Пластические массы и изделия на их основе

Общая характеристика материалов на основе высокомолекулярных соединений, классификация и синтез. Физическое и фазовое состояние химических соединений. Пластические массы, их состав. Методы переработки пластмасс в изделия, дефекты при их изготовлении.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 24.06.2015
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Пластические массы и изделия на их основе

1. ОБЩАЯ ХАРАКТЕРИСТИКА МАТЕРИАЛОВ НА ОСНОВЕ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

химический высокомолекулярный пластмасса

Пластическими массами называют материалы, основу которых составляют полимеры, находящиеся в период формирования изделий в вязкотекучем или высокоэластическом состоянии, а в процессе эксплуатации - в твердом (кристаллическом или стеклообразном) состоянии.

Полимеры являются высокомолекулярными соединениями, молекулы которых, называемые макромолекулами, состоят из большого числа одинаковых группировок, связанных между, собой химическими связями.

Высокомолекулярные соединения характеризуются целым рядом свойств:

· Высокомолекулярные соединения характеризуются большой молекулярной массой своих молекул (макромолекул), составляю щей от до

· Макромолекулы состоят из многократно повторяющихся участков (элементарных звеньев);

· Для высокомолекулярных веществ характерна большая гибкость макромолекул, связанная с возможностью внутреннего вращения атомов и атомных групп, входящих в состав макромолекул, а также отдельных участков цепи (так называемых сегментов) вокруг химических связей. В результате реализации этой возможности макромолекулы могут менять свою конформацию, т. е. формурасположения в пространстве;

· Важнейшей особенностью высокомолекулярных соединений является их способность к проявлению больших деформаций (до нескольких сотен процентов) и наличие для ряда соединений этого класса особого состояния - высокоэластичности;

· В высокомолекулярных соединениях ярко проявляются так называемые релаксационные процессы, характеризующие изменение состояния высокомолекулярных соединений во времени, связанные с установлением в таких материалах статистического равновесия;

· Для высокомолекулярных соединений характерным является полидисперсность, свидетельствующая о том, что высокомолекулярные соединения состоят из макромолекул разной длины. Иными словами, любое высокомолекулярное соединение представляет собой смесь макромолекул различной длины, которая определяется степенью полимеризации, т. е. числом мономерных звеньев, из которых она состоит;

· Высокомолекулярные соединения не способны перегоняться или переходить в газообразное состояние без разложения (т. е. с со хранением своей химической структуры и молекулярной массы). Для высокомолекулярных соединений температура кипения выше температуры разложения (Ткип > Тразл);

· Ряд полимеров (линейные и разветвленные) могут образовывать растворы высокой вязкости. При этом растворение полимеров проходит через стадию их набухания.

2. КЛАССИФИКАЦИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

Классификация высокомолекулярных соединений может проводиться по различным признакам.

Ниже приводится несколько видов классификации высокомолекулярных соединений по важнейшим характерным признакам.

1. По происхождению высокомолекулярные соединения подразделяют на:

· природные (натуральные или естественные). Характерными представителями таких соединений являются природные белки, натуральный каучук, шелк, шерсть и др.;

· искусственные, получаемые путем химической обработки натуральных высокомолекулярных соединений. К числу таких материалов относятся: нитроцеллюлоза, ксантогенат целлюлозы (вискоза), ацетат целлюлозы;

· синтетические, представляющие собой продукты процессов полимеризации или поликонденсации низкомолекулярных соединений. К этому наиболее важнейшему классу высокомолекулярных соединений относятся полиэтилен, поливинилхлорид, полиамиды, полистиролы, феноло-формальдегидные смолы, полиуретаны и многие другие соединения.

2. По природе высокомолекулярные соединения подразделяются на:

· органические, в состав которых входят атомы углерода, водорода, азота, кислорода и других органогенов. Типичными представителями таких соединений являются белки, полиолефины, поливинил хлорид, феноло-формальдегидные (ф/ф) и эпоксидные смолы и т. д.;

· неорганические, к которым можно отнести соединения на основе серы, кремния, фосфора и других неметаллов, среди которых самородная сера, кварц, тальк, корунд и др.;

· элементоорганические, к числу которых относятся высокомолекулярные соединения, макромолекулы которых содержат наряду с углеводородными группами неорганические фрагменты, в первую очередь атомы поливалентных металлов (цинка, магния, меди), а также кремния, фосфора и др. К таким соединениям относятся: кремнийорганические (полиорганосилоксаны), бор- и фосфорсодержащие полимеры.

3.По типу реакций получения высокомолекулярные соединения делятся на:

· полимеризационные, получаемые из низкомолекулярных соединений (мономеров) с помощью реакции полимеризации.Типичными представителями их являются: полиэтилен, поливи нилхлорид, полистиролы и др.;

· поликонденсационные, получаемые из низкомолекулярных соединений с помощью реакций поликонденсации, протекающих с выделением побочных продуктов (воды, спирта и др.). К поликонденсационным соединениям относятся полиамиды, полиэфиры, эпоксидные смолы, феноло-формальдегидные смолы и др.

4.По отношению к действию повышенных температур высокомолекулярные соединения подразделяют на:

· термопластичные - высокомолекулярные соединения, изменения свойств которых при нагревании (выше температур плавления или размягчения) носят обратимый характер. такого К материалам типа принадлежат полиэтилен, поливинилхлорид, полистиролы, полиамиды, поликарбонат и др.;

· термореактивные - высокомолекулярные соединения, переходящие при нагревании до определенных температур в неплавкое и нерастворимое состояние. К таким соединениям относятся феноло-формальдегидные, меламино-альдегидные и эпоксидные смолы.

5.В зависимости от состава основной (главной) цепи высоко молекулярные соединения делят на два больших класса:

· карбоцепные высокомолекулярные соединения, основная цепь которых построена только из углеродных атомов. К соединениям этого класса относятся: полиэтилен, поливинилхлорид, полистиролы, полиметилметакрилат (органическое стекло) и др.;

· гетероцепные - высокомолекулярные соединения, в основной цепи которых помимо углеродных атомов содержатся атомы других элементов, чаще всего азота, кремния, кислорода, фосфора. Типичными представителями этого класса соединений являются природные белки, целлюлоза, полиамиды, полиэфиры (например, полиэтилентерефралат), мочевино-формальдегидные смолы и др.

