Биогенные элементы в верхних слоях литосферы

Литосфера как твёрдая оболочка Земли, состоящая из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. Углерод литосферы в самородном виде и химия его образования.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 03.03.2015
Размер файла 411,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Российский химико-технологический университет им. Д. И. Менделеева

Кафедра промышленной экологии

Реферат

на тему: «Биогенные элементы в верхних слоях литосферы»

Выполнила:

студентка группы Э-41

Лиманская Елена

Проверил:

Кузнецов О.Ю.

Москва 2014

Литосфера

Литосфемра (от греч. лЯипт -- камень и уцбЯсб -- шар, сфера) -- твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы.

Блоки литосферы -- литосферные плиты -- двигаются по относительно пластичной астеносфере. Изучению и описанию этих движений посвящён раздел геологии отектонике плит.

Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5--10 км, а гранитный слой полностью отсутствует.

Биолитосфера - верхний слой литосферы толщиной 2-3 км, где есть жизнь. Эта часть литосферы находится во взаимодействии с атмосферой и гидросферой.

Почвы

Почва - поверхностный плодородный слой земной коры, дающий жизнь растениям. Как составная часть биосферы, почва - особое природное образование, обладающее рядом свойств, присущих живой и неживой природе, сформировавшееся в результате длительного преобразования поверхностных слоев литосферы под совместном взаимообусловленном воздействии гидросферы, атмосферы, живых и мертвых организмов.

Плодородие - способность почвы удовлетворять потребности растений в питательных веществах и воде. При правильном использовании почвы повышаются качество и количество урожая.

Возможности почв давать урожай определяют масштабы развития биосферы и человечества.

Биогенные элементы.

Элементы необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами. К органогенам традиционно причисляют, учитывая их общее содержание в живом веществе (98,72 ат%), четыре элемента: кислород, углерод, водород и азот, - именно в данной последовательности исходя из их весовых отношений (т.е. г/т). Более правильным будет, однако, их расположение в такой последовательности: водород, кислород, углерод, азот, - поскольку биология оперирует соотношениями атомов в живом веществе.

В биолитосфере главным источником биогенных элементов (катионов) служит почва, которая получает их в процессе разрушения материнских пород. Катионы абсорбируются корнями, распределяются различными органами растений, накапливаются в листве, т.е. входят в корм растительноядных потребителей последующих порядков в цепи питания.

Минерализация погибших организмов возвращает биогенные катионы в почву, создается впечатление, что цикл способен продолжаться беспрерывно. Однако почва выщелачивается дождями, дождевые воды переносят катионы в систему подземного стока, а также и в поверхностный сток: в реки, моря, иногда в значительных количествах.

Выщелачивание - автокаталитический процесс: чем больше оно прогрессирует, тем больше деградируют почвенныеколлоиды. Положение становится особенно тяжелым в тропических местностях: ливневые дожди, низкая абсорбируемость почвенного комплекса (малое количество гумуса), истощение почв монокультурами сахарного тростника, кофе, какао, кукурузы, арахиса.

Когда вырубаются или выжигаются леса под сельское хозяйство, то минерализованный таким путем запас биогенныхвеществ быстро выщелачивается дождями и почва утрачивает свое плодородие. Если на ней временно прекратить посевы, то она вновь может дать жизнь лесу, но уже вторичному, с менее ценой биомассой, чем у первоначального сообщества. После повторения подобных операций почва будет покрываться все более и более скудной растительностью с уменьшающейся продукцией биомассы. Сначала образуется саванна, затем степь, наконец, пустыня. Значит, круговорот минеральных катионов сопровождает циклы углерода и азота. В умеренных широтах последствия выщелачивания не так резки, но все-таки в результате вырубок (сплошных под корень), при корчевке пней и снятия дерна разрушается гумус - ресурс питательных веществ. Следовательно, нарушается круговорот, его полнота: переход к пустоши или лугу, со скудной растительностью и меньшим запасом биомассы.

Углерод. Углерод литосферы в самородном виде и химия его образования.

Углерод -- основной строительный элемент живых организмов. Он входит в состав всех органических соединений. Все органическое вещество на земном шаре образуется автотрофными организмами путем ассимиляции двуокиси углерода из атмосферы. В начале возникновения жизни на Земле первичная биологическая продукция зависела главным образом от хемосинтезирующих организмов, а несколько позднее от фотосинтезирующих бактерий. Теперь главными производителями органических соединений на Земле являются зеленые растения.

