов до температуры 760 ОС осуществляется на одной стадии в высокотемпературном блоке.

4. Увеличена теплообменная поверхность экономайзера котла-утилизатора и увеличена паропроизводительность котла.

5. Холод испарения жидкого аммиака использован для отвода тепла в верхних охлаждающих тарелках абсорбционной колонны, повышена степень абсорбции.

6. В результате модернизации, помимо повышения производительности агрегата, достигнуто определенное снижение расхода сырья, природного газа, повышена выработка пара.

2. Анализ стадий переработки оксидов азота в HNO3

2.1 Выбор метода производства (или выделение) готового продукта

Современные методы производства азотной кислоты основаны на применении синтетического аммиака и воздуха.

Многолетние поиски новых промышленных методов: связывание атмосферного азота в высокочастотном разряде; термический способ, основанный на использовании тепла сгорания газов, например метана при температуре выше 2200° С пока не дали результатов, позволяющих осуществить их реализацию в промышленных масштабах. По этим методам получаются оксиды азота сравнительно низкой концентрации, обычно она составляет 1,5 - 2 % объемных NO, потому переработка их в азотную кислоту связана со значительными затратами и усложнением технологического и конструктивного оформления производственного процесса.

Промышленные системы производства неконцентрированной азотной кислоты различаются главным образом по давлению, при котором осуществляются основные стадии процесса. В зависимости применяемого давления их можно условно подразделить на следующие группы:

1) Системы, работающие при атмосферном давлении.

Такие системы отличаются простотой оборудования, несложностью его обслуживания, сравнительно низкими расходами аммиака, катализатора, охлаждаюжей воды и электроэнергии. К их недостаткам относятся: большие капитальные затраты, связанные с необходимостью расходования значительного количества специальных дорогостоящих сталей; получение азотной кислоты пониженной концентрации (не выше 50%); необходимость строительства дорогостоящего отделения для улавливания щелочами оксилов азота, содержащихся в отходящих газах, и специального цеха для пеработки получена только после ввода в эксплуатацию всей системы.) Системы, работающие под повышенным давлением. Важнейшей особенностью систем производства азотной кислоты под абсолютным давлением 0,73 МПа является наличие газотурбинного привода. Благодаря наличию газотурбинного агрегата в системах, работающих под давлением 0,73 МПа, полностью компенсируются затраты электроэнергии на производство азотной кислоты; избыток энергии используется в общезаводской сети. Эти системы отличаются также высокой степенью обезвреживания отходящих газов путём каталитического разложения содержащихся в них оксидов азота; повышенной концентрацией продукционной азотной кислоты; высоким уровнем автоматизации всех процессов; меньшим капиталовложениями на строительство и в 2,5-3 раза большей мощностью агрегатов по сравнению с комбинированной системой (абсорбция под Р=0,34 МПа).

2.2 Окисление окиси азота и переработка нитрозных газов в азотную кислоту

Полимеризация двуокиси азота. Переработка нитрозных газов в азотную кислоту обычно происходит при температурах от О до 50 °С. В этих условиях двуокись азота в чистом виде практически не существует, часть ее всегда нолимеризуется в четырех окись азота