6. По структуре макромолекул высокомолекулярные соединения могут подразделяться:

· на линейные, характеризующиеся молекулами вытянутой или зигзагообразной формы без боковых ответвлений или с ответвлениями малой длины. Представителями этого класса являются полиэтилен, поливинилхлорид, полиамиды, полистиролы и др.;

· разветвленные высокомолекулярные соединения, у которых длина основной цепи соизмерима с длиной боковых ответвлений. К таким соединениям относятся ряд полиакрилатов, различные сополимеры и блок-сополимеры, крахмал и др.;

· пространственные (сетчатые, трехмерносшитые) высокомолекулярные соединения, представляющие собой связанные химическими связями во всех трех направлениях пространства отрезки макромолекул. Представителями этого класса соединений являются отвержденные феноло-формальдегидые, эпоксидные, карбамидные смолы, сшитые (вулканизированные) каучуки (резины, эбонит) и др.

3. СИНТЕЗ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

Природные (естественные) органические высокомолекулярные соединения образуются в процессе биосинтеза в клетках растений и живых организмов и для использования выделяются из растительного и животного сырья с помощью экстракции, фракционного осаждения и других методов.

Природные неорганические высокомолекулярные соединения образуются в результате геохимических процессов, происходящих в земной коре.

Искусственные высокомолекулярные соединения получают путем химической модификации природных высокомолекулярных соединений за счет протекания химических реакций природного полимера с различными химическими агентами. Синтетические высокомолекулярные соединения получают из низкомолекулярных веществ - мономеров - по реакциям полимеризации или поликонденсации.

Синтез высокомолекулярного вещества из низкомолекулярных веществ (мономеров) возможен лишь только в том случае, если молекула мономера может взаимодействовать по крайней мере с двумя другими молекулами, т. е. если исходное вещество имеет в своей структуре двойные связи или является по меньшей мере бифункциональным, т. е. содержит не менее двух функциональных групп, которые могут взаимодействовать между собой. К функциональным группам относятся кислород-азот-серосодержащие группы типа

Пластические массы и изделия на их основе.

В настоящее время химия высокомолекулярных соединений располагает методами синтеза веществ, построенных как из одинаковых, многократно повторяющихся звеньев (--А -- А -- А-- А --), так и из различных беспорядочно расположенных звеньев ( -- А -- В -- В -- А -- В -- А -- А -- А --). Возможен и синтез высокомолекулярных веществ, построенных из различных элементарных звеньев, но со строго определенным их расположением. Правда, следует отметить, что такой синтез технологически достаточно труден.

Характерной особенностью высокомолекулярных соединений является влияние условий проведения синтеза на свойства образующегося продукта. Этим синтез высокомолекулярных соединений отличается от синтеза низкомолекулярных веществ, где изменение условий проведения реакции влияет только на количественный выход продукта.

В зависимости от метода и условий синтеза высокомолекулярного соединения изменяется его средняя молекулярная масса, а также количество макромолекул различной длины (изменяется полидисперсность полимера).

В настоящее время известно четыре основных метода синтеза высокомолекулярных соединений:

· полимеризация;

· поликонденсация;

· ступенчатая полимеризация;

· реакции превращения.

Наиболее распространенными из них являются два первых метода.

Полимеризация представляет собой цепную реакцию получения высокомолекулярных соединений, в ходе которой молекулы мономера последовательно присоединяются к активному центру, находящемуся на конце растущей цепи.

Как всякая цепная реакция, процесс полимеризации состоит по крайней мере из трех основных элементарных стадий.

1) Образование активного центра, связанное с инициированием молекул мономера, т. е. переходом их в активное состояние: А ---> А*.

2) Рост цепи, характеризующийся ростом макромолекул и переходом активного центра на какую-либо другую частицу:

3. Обрыв цепи, связанный с гибелью активного центра в результате реакции с другим активным центром или каким-либо иным веществом.

Активными центрами в реакциях полимеризации могут являться либо свободный радикал, либо ион. В зависимости от этого различают радикальную и ионную полимеризацию.

При радикальной полимеризации активными центрами являются свободные радикалы - электронейтральные частицы, имеющие один или два неспаренных электрона, благодаря чему свободные радикалы легко вступают в реакции с различными мономерами.

В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную полимеризацию, а также полимеризацию под действием химических инициаторов, в качестве которых могут применяться перекиси и другие легко распадающиеся химические соединения.

При ионной полимеризации активными центрами являются положительно и отрицательно заряженные частицы - ионы, образующиеся в присутствии катализаторов, в качестве которых выступают соединения металлов, легко отдающие или принимающие электроны. В зависимости от заряда образующегося иона различают катионную и анионную полимеризацию.

При катионной полимеризации растущая цепь имеет положительный заряд, при анионной полимеризации растущие цепи несут на концах цепей отрицательный заряд.

Поликонденсация - это реакция образования высокомолекулярных соединений из нескольких молекул мономеров одинакового или различного строения, протекающая по механизму замещения функциональных групп.

Реакции поликонденсации протекают с выделением низкомолекулярных продуктов (воды, аммиака, спирта, хлористого водорода и др.), вследствие чего элементарный состав образующегося полимера отличается от элементарного состава исходных веществ - мономеров. Непременным условием протекания реакции поликонденсации является содержание в мономерах не менее двух функциональных групп ( -- ОН, -- СООН, -- МН2 и др.). Функциональность исходных веществ оказывает большое влияние на строение и свойства получаемых продуктов. Известно несколько способов проведения реакций синтеза (полимеризации или поликонденсации) высокомолекулярных соединений:

· полимеризация и поликонденсация в блоке или массе;

· полимеризация и пол и конденсация в растворе;

· полимеризация и поликонденсация на поверхности раздела фаз (эмульсионная или суспензионная);

· полимеризация и поликонденсация в расплаве;

· полимеризация и поликонденсация в твердой фазе;

· полимеризация в газовой фазе.

Каждый из применяемых методов проведения реакций синтеза высокомолекулярных соединений имеет свои достоинства и недостатки, исходя из которых и происходит выбор метода синтеза высокомолекулярного соединения, технологического режима его осуществления, с учетом требуемой чистоты получаемого продукта и технологии его переработки с целью изготовления тех или иных изделий, а также необходимости получения материалов и изделий с оптимальным комплексом потребительских свойств.

