Определение низкотемпературных свойств нефтепродуктов

Характеристика основных показателей низкотемпературных свойств нефтепродуктов. Методика определения температуры застывания и температуры помутнения для нефти и продуктов ее переработки, а также определение показателя температуры начала кристаллизации.

Рубрика Химия
Вид лабораторная работа
Язык русский
Дата добавления 02.04.2015
Размер файла 114,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Размещено на http://www.allbest.ru/

Определение низкотемпературных свойств нефтепродуктов

Содержание

1. Определение температуры застывания

1.1 Методика определения температуры застывания

2. Определение температуры помутнения

2.1 Методика определения температуры помутнения

По мере охлаждения индивидуального химического соединения происходит его переход из жидкого состояния в твердое. Этот переход протекает при постоянной температуре, называемой температурой затвердевания. Твердое вещество при нагревании превращается в жидкость также при постоянной температуре, называемой температурой плавления. Численные значения этих величин в большинстве случаев совпадают.

Каждое индивидуальное химическое соединение имеет свою температуру плавления, которая является его физической константой. По ней можно судить о чистоте химического соединения, так как всякие посторонние примеси понижают температуру плавления.

Нефть и продукты ее переработки не имеют определенной температуры перехода из одного агрегатного состояния в другое. При понижении температуры отдельные компоненты или примеси нефти и нефтепродуктов становятся постепенно более вязкими и мало подвижными, а некоторые из них переходят в твердое стекловидное состояние и выделяются в виде осадка или кристаллов. Поэтому признаки, по которым приходится судить о низкотемпературных свойствах нефтепродуктов, выбраны чисто условно, а сами определения проводятся по стандартным методикам.

Для характеристики низкотемпературных свойств нефтепродуктов введены следующие показатели: для нефти, нефтяных масел, дизельных и котельных топлив - температура застывания; для карбюраторных, реактивных и дизельных топлив - температура помутнения; для карбюраторных и реактивных топлив, содержащих ароматические углеводороды - температура начала кристаллизации.

1. Определение температуры застывания

За температуру застывания принимают условно ту температуру, при которой налитый в пробирку стандартных размеров испытуемый нефтепродукт при охлаждении застывает настолько, что при наклоне пробирки с испытуемой жидкостью под углом 45° уровень жидкости остается неподвижным в течение 1 мин.

Температура застывания нефтепродукта представляет собой определенную техническую характеристику, по которой судят об эксплуатационных свойствах данного нефтепродукта. Эта характеристика имеет большое практическое значение при всех товаротранспортных операциях при низких температурах, а также при использовании нефтепродуктов в зимних условиях.

Застывание нефти и нефтепродуктов вызывается резким увеличением вязкости при низких температурах, а также наличием в них растворенных твердых парафинов и церезинов, которые постепенно, в зависимости от температуры их плавления и растворимости, переходят при охлаждении в твердое состояние и образуют кристаллическую решетку, внутри которой удерживаются загустевшие жидкие углеводороды. Зная температуру застывания, можно в какой-то мере судить о количественном содержании парафина в продукте. Чем больше содержание парафина, тем выше температура застывания. Например, грозненская парафинистая нефть застывает при температуре 11°С, а мазут из нее при 30 °С, тогда как беспарафиннстая нефть того же района застывает при 20 °С.

Существенное влияние на температуру застывания оказывает присутствие асфальто-смолистых веществ, которые обволакивают частицы парафина и тем затрудняют образование кристаллической решетки. Поэтому из двух нефтей с одинаковым содержанием парафина температура застывания будет выше у той, которая содержит меньше смолистых веществ.

При механическом перемешивании кристаллическая решетка парафина разрушается и температура застывания нефтепродуктов несколько снижается. Поэтому даже застывшие нефтепродукты после перемешивания могут снова переходить в подвижное состояние и перекачиваться насосами по трубопроводам в определенных температурных условиях.

Температура застывания зависит также от предварительного подогрева испытуемого продукта. При таком подогреве взвешенные частицы парафина распределяются в массе продукта более равномерно. Это облегчает процесс адсорбции асфальто-смолистых веществ на частицах парафина, что и приводит к некоторому понижению температуры застывания.

Температура застывания нормируется почти для всех нефтяных масел, а также дизельных и котельных топлив.

1.1 Методика определения температуры застывания

Используемые нефтепродукты по заданию преподавателя.

На технических весах в маленький стаканчик взвешивают испытуемый продукт (дизельное топливо ДТ, рафинат или депарафинированное масло ДМ). Депрессорную присадку ДП взвешивают на технических весах на бумажный фильтр. Высыпают во взвешенное дизельное топливо в маленьком стаканчике и нагревают на электроплитке при постоянном перемешивании до растворения ДП в ДТ.