NO увеличивается в 1,5 раза. Наряду с положительным влиянием понижения температуры оно оказывает также отрицательное действие, так как увеличивается растворимость N0 в кислоте, и эта растворенная двуокись азота не взаимодействует с водой. Чем выше концентрация кислоты, тем больше растворимость в ней NOj. Практически установлено, что процесс переработки нитрозных газов в азотную кислоту целесообразно проводить при 20--35 °С.? ?Удельный абсорбционный объем. Процесс переработки нитрозных газов в азотную кислоту проводится в колоннах с насадкой из колец Рашига (на установках, работающих при атмосферном давлении) или в колоннах с тарельчатой насадкой (при повышенном давлении). Такая абсорбционная аппаратура отличается большими размерами и высокой стоимостью, поэтому важно, чтобы с единицы объема системы получали как можно больше кислоты. Абсорбционная система характеризуется удельным абсорбционный объемом. Внутренний геометрический объем абсорбционной системы, отнесенный к 1 т азотной кислоты, получаемой в сутки, принято называть удельным объемом. Чем меньше удельный абсорбционный объем системы, тем интенсивнее работает абсорбционная аппаратура.?В отличие от систем, работающих при атмосферном давлении, в системах, работающих под повышенным давлением, окисление аммиака и переработка нитрозных газов в азотную кислоту проводятся под давлением от 4 до 9 кгс/см (0,4--0,9 МН/м ). При переработке нитрозных газов в азотную кислоту необходима N02, но по мере ее превращения в азотную кислоту количество.?Как видно, процесс получения азотной кислоты протекает через ряд последовательных стадий. Реакция (VII, 2) описывает первую стадию -- окисление аммиака. Образующиеся при этом газы, в состав которых входит окись азота, называют нитрозными газами. Вторая стадия описывается реакциями (VII, 3) и (VII, 4) -- переработка нитрозных газов в азотную кислоту.?

?Переработка нитрозных газов в азотную кислоту. Реакции (VII, 3) и (VII, 4) протекают в одном и том же реакционном аппарате. Образовавшаяся по реакции (VII, 4) окись азота вновь окисляется до NO2, которая поглощается водой (реакция VII, 4), и т. д. Реакция (VII, 3)--самая медленная среди всех реакций, которые протекают при переработке нитрозных газов следовательно, от нее зависит общая скорость процесса. Исходя из этого необходимо определить условия, при которых будет интенсивно протекать окисление N0 в NO2, и таким образом обеспечить высокую скорость переработки нитрозных газов.?

Рассмотрение равновесия и кинетики реакций приводит к заключению о необходимости осуществлять переработку нитрозных газов в азотную кислоту припониженных температурах. Единственной реакцией, на которую понижение температуры влияет отрицательно, является эндотермическая реакция разложения азотистой кислоты. Однако эта реакция и при пониженных температурах не контролирует всего процесса получения азотной кислоты. Все остальные реакции, протекающие при переработке окиси азота в азотную кислоту, являются экзотермическими, и при понижении температуры равновесие их смещается в сторону, благоприятную для образования азотной кислоты.?

В отличие от систем, работающих при атмосферном давлении, в описанных ниже системах окисление аммиака и переработка нитрозных газов в азотную кислоту проводятся под давлением выше?

При понижении температуры на 10 °С скорость реакции поглощения NO2 возрастает примерно в 1,5 раза, а скорость окисления N0 увеличивается в 1,15 раза. Наряду с положительным влиянием понижения температуры оно оказывает также отрицательное действие -- увеличивается растворимость NO2 в кислоте, и эта растворенная часть двуокиси азота не взаимодействует с водой. Чем выше концентрация кислоты, тем больше растворимость в ней NO2- Практически установлено, что процесс переработки нитрозных газов в азотную кислоту целесообразно проводить в интервале 20--35 °С.?

Процесс переработки нитрозных газов в азотную кислоту проводится в колоннах с насадкой из колец Рашига (на установках, работающих под атмосферным давлением) или в колоннах с тарельчатой насадкой (в системах с применением повышенного давления). Эта абсорбционная аппаратура имеет большие размеры и стоит очень дорого, поэтому важно, чтобы с единицы объема системы получалось как можно больше кислоты. В качестве характеристики абсорбционной системы применяется понятие удельный абсорбционный объем.?

Тепло, выделяющееся в колонне при переработке нитрозных газов в азотную кислоту, отводится водой, циркулирующей в змеевиках, которые размещены на тарелках. Продукционная 58--60%-ная азотная кислота отбирается из колонны через автоматический клапан 19.?