4.ФИЗИЧЕСКОЕ И ФАЗОВОЕ СОСТОЯНИЕ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

Высокомолекулярные соединения могут существовать в кристаллическом и аморфном состоянии. Необходимым условием существования кристаллической структуры, характеризующейся наличием определенного порядка в расположении структурных элементов - кристаллической решетки, является регулярность (периодическая повторяемость) в строении достаточно длинных участков цепи. При этом такой порядок распространяется научастки полимера достаточно большой протяженности, включающие несколько тысяч мономерных звеньев. Поэтому о кристаллических полимерах говорят, что они характеризуются наличием "дальнего порядка".

Количественной характеристикой кристаллического полимера является его степень кристалличности, определяемая как доля (в %) кристаллических (упорядоченных) областей в общей совокупности упорядоченных и неупорядоченных участков.

В зависимости от температурных условий кристаллические полимеры могут находиться в твердом (кристаллическом) и вяз-котекучем (расплавленном) состоянии.

Процесс перехода, способного к образованию кристаллических структур полимера, из жидкого (вязкотекучего) состояния в твердое с образованием структур, характеризующихся упорядоченным расположением структурных элементов, называется процессом кристаллизации.

Процесс перехода кристаллического полимера в вязкотекучее (жидкое) состояние (расплав) называется плавлением. Эти процессы связаны с образованием новой фазы (кристаллической или аморфной) и называются фазовыми переходами первого рода. Такие процессы всегда протекают с выделением (кристаллизация) или поглощением (плавление) тепла.

При охлаждении находящихся в жидком (вязкотекучем) состоянии полимеров, не способных образовывать упорядоченные кристаллические структуры, происходит переход полимера из жидкого в твердое состояние без образования новой фазы, т. е. полимер по-прежнему находится в неупорядоченном (аморфном) состоянии. Суть происходящего в этом случае процесса состоит только в повышении вязкости системы. Такой переход аморфного полимера из жидкого (высоковязкого) в твердое состояние без образования упорядоченной (кристаллической) фазы называется стеклованием. Этот процесс, не сопровождающийся тепловыми эффектами (выделением или поглощением тепла), происходит обычно в некоторой температурной области, охватывающей интервал в 10-20°С. В этой температурной области постепенно теряются свойства, характерные для жидкого состояния, и приобретаются свойства, которые отличают данный полимер в твердом стеклообразном состоянии.

В стеклообразном состоянии в аморфном полимере происходят лишь колебательные движения атомов, из которых построены цепи (макромолекулы) полимера. Колебательные движения определенных звеньев, участков цепи (сегментов), а тем более перемещения цепи как единого целого в этой температурной области не имеют места.

Эти три физических состояния (стеклообразное, высокоэластическое и вязкотекучее), характерные для аморфных полимеров, могут проявляться и у кристаллизующихся полимеров, т. е. систем с низкой степенью кристалличности, но склонных к дополнительной кристаллизации в определенных температурных условиях (как правило, в области температур выше температур стеклования).

Область высокоэластического состояния является особенно важной для целого ряда материалов, называемых эластомерами.

Эластомеры представляют собой высокомолекулярные соединения, обладающие высоко эластическим и свойствами в широком интервале температур, охватывающем практически всю область температур их эксплуатации. В группу эластомеров входят каучуки натуральные, каучуки синтетические, резины, герметики и др.

Каучуками называют природные или синтетические линейные или разветвленные высокомолекулярные соединения, обладающие при обычных температурах высокоэластическими свойствами и используемые для получения резин.

В отличие от каучуков, являющихся линейными или разветвленными полимерами, резины являются трехмерносшитыми композициями на основе каучуков, обладающими в условиях эксплуатации высокоэластическими свойствами.

5. ПЛАСТИЧЕСКИЕ МАССЫ, ИХ КЛАССИФИКАЦИЯ И СОСТАВ

Пластические массы эксплуатируются в твердом - кристаллическом или стеклообразном состоянии.

Классификации пластических масс могут быть разными. На рис. 1 приведена классификация пластических масс по ряду важнейших признаков.

Рис. 1 - Классификация пластических масс

Как следует из представленной классификации, одним из важнейших классификационных признаков является состав пластмасс. По этому признаку пластмассы подразделяются на однородные (ненаполненные) и композиционные (наполненные) системы.

Однородные пластмассы состоят, как правило, только из высокомолекулярного вещества.

Неоднородные (композиционные) пластические массы, помимо основного вещества (высокомолекулярного соединения), содержат различные добавки, позволяющие повысить уровень потребительских свойств материалов, их перерабатываемость, устойчивость к действию внешних факторов при эксплуатации и хранении, улучшить эстетические и другие свойства. В качестве добавок, выполняющих такие функции, используются наполнители, пластификаторы, стабилизаторы, антиоксиданты (антиокислители), красители и другие компоненты.

Одним из важнейших компонентов пластмасс являются наполнители, оказывающие большое влияние на такие важные свойства пластмасс, как прочность, твердость, теплостойкость, теплопроводность, диэлектрические, электрические и другие показатели.

По происхождению наполнители могут быть органическими и неорганическими (минеральными). По своей структуре наполнители подразделяются на порошкообразные (кварцевый песок, древесные опилки, окислы и соли металлов и др.), волокнистые (стеклянные, синтетические, асбестовые, хлопковые и другие волокна и очесы), листовые (бумага, ткань, стеклоткань и т. д.).

С использованием указанных выше наполнителей изготавливают пресс-порошковые пластмассы, представляющие собой смеси с порошкообразным наполнителем и волокниты, аналогичные смеси смол с волокнистым наполнителем. Слоистые пластики представляют собой пропитанные смолой, спрессованные и отвержденные системы на основе хлопчатобумажной ткани (текстолиты), стеклоткани (стеклотекстолиты), бумаги (гетинаксы) и др. Особый класс наполненных пластмасс представляют собой газонаполненные системы, имеющие ячеистую структуру с открытыми (поропласты) и закрытыми (пенопласты) порами. Следует отметить, что введение в полимерные композиции наполнителей не только повышают их свойства, но и снижает стоимость (особенно пресс-порошковых и волокнистых материалов), т. к. стоимость применяемых наполнителей, как правило, ниже стоимости полимерной смолы.