Сырьем для синтеза органических соединений служит двуокись углерода атмосферы и почвенного воздуха. Однако ее запасы сильно ограниченны, поскольку они составляют лишь около 0,03% объема воздуха.

Основным звеном регенерации двуокиси углерода являются микроорганизмы. Вся масса органического вещества, образованного путем хемо -- и фотосинтеза, в конечном счете попадает в почву, где подвергается разложению и окисленню в процессе дыхания до двуокиси углерода и воды. В почву попадают различные органические соединения: остатки животных и растений, выделяемые продукты обмена веществ (например, кал и мочевина), различные промышленные отходы и органические удобрения, вносимые в почву.

Много «неживого» органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор). Часть углерода входит в состав нефти, каменного угля и природного газа.

Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше.

В последнее столетие в углеродный цикл существенные изменения внесла хозяйственная деятельность человека. Сжигание ископаемого топлива - угля, нефти и газа - привело к увеличению поступления диоксида углерода в атмосферу.

Самородные минералы углерода.

Эта группа представлена двумя резко различными по физическим свойствам полиморфными модификациями углерода: алмазом и графитом.

Рис. 1. Кристаллическая решетка алмаза. А - изображение центров атомов; В - та же решетка в виде тетраэдров, вершины и центры которых являются центрами атомов углерода.

Кристаллическая структура алмаза (рис. 1) в целом как бы похожа на структуру гранецентрированного куба, но отличается от нее тем, что атомы углерода располагаются не только на гранях куба, но также в центрах половинного числа малых кубов, чередующихся с пустыми малыми кубами. Обычно представляют, что атомы углерода в кристаллической структуре алмаза соединены друг с другом исключительно ковалентными связями по направлениям, соединяющим центр тетраэдра с его вершинами. Однако Н. В. Белов развил более естественное представление о структуре алмаза, как о структуре типа ZnS с двумя сортами ионов-С4+ и С4- (радиус катиона С4+ составляет около 0,15, а аниона О4--около 1,5Е), что обусловливает плотнейшую упаковку анионов в структуре. С таким представлением хорошо увязываются гемиэдрические черты кристаллов алмаза и ряд таких свойств, как бесцветность, низкая электропроводность, необычайно высокая твердость, весьма высокая устойчивость при широких колебаниях температуры и давления (в частности, при нагреве до температуры 2500° в отсутствии кислорода не обнаруживает никаких изменений), очень высокая устойчивость по отношению к кислотам и щелочам и др.

Рис. 3. Расположение центров атомов в листах решетки графита. Каждый следующий лист как бы сдвинут на расстояние в половину диаметра шестерных колец

Структура графита весьма существенно отличается от структуры алмаза Ионы углерода в графите лежат листами, представленными плоскими гексагональными сетками (рис. 3). По Н. В Белову, кристаллическая структура графита представляет плотнейшую упаковку крупных анионов С4, в которой половина треугольников в каждом листе занята маленькими катионами С4+. Каждый ион в плоской сетке окружен тремя соседними ионами на расстоянии 1,42Е (в алмазе 1,54Е), расстояние же между плоскими сетками 3,40Е, т. е. в два раза больше. Отсюда становится понятным ряд свойств графита: его значительно меньший удельный вес по сравнению с алмазом, чрезвычайно легкая расщепляемость на тонкие чешуйки, резко выраженная оптическая анизотропия, а также анизотропия твердости, которую удается установить при очень точных тонких исследованиях (перпендикулярно к плоскости спайности 5,5 по Моосу, а в то же время, благодаря очень слабому сцеплению листов, настолько мягок, что мажет бумагу и пальцы). Этим же объясняется неоднородность поглощения света, чем и обусловлен черный цвет минерала. Допускают, что тип связи атомов в графите, в отличие от алмаза, в какой-то мере носит металлический характер, т. е. в связях участвуют также "металлические" электроны. С этим вполне увязываются такие свойства, как полуметаллический блеск, высокая электропроводность и др. Но по химической и термической стойкости графит все же близок к алмазу.

Рис. 4. Расположение центров атомов в алмазе (А), при горизонтальном расположении плоских сеток (111), и в графите (Б)

Если мы решетку алмаза изобразим в таком виде, как это показано на рис. 4-А, т. е. вдоль тройной оси (ср. номера атомов на рис. 1-А), то в горизонтальных плоских сетках также заметим гексагональные кольца (атомы 6,11, 8, 9, 7 и 10), с той лишь разницей, что эти сетки не совсем плоские: три атома располагаются несколько выше по сравнению с другими тремя.