При наличии на некоторых заводах отбросного кислорода он может быть эффективно использован на установках для получения разбавленной азотной кислоты. Такой кислород можно добавлять к воздуху, поступающему на смещение с аммиаком, или подавать в абсорбционную систему вместо дополнительного воздуха. В первом случае вводимый кислород участвует в реакциях окисления аммиака и окиси азота и интенсифицирует как процесс конверсии аммиака, так и процесс переработки нитрозных газов в азотную кислоту. Во втором случае добавочный кислород принимает участие только в реакции окислении окиси азота и интенсифицирует лишь работу абсорбционной системы.?

Известно, что при обычной температуре и давлении не выше 8--9 ат в процессе переработки нитрозных газов в азотную кислоту реакцией, определяющей скорость процесса, является реакция окисления N0 ?

Таким образом, замену азота кислородом можно производить до полного вытеснения кислородом, при этом скорость-химического процесса будет возрастать, в чем и заключается сущность химического влияния добавочного кислорода. Концентрацию же аммиака в обычных системах нельзя поддерживать выше определенной величины это и обусловливает средний объем нитрозных газов, который с некоторого момента становится постоянным и не зависит от дальнейшего обогащения воздуха кислородом. Этот фактор ограничивает физическое влияние добавочного кислорода на объем аппаратуры, в которой проводится переработка нитрозных газов в азотную кислоту.?

Рассмотрение равновесия и кинетики реакций приводит к заключению о необходимости осуществлять переработку нитрозных газов в азотную кислоту припониженных температурах. Единственной реакцией.

Поглотительная колонна для переработки нитрозных газов в азотную кислоту в комбинированной системе работает в условиях, которые мало отличаются (за исключением состава газа) от таковых в системах повышенного давления. Парциальное давление окислов азота на входе в поглотительную колонну в условиях комбинированной системы на 0,1--0,2 ата выше, чем в колонне, работающей на установках под повышенным давлением. Вследствие этого концентрация продукционной кислоты на комбинированных установках достигает 60--62%. Кроме того, производительность колонны на 25--30% выше, чем на установках повышенного давления.

Переработка нитрозных газов в азотную кислоту включает ряд реакций. Все они хорошо изучены, что позволяет проектировать технологические процессы, опираясь на физико-химические данные.?

Процессы непрерывной адсорбции в аппаратах с кипящими и движущимися слоями адсорбента нашли широкое применение при переработке технических углеводородных газов, которые служат источником получения непредельных углеводородов. Удается эффективно выделять отдельные чистые компоненты из смесей газов, разделять исходные газы на фракции и полученные фракции на отдельные компоненты. Наряду с этим процессы непрерывной адсорбции получили также распространение в технологии связанного азота при обогащении нитрозных газов производства азотной кислоты, а также при выделении азота, водорода, хлористого водорода, двуокиси углерода и других газов во многих процессах. В настоящей главе рассматриваются основные случаи применения непрерывного адсорбционного метода для указанных целей.?

Пример. Рассчитать количество воздуха, которое следует добавить к нитрозному газу, поступающему на абсорбцию, чтобы содержание кислорода в выхлопном газе было 5% для обеспечения высокой скорости окисления N0, а следовательно, и переработки окислов азота в азотную кислоту. Состав нитрозного газа после окисления аммиака (в кг-мол) ?

Пример. Нитрозный газ после контактного аппарата отдает часть своего тепла в котле-утилизаторе и теплообменнике (для подогрева аммиачно-воздушной смеси). Для дальнейшей переработки окислов азота в азотную кислоту необходимо охладить газ и выделить из него конденсацией основное количество воды.

Первая стадия процесса (конверсия аммиака) одинакова как для получения разбавленной, так и для получения концентрированной кислоты, вторая стадия(переработка нитрозных газов) отличается рядом особенностей. Решающее значение при выборе параметров той или иной технологической схемы имеет выбор оптимального давления на каждой из стадий процесса. В производстве азотной кислоты повышение давления существенно интенсифицирует химические реакции на всех стадиях процесса, способствует эффективности теплообмена, позволяет использовать более совершенные массообменные устройства, уменьшает размеры аппаратуры и коммуникаций и, в конечном итоге, позволяет снизить капитальные расходы.