Пластификаторы применяют для повышения пластичности, снижения хрупкости и расширения температурного интервала существования композиции в высокоэластическом состоянии. Пластификаторы должны хорошо совмещаться с полимерным связующим, иметь низкую летучесть и не должны мигрировать на поверхность ("выпотевать") в процессе эксплуатации и хранения. В качестве пластификаторов используют эфиры карбоновых и фосфорных кислот, нафтеновые минеральные масла и другие соединения. Наиболее широко распространенными пластификаторами являются эфиры фталевой кислоты и алифатических спиртов (фталаты), такие как дибутил- и диоктилфталат. Содержание пластификаторов в композициях может изменяться в широких пределах и достигать 40-50% от массы полимера.

Стабилизаторы применяют для защиты полимерного связующего от процессов старения, протекающих при переработке пластмасс, а также хранении и эксплуатации пластмасс и изделий на их основе. Основными видами стабилизаторов являются: термостабилизаторы - системы, тормозящие процессы термодеструкции; антиоксиданты, являющиеся ингибиторами окислительных процессов; антиозонанты - добавки, замедляющие процессы озонного старения; фото стабилизаторы - добавки, тормозящие процессы фотоокислительной деструкции; антирады - системы,замедляющие протекание процессов, вызванных действием ионизирующих излучений.

С целью образования на определенной стадии переработки пластмасс сетки поперечных связей между макромолекулами в пластмассовые композиции вводят сшивающие агенты - отвердители. В качестве отвердителей могут применяться различные полифункциональные соединения (диамины, гликоли, аминоспирты, кислоты и т. д.), а также инициаторы, ускорители и активаторы полимеризации.

Для получения материалов с желаемой структурой в пластмассовые композиции могут вводиться структурообразователи - добавки, оказывающие влияние на процессы формирования надмолекулярных структур. Такими регуляторами структурообразования могут служить тонкодисперсные порошкообразные окислы и карбиды металлов, некоторые соли органических кислот, а также поверхностно-активные вещества. Содержание таких добавок составляет всего 0,1-1% от массы полимера.

Для получения пластмасс пористой структуры (поро- и пенопластов) в композиции могут вводиться парообразователи - добавки, вызывающие образование газообразных продуктов либо за счет своего разложения, либо за счет протекания реакций с полимерным связующим.

Среди других добавок, вводимых в пластмассовые композиции, особое значение в последнее время приобрели антипирены -- добавки, снижающие горючесть полимерного материала, затрудняющие его воспламенение, замедляющие процесс распространения в нем пламени или приводящие, в оптимальных вариантах, к его самозатуханию. В качестве антипиренов используют хлорсодержащие вещества, производные сурьмы, а также эфиры фосфорных кислот.

Введение в композиции антистатиков, представляющих собой в большинстве случаев различные поверхностно-активные вещества, препятствует возникновению и накоплению статического электричества в изделиях и конструкциях из полимерного материала.

В пластические массы, в первую очередь изготовленные на основе природных органических высокомолекулярных соединений, могут вводиться антисептики - добавки, предотвращающие или замедляющие процесс размножения грибов и микроорганизмов в полимерных материалах. В качестве антисептиков, вводимых в полимер в количестве долей процента, используются органические соединения олова, мышьяка, ртути, производные фенолов, салициловой кислоты и др.

Как следует из представленной в табл. 1 классификации, по природе полимерной основы (связующего) пластмассы подразделяются на пластмассы на основе синтетических смол и пластмассы на основе модифицированных природных соединений. Благодаря присущим им ценным свойствам наиболее перспективными являются пластмассы, полученные на основе синтетических смол.

Очень важным с точки зрения методов переработки пластмасс в изделия является подразделение пластмасс на термопластичные и термореактивные.

Термопластичными пластмассами или термопластами называют композиции, которые при повышении температуры способны переходить в высокоэластическое или вязкотекучее состояние, а при охлаждении вновь возвращаться в твердое - кристаллическое или стеклообразное состояние. При таких переходах свойства материалов изменяются обратимо. Термопласты, перерабатываемые в изделия в вязкотекучем или высокоэластическом состоянии, могут подвергаться такой технологической операции несколько раз. К группе термопластов относится большое число пластмасс, представляющих собой чистые синтетические полимеры иликомпозиции на их основе, такие как полиэтилен, полипропилен, поливинилхлорид, полистиролы, фторопласты, полиакрилаты, полиамиды, поликарбонаты и другие, а также композиции на основе полимеров природного происхождения, таких как нитроцеллюлоза, ацетилцеллюлоза и др.

Термореактивными пластмассами, или реактопластами, называют пластмассы, которые переходят в высокоэластическое или вязкотекучее состояние под действием температуры лишь на короткий период, соответствующий времени, необходимому для формования изделий, а затем теряют способность к таким переходам в связи с образованием трехмерносшитой пространственной сетки. Такой переход материала в неплавкое и нерастворимое состояние для реактопластов является необратимым. Вновь перевести отвержденную термореактивную пластмассовую композицию в размягченное или вязкотекучее состояние за счет повышения температуры не представляется возможным. К термореактивным относят пластмассы на основе феноло-формальдегидных, меламино-формальдегидных, эпоксидных смол, ряда полиуретанов, полиэфиров и других высокомолекулярных соединений.

По комплексу физико-механических свойств пластмассы условно можно подразделить на жесткие, полужесткие и мягкие.

Жесткие пластмассы являются твердыми композициями, имеющими преимущественно аморфную структуру. Они характеризуются высоким модулем упругости и низкими деформационными свойствами (относительное удлинение при разрыве составляет несколько процентов). Под действием напряжений в области нормальных (комнатных) и повышенных (до определенной величины) температур жесткие пластики способны длительно сохранять свою форму. К материалам этого типа относятся фено- и аминопласты, полистирол, полиметилметакрилат и другие пластмассы.

Полужесткие пластические массы представляют собой твердые, в известной степени упругие материалы, характеризующиеся, как правило, кристаллической структурой. Пластмассы этого типа характеризуются средней величиной модуля упругости и хорошей деформативной способностью, составляющей несколько десятков, а иногда несколько сотен процентов. Типичными представителями этой группы материалов являются полиэтилен, полиамиды, поливиниловый спирт и др.