Выливают в стандартную пробирку высотой 160 и диаметром 20 мм с кольцевой меткой на расстоянии 30 мм от дна. Пробирку закрывают пробкой, в середину которой вставлен термометр. Ртутный шарик термометра должен находиться на расстоянии около 10 мм от дна пробирки. Подготовленную пробирку помещают в водяную баню с температурой воды 60°С и выдерживают в ней, пока продукт не нагреется до той же температуры. Затем пробирку вынимают и помещают в штатив для охлаждения на воздухе. Когда испытуемый продукт остынет до 30°С, пробирку опускают в охлаждающую смесь и устанавливают в вертикальном положении. Охлаждающую смесь выбирают и поддерживают с таким расчетом, чтобы ее температура была на 5°С ниже ожидаемой температуры застывания испытуемого продукта. Эту температуру поддерживают с точностью ±1 °С.

После выдерживания до предполагаемой температуры пробирку вынимают на 1 мин и наклоняют под углом 45°, быстро вытирают и наблюдают за поведением мениска. Если мениск сместится, снова нагревают на водяной бане до 60°С, а затем проводят повторное определение при температуре на 4°С ниже предыдущей. Повторные определения проводят несколько раз, снижая каждый раз температуру на 4 оС, до тех пор, пока мениск перестанет смещаться. Если в первом опыте мениск испытуемого продукта остался на прежнем уровне, то проводят одно или несколько повторных определений до получения постоянного мениска при более высокой температуре, чем в первоначальном опыте.

Определив температуру застывания испытуемого продукта с точностью до 4°С, проводят повторные определения, повышая и понижая температуру испытания на 2°С. За температуру застывания принимают ту температуру, при которой мениск будет постоянным. При повышении температуры на 2°С он снова способен смещаться. Определение проводят в двух параллельных пробах, причем результаты не должны отличаться друг от друга более чем на 2°С. Среднее арифметическое из этих результатов принимают за окончательную температуру застывания.

Для определения температуры застывания дизельных топлив используется прибор ЛПАЗ-69В. В этом приборе проба топлива в кювете может охлаждаться до минус 35 °С при помощи полупроводникового холодильника. Охлаждаемое в кювете топливо постоянно зондируется импульсами ультразвука. Температура топлива замеряется датчиком -- термопарой. За температуру застывания принимается температура, при которой отмечается резкое уменьшение отраженного ультразвукового сигнала. Эта температура фиксируется электронным потенциометром.

2. Определение температуры помутнения

Температурой помутнения называется температура, при которой топливо начинает мутнеть. По этому показателю судят о гигроскопичности карбюраторных и реактивных топлив и о возможности выпадения кристаллов льда, засоряющих топливоподающую систему, что чрезвычайно опасно при эксплуатации авиационных двигателей. Гигроскопичность топлива повышается при увеличении содержания в нем углеводородов, которые специально добавляются к топливам и входят, как правило, в состав топлив для воздушно-реактивных двигателей. Вообще растворимость воды в углеводородах очень мала (не более 0,01 %), но в ароматических углеводородах она примерно в 2--3 раза выше. При понижении температуры растворимость воды в углеводородном топливе уменьшается, поэтому часть воды, захваченной топливом из воздуха, начинает выделяться в виде мельчайших капелек, и топливо мутнеет. Ясно, что чем больше топливо содержало растворенной воды, т. е. чем более оно гигроскопично, тем при более высокой температуре оно начнет выделять воду, т. е. мутнеть.

При температурах ниже 0°С выделившаяся вода замерзает и в топливе накапливаются кристаллики льда. Это явление имеет особенно серьезное эксплуатационное значение для всех сортов реактивного топлива. Насыщение топлива водой зависит не только от его химического состава, но и от температуры и влажности воздуха и от возможности соприкосновения топлива с воздухом. На образование кристаллов льда влияют и другие факторы, например, вязкость топлива, скорость его охлаждения и др. Все это показывает, что температура помутнения не может с достаточной полнотой характеризовать поведение топлив при низких температурах. Более того, из практики известно, что топливные фильтры воздушно-реактивных двигателей начинают забиваться кристаллами льда при температурах значительно более высоких, чем температура помутнения топлива. Для предотвращения выпадения льда к реактивным топливам добавляют различные присадки (в основном спирты), которые увеличивают растворимость воды при низких температурах.

Помутнение дизельных топлив вызывается выпадением кристаллов парафиновых углеводородов, которые так же, как и кристаллы льда, забивают топливные фильтры и нарушают подачу топлива в двигатель. При дальнейшем охлаждении дизельное топливо полностью застывает и теряет текучесть.

За температуру начала кристаллизации принимают максимальную температуру, при которой в топливе невооруженным глазом обнаруживаются кристаллы. Этот показатель введен для характеристики авиационных и реактивных топлив, богатых ароматическими углеводородами; последние имеют более высокие, температуры затвердевания, чем углеводороды других классов. Особенно это касается бензола, который затвердевает при 5,50С.