Метод нитрования окислами азота, который начал разрабатываться еще в 70-х годах прошлого столетия, приобрел актуальное значение лишь с 1910--1915 гг. в связи с освоением химической промышленностью синтетических методов получения азотной кислоты из атмосферного азота через окислы азота. Начиная с этого периода, проблема использования окислов азота (нитрозных газов) для нитрования органических соединений привлекает усиленное внимание исследователей, которые посвящают ей значительное число работ. Это объясняется главным образом тем, что метод нитрования окислами азота обладает определенным техническим преимуществом перед обычно принятыми методами нитрования азотной кислотой и нитрующими смесями, так как при его применении устраняется необходимость в переработке окислов азота в азотную кислоту (как известно, синтез азотной кислоты из окислов азота представляет собой довольно сложный процесс и состоит в окислении кислородом низших окислов азота до азотного ангидрида в присутствии воды и получении, таким образом, слабой азотной кислоты, которая затем концентрируется при помощи И 2804).

2.3 Утилизации азотной кислоты и оксидов азота

Запасы этих растворов, несоответствующих показателям качества, исчисляются сотнями тысяч тонн и дальнейшее их хранение становится очень опасным для окружающей среды. В связи с чем явилось целесообразным разработать технологию, позволяющую переработать скопившиеся йодсодержащие растворы и получить при этом необходимые и полезные для Украины продукты. Утилизация некондиционных растворов сводится к извлечению остродефицитного и дорогого йода и получению жидких оксидов азота для производства концентрированной азотной кислоты и водного раствора HNO3 для производства аммиачной селитры или других минеральных удобрений.

Йодсодержащие растворы HNO3-N2O4-H2O могут быть утилизированы несколькими способами: разбавлением водой или слабой азотной кислотой с подачей и без подачи воздуха в реактор; извлечением йода с помощью нитрата кальция или нитрата калия; ректификацией.

Первый способ является самым простым и доступным в аппаратурном оформлении. Изучение процессов взаимодействия исходных компонентов и абсорбции образующихся при этом нитрозных газов применительно к существующим параметрам промышленного агрегата показало, что кислородные соединения йода превращаются в молекулярный йод, который полностью удаляется с отходящими газами, если подавать воздух в зону реакции для интенсификации процесса десорбции оксидов азота и йода. Присутствие йода в отходящих газах может привести к образованию взрывоопасного йодистого азота на стадии каталитической очистки с использованием аммиака. Кроме того, этот способ не позволяет извлекать и затем использовать дефицитный йод.

Возможность извлечения йода появляется при разбавлении йодсодержащих растворов без подачи воздуха в реактор. Исследования процесса выделения йода из растворов в твёрдую фазу, его растворимости в водных растворах азотной кислоты и кинетики испарения йода позволили установить оптимальные технологические параметры.

В процессе разбавления исходного раствора водой протекает реакция кислотообразования и выделяющийся оксид азота(II) восстанавливает молекулярный йод из его кислородных соединений, что благоприятно влияет на процесс выделения его из жидкой фазы. Растворимость йода понижается с ростом концентрации азотной кислоты до 70% и уменьшением температуры. Минимальная растворимость (0,01-0,03%г/л) соответствует температурам 0-20 0С и концентрациям азотной кислоты 65-70%. Благодаря низкой растворимости йода в азотной кислоте данной концентрации происходит его кристаллизация. Определены условия осаждения и фильтрации кристаллического йода: полное извлечение достигается на фильтрующем элементе с диаметром пор не более 5? 10-6 м.

Оставшиеся в разбавленной азотной кислоте йод и оксиды азота испаряют, а затем поглощают концентрированной азотной кислотой, которую возвращают в начало процесса. Экспериментально показано, что полное выделение йода из водного раствора азотной кислоты и оксидов азота происходит при концентрациях HNO3 ниже 80%.