Мягкие пластики представляют собой эластичные композиции преимущественно аморфной структуры, характеризующиеся низким модулем упругости и высокими деформационными свойствами. Причем, для них характерной является малая величина остаточной деформации при достаточно большой общей деформационной способности. Развитие и исчезновение обратимой деформации в мягких пластиках происходит с малой скоростью, в отличие от эластомеров, где обратимые деформации проявляются и исчезают с большой скоростью.

6. МЕТОДЫ ПЕРЕРАБОТКИ ПЛАСТМАСС В ИЗДЕЛИЯ

Переработка пластмасс - это комплекс технологических процессов, обеспечивающий получение полуфабрикатов или изделий из пластмасс с использованием специального оборудования.

Собственно процесс переработки включает в себя составление композиций и подготовку их к формованию путем гранулирования, таблетирования и сушки; изготовление изделий определенной формы и размера, а также последующую их обработку с целью повышения свойств и уровня качества путем термической обработки, а также подработки для удаления некоторых дефектов и т. д.

В зависимости от физического состояния полимерного связующего в материале методы переработки пластмасс можно подразделить на следующие группы:

· формование из полимеров, находящихся в вязкотекучем состоянии, с использованием методов литья под давлением, экструзии, горячего прессования, спекания, каландрования;

· переработка материалов, находящихся в высокоэластическом состоянии, с использованием листов или пленочных полуфабрикатов путем вакуумного и пневматического формования, горячего штампования, экструзии с раздуванием;

· формование из пластмасс, находящихся в твердом (стеклообразном или кристаллическом) состоянии, основанное на способности полимерных материалов проявлять вынужденную высокоэластичность, с использованием методов холодной штамповки, прокатки и др.;

· изготовление изделий непосредственно из жидких мономеров, так называемым химическим формованием, при котором полимеризация производится непосредственно в формах, соответствующих формам изделий или полуфабрикатов (например, получение листового органического стекла);

· формование изделий из растворов и дисперсий полимеров: получение пленок методом полива с последующим испарением жидкой фазы, окунанием формы, ротационным формованием.

Рассматриваемые методы переработки пластмасс имеют свои достоинства и недостатки, с учетом которых выбирается тот или другой вид переработки.

Литье под давлением как один из методов переработки пластмасс основан на принципе передавливания плунжером расплава пластмассы под давлением в пресс-форму, имеющую внутреннюю форму и размеры, соответствующие формам и размерам формуемого изделия с последующим переводом пластмассовой композиции в пресс-форме в твердое состояние. Литье пластмасс происходитв высокопроизводительных литьевых машинах. Масса литьевых изделий может колебаться от нескольких грамм до нескольких килограмм. Основной группой материалов, перерабатываемых обычно методом литья под давлением, являются термопласты.

Достоинствами этого метода являются его высокая производительность, возможность полной автоматизации процесса.

Недостатки метода - высокая стоимость формующего инструмента, а также сравнительно низкая производительность при изготовлении изделий сложной конфигурации.

Метод экструзии, как и метод литья под давлением, связан с переводом твердого полимера (в виде гранул или порошка) в расплав и последующим продавливанием расплава шнеком через сопло различного профиля, при выходе из которого расплав охлаждается и затвердевает, Метод экструзии позволяет получать профильные изделия непрерывной длины в виде стержней, труб, ленты, листов, пленок.

Достоинство этого метода - высокая производительность (до 3-3,5 т/ч).

Недостатки метода - сложность управления процессом и высокая стоимость оборудования.

Метод экструзии с раздуванием позволяет за счет раздувания горячим воздухом выходящей из экструдера полимерной композиции в виде рукава получать полые выдувные изделия типа бутылей, флаконов, канистр.

Горячим и холодным прессованием можно получить изделия сложной формы, размеров и толщины. Методом горячего прессования изготавливают в основном изделия из термореактивных пластмасс - фенопластов, аминопластов и др. Принцип производства изделий методом горячего прессования заключается в одновременном воздействии на прессовочную композицию повышенной температуры и давления, под действием которых пресс-композиция размягчается или плавится и заполняет объемпресс-формы, в которой отверждается за счет реакций химического сшивания (для реактопластов), либо после заполнения пресс-формы в ней охлаждается до перехода в твердое состояние (для термопластов). Прессование реактопластов производят при повышенной температуре (160-190 °С) и высоком давлении (150-400 МПа).

Недостатками этого метода переработки пластмасс являются низкая производительность и трудность автоматизации технологического процесса.

Пневматическое и вакуумное формование позволяет получать объемные, как крупногабаритные, так и малые по размерам, изделия (от ванн до мелкой тары).

Принцип этого метода состоит в разогреве листовой заготовки выше температуры размягчения с последующим прижатием размягченного листа к копируемой форме избыточным давлением воздуха с усилием 1,5-5 атм. (пневматическое формование) или разряженным воздухом (вакуумом) ~0,9 атм.

Преимуществами этого метода являются низкая стоимость формующего инструмента, возможность автоматизации процесса и организации его непрерывности.

Недостатки - большое количество отходов, разнотолщинность получаемых изделий, относительно невысокая производительность.

Каландрование - это процесс непрерывного формования полимерного материала путем пропускания его расплава через зазор между вращающимися валками каландра. При каландровании расплавленная полимерная композиция проходит через ряд зазоров разной величины. При этом происходит увеличение ширины ленты материала при одновременном ее утоньшении, в результате чего получается полотно заданной толщины и ширины.

7. ДЕФЕКТЫ ПРИ ИЗГОТОВЛЕНИИ ИЗДЕЛИЙ ИЗ ПЛАСТМАСС

Дефекты состава возникают при неправильном подборе рецептур или использовании недоброкачественных компонентов композиционных пластмасс, при нарушении оптимального их соотношения. К числу дефектов состава относят:

· инородные включения - видимые посторонние включения, являющиеся результатом загрязнения композиции пластмасс или оборудования;

· пониженную механическую прочность, возникающую при малом или избыточном содержании наполнителя. При малом содержании наполнитель не оказывает должного армирующего эффекта, при избытке - не полностью смачивается полимером;

· повышенное водопоглощение - результат избыточного количества гигроскопических наполнителей.