Алмаз - С. Название происходит от греческого слова "адамас" - непреодолимый (очевидно, имелись в виду его наивысшая твердость и устойчивость по отношению к физическим и химическим агентам).

Разновидности:

· борт - неправильной формы сростки и шаровидные лучистые агрегаты;

· карбонадо - тонкозернистые пористые агрегаты, окрашенные аморфным графитом и посторонними примесями в буровато-черный цвет.

Происхождение. Коренные месторождения генетически связаны с ультраосновными глубинными изверженными породами: перидотитами, кимберлитами и др. В этих породах кристаллизация алмаза происходит, очевидно, на больших глубинах в условиях высоких температур и давления. Судя по формам и условиям нахождения, алмаз кристаллизовался в магмах одним из первых. Не ясно, кристаллизовался ли алмаз за счет углерода самой магмы или за счет углерода, усваивавшегося из окружающих пород. В ассоциациях с алмазом наблюдались: графит, оливин - (Mg, Fe)2SiO4, хромшпинелиды - (Fe,Mg)(Cr,Al,Fe)2O4, магнетит - FeFe2O4, гематит - Fe2O3 и др.

Россыпные месторождения алмаза, устойчивого в экзогенных условиях, образуются за счет разрушения и размыва алмазоносных пород.

Графит - С. Название происходит от греческого слова "графо" - пишу. Разновидности:

· графитит - скрытокристаллическая разность,

· шунгит - аморфная разность, образовавшаяся, повидимому, в результате природного коксования углей.

Происхождение. В природе графит образуется при восстановительных процессах в условиях высоких температур.

Встречается иногда среди магматических горных пород разнообразного состава. Источником углерода во многих случаях являются вмещающие углеродсодержащие горные породы.

Известны случаи находок графита в пегматитах. Встречаются месторождения на контактах известняков с изверженными породами в провинциях Онтарио и Квебек в Канаде, а также жильные месторождения крупнолистоватого графита, например на о. Цейлон.

Широко распространены метаморфические месторождения графита, возникшие за счет каменных углей или битуминозных отложений в условиях регионального метаморфизма или под влиянием интрузий магмы.

Трансформация и накопление соединений азота в верхних слоях литосферы.

Вследствие исключительной прочности молекулы N2, почти полностью сосредоточен в атмосфере. Часть газообразного азота растворена в природных водах, которые содержат и растворенные азотсодержащие органические вещества и неорганические ионы: катион аммония, нитрит-ион и нитрат-ион. Поскольку азот не образует нерастворимых солей, он только в редких случаях накапливается в литосфере. Так, в южноамериканской пустыне Атакама есть скопления нитрата натрия, который, несмотря на высокую растворимость в воде, сохраняется благодаря исключительно сухому климату.

Слово «азот» буквально означает «безжизненный», поскольку он не поддерживает дыхание. Однако этот элемент является обязательной составной частью белков. Поэтому азот в значительном количестве содержится в живых организмах и «мертвом» органическом веществе. Азот непрерывно перемещается между атмосферой, океаном, живыми организмами и почвой.

В атмосфере под действием электрических разрядов азот переходит сначала в монооксид азота, а затем в диоксид азота. Влага воздуха и кислород превращают диоксид азота в азотную кислоту

4NO2 + 2H2O + O2 = 4HNO3

Соединения азота легко растворяются в атмосферных осадках и попадают на поверхность Земли.

Большое значение в связывании атмосферного азота имеет жизнедеятельность клубеньковых бактерий, обитающих на корнях бобовых растений. Ферменты этих бактерий превращают молекулярный азот в соединения, которые затем усваиваются растениями. Из растений связанный азот поступает в организмы животных, в основном, в виде аминокислот и белков. После гибели живых организмов органические вещества превращаются в неорганические соединения, снова усваиваемые растениями. Часть азота в почвах превращается в молекулярный азот и переходит в атмосферу. Молекулярный азот образуется также при полном окислении органических веществ.

Соединения азота попадают в атмосферу с выбросами промышленных предприятий и транспорта, а в природные воды - с бытовыми и промышленными отходами.