При понижении температуры, даже при минимальном содержании воды, низкозастывающие углеводороды будут переходить в твердую фазу, т.е. выделять кристаллы, которые не менее опасны для нормальной эксплуатации двигателя, чем кристаллы льда или парафиновых углеводородов. По техническим условиям на авиационные и реактивные топлива температура начала их кристаллизации не должна превышать - 60 С. Определение температуры помутнения и начала кристаллизации моторного топлива проводится в специальной стеклянной пробирке (рис.1).

нефтепродукт температура застывание помутнение

Рис. 1. Пробирка для определения температуры застывания и температуры помутнения.

1 - мешалка; 2 -- метка; 3-- термометр.

2.1 Методика определения температуры помутнения

Испытуемый продукт (все вышеуказанные образцы) наливают ( 2,0 - 2,5 мм) в стандартную пробирку высотой 160 и диаметром 20 мм с кольцевой меткой на расстоянии 30 мм от дна. Пробирку закрывают корковой пробкой, в середину которой вставлен термометр. Ртутный шарик термометра должен находиться на расстоянии около 10 мм от дна пробирки.

Подготовленную пробирку помещают в водяную баню с температурой воды 60 0С и выдерживают в ней, пока продукт не нагреется до той же температуры. Затем вынимают пробирку из водяной бани и устанавливают с помощью штатива на воздухе и наблюдают за поведением топлива. Температуру, при которой в испытуемом топливе наблюдается появление мути, принимают за температуру помутнения. Опыт проводят 5 - 6 раз для установления средней температуры помутнения.

Результаты работы представить в виде таблицы:

Образец нефтепродукта

Температура застывания tзаст, 0С

Температура помутнения tпом, 0С

1

2

3

4

Вывод: …

Размещено на Allbest.ru


Подобные документы

  • Развитие представлений об органическом происхождении нефти. Парафиновые, нафтеновые и ароматические углеводороды. Давление насыщения нефти газом. Температура кристаллизации, помутнения, застывания. Различие свойств нефти в пределах нефтеносной залежи.

    учебное пособие [1,4 M], добавлен 05.02.2014

  • Характеристика нефтепродуктов - смеси углеводородов и их производных, а также индивидуальных химических соединений, получаемых при переработке нефти. Особенности этапов промышленного производства (процесс компаундирования) товарных продуктов из нефти.

    контрольная работа [31,6 K], добавлен 28.01.2010

  • Задачи и цели переработки нефти. Топливный, топливно-масляный и нефтехимический варианты переработки нефти. Подготовка нефти к переработке, ее первичная перегонка. Методы вторичной переработки нефти. Очистка нефтепродуктов. Продукты переработки нефти.

    курсовая работа [809,2 K], добавлен 10.05.2012

  • Определение влияния температуры, времени и массовой доли шунгита в смеси на цвет и физико-химические свойства синтезированных пигментов. Исследование защитно-декоративных свойств пигментированных лакокрасочных покрытий на основе синтезированных пигментов.

    дипломная работа [4,2 M], добавлен 25.02.2013

  • Индексация нефтей для выбора технологической схемы и варианта ее переработки. Физические основы дистилляции нефти на фракции. Установки первичной перегонки нефти. Технологические расчеты процесса и аппаратов. Характеристика качества нефтепродуктов.

    курсовая работа [684,7 K], добавлен 25.04.2013

  • Безвредность питьевой воды по химическому составу, определяемая ее соответствием нормативам по обобщенным показателям и содержанию вредных химических веществ, наиболее часто встречающихся в природных водах. Определение температуры и прозрачности воды.

    презентация [573,6 K], добавлен 12.11.2016

  • Общие сведения о запасах и потреблении нефти. Химический состав нефти. Методы переработки нефти для получения топлив и масел. Селективная очистка полярными растворителями. Удаление из нефтепродуктов парафиновых углеводородов с большой молекулярной массой.

    реферат [709,3 K], добавлен 21.10.2012

  • Определение температуры газового потока на входе в реакторе, обеспечивающей максимальную производительность реактора. Программа для расчета, составляется в приложении REAC. График зависимости производительности реактора от температуры газового потока.

    контрольная работа [36,0 K], добавлен 14.06.2011

  • Методика и порядок проведения анализа на определение целлюлозы в древесине, его особенности и предназначение. Выделение и расчет холоцеллюлозы, влияние повышения температуры на данный процесс. Способы определения чистой целлюлозы и альфа-целлюлозы.

    реферат [85,1 K], добавлен 28.09.2009

  • Зависимость изменения термодинамических величин от температуры. Метод Сато, Чермена Ван Кревелена, Андрена-Байра-Ватсона. Реакция радикальной сополимеризации. Определение температуры полураспада полиизопрена. Термодинамический анализ основной реакции.

    курсовая работа [1,8 M], добавлен 28.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.