Дефекты формования возникают в связи с недостатками конструкции формы и формовочных машин, неправильным выбором или нарушением режима переработки пластмасс. Особенно важным является соблюдение температурного режима и продолжительности операции формования. При отклонениях от оптимальной температуры формования, неравномерном прогреве форм, слишком быстром или замедленном охлаждении могут происходить деструктивные процессы, возникать значительные внутренние напряжения, вызывающие деформацию изделий, появлениедефектов внешнего вида, а также снижающие механическую прочность. К числу наиболее распространенных дефектов формования относят следующие:

· коробление - искривление формы изделий, вследствие различия температур пуансона и матрицы пресс-формы, извлечения из формы неохлажденного (для термопластов) или неотвержденного (для реактопластов) изделия, неравномерной усадки компонентов пластмассы;

· трещины - узкие щели в изделиях, возникающие вследствие значительных внутренних напряжений при нарушении температурного режима формования, а также излишней влажности формовочной смеси;

· раковины - пустоты в изделиях, которые образуются при по падании посторонних газовых включений или газообразных продуктов деструкции, усадочные раковины возникают при чрезмерно большой усадке отдельных компонентов смеси;

· вздутия - мелкие или крупные выпуклости на поверхности, возникающие вследствие повышенного содержания влаги в формовочной смеси, нарушении режима формования (слишком быстрое движение сердечника, нагнетающего воздух, малое удельное давление и др.);

· сколы - углубления на поверхности изделий, возникающие при механических повреждениях;

· заусенцы - острые выступы по краю и дну изделия;

· стыки технологические - видимые линии соединения (спая) порций литьевой массы, образующиеся при перегреве массы и малом давлении формования;

· разводы - заметные следы растекания пластмассы в виде полос или пятен вследствие различной вязкости отдельных участков расплавленной формовочной смеси;

· облой (грат) - утолщение на поверхности изделий по месту разъема формы вследствие избытка или малой текучести пресс-порошка;

· риски и царапины - результат обработки поверхности пресс-формы крупнозернистым абразивным материалом или повреждения посторонними включениями на поверхности пресс-формы;

· следы от литникового канала - неудаленный и незачищенный остаток материала, вышедшего из литникового канала, на лицевой поверхности изделия;

· следы от выталкивателя - выступы и углубления на корпусе, возникающие при выталкивании из формы не затвердевшего изделия;

· следы от разъема формы - утолщенный шов на поверхности изделия от затекания пластмассы при неплотном соединении частей формы;

· матовость - пятна пониженного блеска, образующиеся при недостаточной полировке и смазке формы, низкой температуре или недостаточной выдержке при прессовании.

Дефекты отделки могут являться следствием небрежного или некачественного проведения ряда операций по исправлению дефектов формования: некачественное удаление облоя, плохая за-полировка рисок, царапин и следов от разъемов пресс-форм и др. Нанесение новых дефектов происходит в случае использования крупнозернистых абразивных материалов для зачистки облоя и удаления следов от литника. К дефектам отделки относятся также дефекты, связанные с посттехнологическим декорированием изделий: применение красочных составов с малой адгезией, нечеткий рисунок, смещение составных частей декора, отслоение декора, растекание красителя, небрежное выполнение декора и т. п. В соответствии с требованиями стандартов дефекты изделий подразделяют на недопустимые и допустимые.

Недопустимые дефекты - раковины, трещины, разводы, облой, коробление свыше 0,5% габаритных размеров (для прессованных изделий), миграция красителя, смещение составных частей рисунка и растекание красителя, искажающие внешний вид изделия.

Остальные дефекты допускаются в изделиях, если они не портят его внешнего вида и их размер (количество) не превышает допустимых пределов.

8. ПЛАСТИЧЕСКИЕ МАССЫ, ПРИМЕНЯЕМЫЕ В ПРОИЗВОДСТВЕ ТОВАРОВНАРОДНОГО ПОТРЕБЛЕНИЯ

Наиболее широкое применение находят в настоящее время термопластичные материалы, отличающиеся способностью перерабатываться в изделия различными наиболее экономичными методами и сохраняющие способность к повторным переработкам. Среди термопластов наиболее широкое применение нашли материалы на основе полиолефинов, поливинилхлорида, полистирола, полиамидов, полиакрилатов. Эти материалы используются как в виде гомополимеров, так и в виде композиций, наполненных минеральными порошкообразными веществами или короткими стеклянными, углеродными или органическими синтетическими волокнами.

Полиэтилен - полимер общей формулы [ -- СН2 -- СН2 -- ]n представляет собой бесцветный кристаллический (55-85%) полужесткий или достаточно жесткий материал, характеризующийся высокой деформативной способностью (до нескольких сотен процентов), прочностью (10-30 МПа), хорошей морозостойкостью (до -60...-70°С). Полиэтилен характеризуется высокой химической стойкостью: не растворяется в кислотах и щелочах, органических растворителях (до температуры 70 °С), стабилен при контакте с водой и маслами. Полимер не имеет характерного запаха и вкуса.

В зависимости от способа получения различают полиэтилен высокого (ПЭВД) и низкого (ПЭНД) давления, несмотря на общий химический состав и строение, отличающиеся друг от друга целым рядом свойств.

ПЭВД, имеющий, как правило, более низкую молекулярную массу, более низкую степень кристалличности, а также большую степень разветвленности макромолекул по сравнению с полиэтиленом низкого давления, характеризуется меньшей теплостойкостью (Tпл= 105-110 °С), более низкой плотностью (р = 910-911 кг/м3) и меньшей жесткостью.

ПЭНД имеет более высокую теплостойкость (Тпл=120-130 °С), большие жесткость и прочность (до 30 МПа). Однако вследствие возможного наличия в материале следов катализаторов полиэтилен низкого давления не допускается для изготовления детских игрушек, а также изделий, контактирующих с пищевыми продуктами. ПЭВД широко применяется для изготовления посуды и детских игрушек, пленок, труб и соединительных деталей к ним, санитарно-технических изделий, различных емкостей, изоляции для проводов и кабелей, клеенок, волокон для технических целей.

Полипропилен - линейный кристаллический полимер (степень кристалличности -75%) общей формулы

по своим свойствам напоминает полиэтилен, но имеет меньшую плотность (900-910 кг/м3), отличается большей теплостойкостью (Тпл = 160-170 °С), но характеризуется меньшей морозостойкостью (температура хрупкости -5...-15 °С). Полипропилен имеет большую жесткость, чем полиэтилен, а получаемые из него пленки более прочные и более прозрачные. Достаточно высокая теплостойкость полипропилена позволяет подвергать изделия из него стерилизации. Однако, к сожалению, полипропилен и изделия из него отличаются низкой стабильностью к действию ультрафиолетовых лучей, одного из основных компонентов солнечного света, подвергаясь фотоокислительной деструкции под действием светопогоды.