В концентрированной азотной кислоте, не содержащей оксидов азота, йод находится исключительно в виде кислородных соединений, которые при испарении остаются в жидкой фазе. Свойство концентрированной азотной кислоты окислять йод до нелетучих кислородных соединений целесообразно использовать для его поглощения из нитрозных газов, образующихся при взаимодействии перерабатываемых растворов с водой. Исследование процесса абсорбции нитрозных газов водными растворами азотной кислоты показало, что степень извлечения йода повышается с ростом концентрации азотной кислоты, поверхности массообмена и времени контакта газовой и жидкой фаз.

Полное извлечение йода из нитрозных газов происходит при использовании 97-100%-ной азотной кислоты, в которой его растворимость максимальна (0,21-0,45г/л) при температурах 0-80 0С.

С учётом полученных научно-исследовательских результатов и технических решений разработана принципиальная технологическая схема переработки йодсодержащих растворов азотной кислоты и оксидов азота разбавлением их водой без подачи воздуха в реактор.

При переработке 1т йодсодержащего водного раствора азотной кислоты и оксидов азота получают 1,54т 60-%-ной азотной кислоты и 1,5кг йода. Расход концентрированной азотной кислоты для орошения отходящих газов, содержащих йод, составляет 14кг, тепла - 126000кДж.

Другим эффективным способом утилизации йодсодержащих растворов азотной кислоты и оксидов азота является предварительное извлечение из них йода с помощью нитрата кальция или нитрата калия. Физико-химические и технологические исследования позволили определить условия извлечения йода путём взаимодействия указанных растворов с твердыми солями нитратов кальция и калия с последующей фильтрацией суспензии. Существенное влияние на степень извлечения йода оказывают время взаимодействия, исходное соотношение реагентов, концентрация азотной кислоты и диаметр пор фильтрующего элемента. Полное извлечение йода достигается при взаимодействии реагентов в течение 30-40 часов с последующей фильтрацией суспензии на фильтрующем элементе с диаметром пор не более 3? 10-6 м.

При утилизации 1т йодсодержащего раствора по разработанной технологической схеме получают 0,26т жидких оксидов азота, 0,73т 90-95%-ной азотной кислоты и 5,24кг твёрдого йодсодержащего отхода. Расход нитратов кальция и калия составляет 3-4кг, затраты тепла - 336000кДж.

Наиболее перспективным способом переработки некондиционных продуктов является способ ректификации йодсодержащих растворов азот-ной кислоты и оксидов азота, при котором в кубовом отходе получают водный раствор азотной и йодноватой кислот и затем отделяют кристаллы йодноватой кислоты методом упаривания. Осуществление такого технологического процесса и получение результатов представляет значительный научный и практический интерес для экономики Украины.

В целях реализации процесса ректификации были изучены фазовые равновесия в системах HNO3 - H2O - HIO3 и HNO3 - H2O - N2O4 - I2 - HIO3 и установлено влияние компонентов, находящихся в жидкой фазе, на содержание йода в парах. На основании равновесных данных системы HNO3 - H2O - N2O4 - I2 - HIO3 рассчитаны числа теоретических тарелок ректификационной колонки при различных флегмовых числах и установлено их оптимальное значение. Технологические исследования позволили определить допустимые линейные скорости паров и плотности орошения при заданном температурном режиме по высоте колонки, а также рассчитать высоту, эквивалентную теоретической тарелке. Полученные данные по фазовому равновесию жидкость - пар системы HNO3 - H2O - HIO3 , кинетике выделения йода и растворимости HIO3 в водных растворах азотной кислоты были использованы для разработки конструкции выпарного аппарата и расчёта его размеров.

При переработке 1т йодсодержащего раствора методом ректификации получают 0,26т жидких оксидов азота, 0,73т 90-95%-ной азотной кислоты и 10.4кг твёрдого йодсодержащего отхода. Расход кальцинированной соды составляет 1,3кг, затраты тепла - 1080000кДж.

Вывод

Азотная кислота широко применяется для производства многих продуктов, используемых в промышленности и сельском хозяйстве

Список использованной литературы

1. Постоянный технологический регламент № 3 производства неконцентрированной азотной кислоты. - Россошь: ОАО « Минудобрения», 1999. - 335 с.