Применяют полипропилен для изготовления хозяйственных и галантерейных товаров, игрушек, упаковочной тары для сыпучих товаров и жидких сред, деталей приборов и машин, труб, пленок, волокон и нитей.

Входящий в группу полиолефинов полиизобутилен представляет собой каучукообразный аморфный полимер общей формулы

Поливинилхлорид наряду с полиэтиленом относится к одному из самых крупнотоннажных полимеров.

Получается поливинил хлорид полимеризацией хлористого винила. Поливинилхлорид представляет собой аморфный полимер общей формулы

[-СН2 -- СНС1 --]n, характеризующийся достаточно высокой плотностью (1400 кг/м3) и хорошей химической стойкостью к действию кислот, щелочей, большого числа органических растворителей, жиров, нефтепродуктов и воды.

Полистирольные пластики представляют собой особую труппу полимеров аморфного строения, получаемых полимеризацией стирола с другимимономерами. Обычно в число полистирольных пластиков включают полистирол общего назначения, ударопрочный стирол, пенополистирол и ряд сополимеров стирола.

Это прозрачный, достаточно хрупкий полимер, обладающий невысокой теплостойкостью (температура стеклования 85-90°С), что ограничивает температурную область его использования в пределах 80°С. Материал характеризуется высокими диэлектрическими свойствами, что обеспечивает ему широкое применение в радиотехнике в виде конденсаторных пленок - стирофлекса. Возможность и легкость переработки полистирола различными способами обеспечивает его широкое применение для изготовления бытовых и галантерейных изделий (вазы, шкатулки, пуговицы, гребни), лабораторной химической посуды, упаковочной тары, осветительной арматуры и др.

Полиакрилаты представляют собой полимеры и сополимеры акриловой и метакриловой кислот или их производных, имеющие линейное строение макромолекул с боковыми ответвлениями. Среди акрилатов наиболее широкое применение находят полиметил-метакрилат и полиакрилонитрил.

Полиметилметакрилат, цепь которого имеет строение:

Материал является типичным аморфным полимером с температурой размягчения 105-110 °С и отличается достаточно высокой прочностью и высокой прозрачностью.

Полиакрилонитрил представляет собой труднокристаллизирующийся линейный полимер белого цвета.

Материал термостоек: температура размягчения полимера -220-230 °С. Вместе с тем в этой области температур начинает протекать процесс деструкции полимера, в связи с этим процесс получения изделий из полиакрилонитрила производится не из расплава, а из раствора диметилформамиде. Основная часть полиакрилонитрила используется для получения шерстеподобного несминаемого волокна - нитрона.

Полиамиды представляют собой класс гетероцепных линейных полимеров, в основной цепи которых имеется амидная связь.

Полиамиды являются твердыми, рогообразными, преимущественно кристаллическими продуктами, с температурой плавления, превышающей в большинстве случаев 200 °С. Полиамиды сравнительно устойчивы к действию воды, хотя и способны ее поглощать в количестве до 10%. Материалы обладают низким коэффициентом трения, что способствует их применению в узлах трения.

К недостаткам полиамидов следует отнести их сравнительно низкую устойчивость к термо- и фотоокислению, вызывающим разрушение амидных связей макромолекул, что приводит к снижению прочности и эластичности материала, появлению хрупкости, а также ухудшению диэлектрических свойств за счет большего влагопоглощения.

Полиэфиры, являющиеся по своей химической природе сложными эфирами, получают реакцией поликонденсации многоатомных спиртов и многоосновных кислот или их ангидридов.

Наиболее важными представителями этого класса пластмасс являются полиэтилентерефталат и поликарбонат - термопластичные полиэфиры линейного строения, получаемые из двухатомных кислот и двухатомных спиртов и фенолов. Полиэтилентерефталат (ПЭТФ) представляет собой твердый полимер белого цвета общей химической формулы

Материал относится к классу кристаллизующихся полимеров: при достаточно быстром охлаждении расплава до комнатных температур образуется аморфный прозрачный полимер, в дальнейшем медленно кристаллизирующийся, при этом скорость кристаллизации достигает максимального значения при температуре 80 °С. Максимальная степень кристалличности неориентированного ПЭТФ достигает 45%, у ориентированного материала (в виде волокон и пленок) этот показатель может составлять даже 60%. ПЭТФ отличается достаточно высокой температурой плавления (255-265 °С), значительной плотностью (до 1450 кг/м3), а также хорошими диэлектрическими свойствами, сохраняющимися практически неизменными во влажной среде. Материал является химически устойчивым: при комнатных температурах нерастворим в большинстве органических растворителей, органических кислотах, жирах и воде. Предельное водопоглощение материала не превышает 1%.

Поликарбонаты, являющиеся сложными полиэфирами угольной кислоты и диоксисоединений, характеризуются наличием в основной цепи карбонатной связи, связывающей радикалы R и R':

Благодаря ценному комплексу свойств наибольший интерес представляют линейные ароматические поликарбонаты. Поликарбонаты характеризуются сравнительно низкой степенью кристалличности (30-40%), высокой температурой плавления (220-270 °С), хорошей теплостойкостью (теплостойкость по Вика 150-165 °С) и выдающейся морозостойкостью, лежащей в области температур -100 °С. Материал обладает хорошими прочностными свойствами и особенно высокой устойчивостью к ударным нагрузкам, практически сохраняющимся неизменными в широком интервале температур от -150 до +200 °С. Материалы отличают высокие диэлектрические свойства и хорошая оптическая прозрачность. Поликарбонаты обладают низкой гигроскопичностью, устойчивы к действию УФ-света, излучений высокой энергии и суммарному воздействию факторов светопогоды. Благодаря комплексу ценных свойств поликарбонаты являются одним из самых перспективных видов пластических масс и находят широкое применение для изготовления корпусов радиоаппаратуры, холодильников, магнитофонов, труб, кранов, насосов, шестеренок, болтов, электротехнической и светотехнической аппаратуры.

Фторопласты - принятое в России техническое название фтор содержащих пластмасс, имеющих в разных странах различные торговые наименования: фторлон (Россия), тефлон (США), сорефлон (Франция), гостафлон (Германия) и т. д. Наиболее известным среди фторопластов является фторопласт-4, имеющий химическое название политетрафторэтилен, структурная формула которого [ -- CF2 -- СF3 --]n.

Фторопласт-4 представляет собой получающийся методом полимеризации линейный высококристаллический (степень кристалличности достигает 90%) полимер белого цвета, характеризующийся высокой для ненаполненных пластмасс плотностью, составляющей 2150-2250 кг/м3.

Фторопласт-4 является одним из самых теплостойких и термостабильных полимеров: его температура плавления составляет 327 °С, а заметное разложение материала наблюдается лишь при 415 °С.

Фторопласт-4 является наиболее химически стойким полимером: он не растворяется ни в одном растворителе, на него не действуют даже концентрированные кислоты, сильные окислители и другие агрессивные вещества. Материал является лучшим диэлектриком, и его диэлектрические свойства не изменяются в широком температурном интервале эксплуатации. Фторопласт-4 обладает самым низким коэффициентом трения из всех известных материалов. Материал отличается антиадгезивными свойствами, а также является физиологически безвредным.

Термореактивные пластмассы в отличие от термопластичных в процессе переработки в изделия переходят в неплавкое и нерастворимое состояние и в дальнейшем эксплуатируются в этом виде, не переходя в состояние расплава даже при высоких температурах, вызывающих разложение полимера. Это придает таким материалам высокую теплостойкость и устойчивость к действию химически агрессивных сред: растворителей, кислот, щелочей, водных сред и др., тем самым расширяет диапазон возможных условий эксплуатации изделий из этих материалов.

Наиболее распространенными среди таких материалов являются феноло-формальдегидные, амино-формальдегидные, эпоксидные и кремнийорганические смолы и пластические массы на их основе.

Феноло-формальдегидные (ф/ф) смолы, являющиеся одним из наиболее распространенных полимерных материалов, получают поликонденсацией формальдегида с фенолом, имеющим три активных центра. Реакция протекает в несколько стадий, при этом на начальной стадии образуются линейные продукты поликонденсации, а затем разветвленные (резитол) и пространственно сшитые (резит) структуры. При избытке фенола в реакционной смеси получают новолачные (идитоловые) смолы, а при избытке формальдегида - резольные (бакелитовые) смолы.

Резольные смолы под действием повышенных температур способны переходить в неплавкое, нерастворимое трехмерно сшитое состояние (резит). Резольные смолы широко применяются для изготовления фенопластов - пластических масс на их основе. Фенопласты получают из прессованных материалов, являющихся композициями новолачной или резольной смолы на стадии рези-тола, обладающего разветвленной или слабо сшитой структурой и наполнителей различного состава. В процессе переработки пресс-порошков при повышенных температурах (160-180 °С) происходит переход ф/ф смолы в трехмерносшитое состояние. Сшитые ф/ф смолы обладают высокой теплостойкостью и термостойкостью, выдерживая в течение длительного времени воздействие температур 125 °С и кратковременно до 170 °С. Изделия из фенопластов обладают хорошей прочностью, высокими диэлектрическими свойствами, устойчивостью к действию кислот, щелочей, растворителей, воды.

Фенопласты широко используются для изготовления хозяйственных, канцелярских товаров и товаров культурно-бытового назначения, а также электроустановочной аппаратуры.


Подобные документы

  • Характеристика некоторых химических соединений на основе хинолина. Особенности синтеза двух азокрасителей ряда 8-гидроксихинолина. Метод синтеза потенциального флюоресцентного индикатора, реагентов для модификации поверхности матрицы металлоиндикаторами.

    курсовая работа [76,3 K], добавлен 03.04.2014

  • Методы синтеза ароматических соединений и поиск новых, ранее неизвестных соединений пиразольного ряда. Характеристика опасных и вредных факторов при проведении работы и методы защиты. Организация исследований и рабочего места в химической лаборатории.

    дипломная работа [170,8 K], добавлен 20.05.2011

  • Применение пластических масс в отраслях промышленности и сельского хозяйства в качестве материалов конструкционного, защитного, электротехнического, декоративного, фрикционного и антифрикционного назначения. Основные свойства термопластов и реактопластов.

    реферат [22,3 K], добавлен 22.11.2010

  • Общие характеристики и свойства урана как элемента. Получение кротоната уранила, структура его кристаллов. Схематическое строение координационных полиэдров в структуре соединений уранила. Синтез комплексных соединений уранила, их основные свойства.

    реферат [1,0 M], добавлен 28.09.2013

  • Синтез и свойства N,S,О-содержащих макрогетероциклов на основе первичных и ароматических аминов с участием Sm-содержащих катализаторов. Гетероциклические соединения, их применение. Методы идентификации органических соединений ЯМР- и масс-спектроскопией.

    дипломная работа [767,1 K], добавлен 22.12.2014

  • Понятие растворов высокомолекулярных соединений (ВМС). Процесс набухания ВМС: его стадии, причины, давление и степень. Вязкость дисперсных систем и растворов ВМС, методы ее измерения. Структурная и относительная вязкость. Коагуляционные структуры.

    реферат [52,4 K], добавлен 22.01.2009

  • Синтез карборансодержащих полимеров полифениленового типа методом, основанным на полициклоконденсации моно- и дифункциональных ацетилароматических соединений или их этилкеталей на основе дифункционального мономера - бис-(ацетилфеноксифенил)-о-карборана.

    статья [352,7 K], добавлен 18.03.2010

  • Магнитопласты как новый класс видов полимерных композиционных материалов. Синтез поликапроамида из капролактама. Определение низкомолекулярных соединений, вязкости, молекулярной массы. Метод инфракрасной спектроскопии и термогравимитрического анализа.

    отчет по практике [286,0 K], добавлен 26.07.2009

  • Общая характеристика комплексных соединений металлов. Некоторые типы комплексных соединений. Комплексные соединения в растворах. Характеристика их реакционной способности. Специальные системы составления химических названий комплексных соединений.

    контрольная работа [28,1 K], добавлен 11.11.2009

  • Производные пантоевой кислоты. Соли 4 (5Н) – оксазолония, их синтез и свойства. Методы синтеза и очистки исходных соединений, анализа и идентификации синтезированных соединений. Порядок проведения экспериментов и исследование полученных результатов.

    дипломная работа [237,2 K], добавлен 28.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.