2. Расчеты по технологии неорганических веществ. Под ред. Дыбиной П.В. - М.: Высш. шк., 1967. - 524 с.

3. Антрощенко В.И., Каргин С.И. Технология азотной кислоты. Изд. 3-е. - М.: Химия, 1987. - 496 с.

4. Павлов К.Ф., Романков П.Г., Носков Н.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов.- Л.: «Химия», 1981. - 560 с.

5. Производство азотной кислоты в агрегатах большой единичной мощности. Под ред. Олевского. О.М. - М.: Химия. 1985. - 400 с.

6. Справочник азотчика, т. 2. Симулин Н.А., Мельников Е.Я. Изд. М.: «Химия», 1969. - 444 с.

7. Самсонов О.А., Солон Б.Я. Технология азотной кислоты. Расчеты на ЭВМ. Учебн. пособ. - Иваново: ИХТУ, 1991. - 144 с.

8. Расчеты по технологии неорганических веществ. / Под ред. Позина М.Е. - Л.:«Химия»,1977.-496с.

Размещено на Allbest.ru


Подобные документы

  • Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.

    презентация [1,6 M], добавлен 05.12.2013

  • Расчет одной из стадий процесса производства азотной кислоты - окисление оксида азота. Составление материального баланса для контактного аппарата, котла-утилизатора и окислителя. Определение температуры газа на выходе из окислителя, вычисление его объема.

    курсовая работа [306,1 K], добавлен 20.10.2011

  • История развития промышленного производства азотной кислоты, особенности ее получения и сферы применения. Методика проведения расчета производительности, тепловых и конструктивных расчетов оборудования цеха по производству азотной кислоты из аммиака.

    курсовая работа [63,8 K], добавлен 09.05.2010

  • Теоретические основы каталитического окисления аммиака. Получение неконцентрированной азотной кислоты под давлением 0,73МПа. Конструкция основного аппарата и вспомогательного оборудования. Автоматизация технологического процесса. Анализ готовой продукции.

    дипломная работа [244,8 K], добавлен 03.11.2013

  • Физические и физико-химические свойства азотной кислоты. Дуговой способ получения азотной кислоты. Действие концентрированной серной кислоты на твердые нитраты при нагревании. Описание вещества химиком Хайяном. Производство и применение азотной кислоты.

    презентация [5,1 M], добавлен 12.12.2010

  • Физико-химические свойства и области применения азотной кислоты. Обоснование технологической схемы переработки окислов азота в азотную кислоту. Расчеты материальных балансов процессов, тепловых процессов, конструктивные расчеты холодильника-конденсатора.

    курсовая работа [822,8 K], добавлен 03.12.2009

  • Технологические свойства азотной кислоты, общая схема азотнокислотного производства. Физико-химические основы и принципиальная схема процесса прямого синтеза концентрированной азотной кислоты, расходные коэффициенты в процессах производства и сырье.

    реферат [2,3 M], добавлен 08.04.2012

  • В настоящее время в промышленных масштабах азотная кислота производится исключительно из аммиака. Физико-химические основы синтеза азотной кислоты из аммиака. Общая схема азотнокислотного производства. Производство разбавленной азотной кислоты.

    контрольная работа [465,6 K], добавлен 30.03.2008

  • Азотная кислота как важнейший продукт химической промышленности. Производство концентрированной и неконцентрированной азотных кислот. Концентрирование нитратом магния. Прямой синтез азотной кислоты из окислов азота. Катализаторы окисления аммиака.

    курсовая работа [1,5 M], добавлен 29.03.2009

  • Сущность промышленного получения азотной кислоты методом окисления аммиака кислородом воздуха. Обоснование принятой схемы производства. Оценка выпускаемой продукции, исходного сырья, вспомогательных материалов. Расчеты материальных балансов процессов.

    курсовая работа [1,1 M], добавлен 11.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.