Слишком большое количество растворимых соединений азота в почве приводит к росту их содержания в продуктах питания и питьевой воде, это может стать причиной серьезных заболеваний. Соединения азота накапливаются в водоемах и вызывают зарастание озер и водохранилищ. Пока подобные явления наблюдаются лишь в отдельных районах, где в окружающую среду попадает много соединений азота. В целом же природа пока справляется с тем количеством связанного азота, которое производится человеком.

Химия процессов миграции серы в верхних слоях литосферы.

Содержится в атмосфере в небольших количествах, в основном, в виде сероводорода и диоксида серы. Довольно много этого элемента (в виде сульфат-ионов) находится в гидросфере. В литосфере сера встречается в виде простого вещества (самородная сера) и в составе многочисленных минералов - сульфидов и сульфатов металлов. Кроме того, соединения серы есть в углях, сланцах, нефти, природном газе. Сера входит в состав многих белков, поэтому она всегда содержится в организмах животных и растений.

Выделяясь из глубин Земли, газообразные соединения серы (преимущественно диоксид серы и сероводород) растворяются в подземных водах. Здесь они образуют малорастворимые сульфиды (главным образом пирит - дисульфид железа FeS2) и сульфаты (в частности, сульфат кальция CaSO4). Образуется также самородная сера:

2H2S + SO2 = 3S + 2H2O

Газообразные соединения серы попадают в почву, атмосферу и Мировой океан, где их поглощают серные бактерии. Поглощение соединений серы бактериями происходит и в почве.

Малорастворимые сульфиды, содержащиеся в горных породах, в результате жизнедеятельности некоторых бактерий частично окисляются, превращаясь в легко растворимые сульфаты:

FeS + 2O2 = FeSO4

Водорастворимые сульфаты выносятся с поверхности суши с речным стоком, поставляя сульфат-ионы в Мировой океан.

В результате активного связывания серы в земной коре, гидросфере и живых организмах, содержание сероводорода и диоксида серы в атмосфере мало и непостоянно. Под действием кислорода и озона эти вещества постепенно превращаются в серную кислоту:

2SO2 + О2 2SО3

SO2 + О3 = SО3 + О2

SО3+ H2О = H2SO4

H2S + 2О3 = H2SO4 + О2

Серная кислота возвращается на землю с атмосферными осадками

Хозяйственная деятельность людей приводит к увеличению содержания соединений серы в атмосфере и гидросфере. В результате изменений в методах животноводства и земледелия (выпас, вспашка, мелиорация) увеличились выбросы серосодержащих соединений в виде пыли. Еще больше серы попадает в атмосферу в форме диоксида серы при обжиге сульфидных руд. Это, в свою очередь, вызывает увеличение потока серы, попадающей из атмосферы в океаны и на поверхность суши. Природные воды загрязняются также удобрениями с полей и стоками промышленных предприятий.

Таким образом, человеческая деятельность существенно изменила круговорот серы между атмосферой, океанами и поверхностью суши. Эти изменения сильнее, чем воздействие человека на цикл углерода. Как и в случае глобального цикла углерода, техногенные выбросы серы в окружающую среду мало влияют на распределение масс этого элемента на поверхности Земли. Однако повышенное содержание серы в промышленных и бытовых отходах создают опасность для жизни на обширных территориях. Массированный выброс диоксида серы в атмосферу порождает кислотные дожди, которые могут выпадать далеко за пределами индустриальных районов. Загрязнение природных вод растворимыми соединениями серы несет угрозу живым организмам внутренних водоемов и прибрежных областей морей.

Формы соединений фосфора в литосфере, фосфатизация суши.

Содержится в земной коре и живых организмах в небольших количествах; тем не менее, он имеет очень большое значение для растений и животных. Без этого элемента невозможен синтез белков. Кроме того, фосфор входит в состав костей и зубов. Именно недостаточное количество фосфора чаще всего ограничивает рост массы живого вещества. Значительная часть фосфора содержится в почвах. Фосфор образует многочисленные минералы (например, фосфориты), однако они не часто встречаются в горных породах в больших количествах. В атмосфере фосфор практически отсутствует.

В природных водах фосфор присутствует в составе органических соединений и взвешенных твердых частиц. Лишь небольшая его часть находится в растворе в виде ортофосфат-иона РО43- и гидроортофосфат-иона НРО42-.

В океане «органический» фосфор многократно переходит от одного живого организма к другому и медленно накапливается в донных отложениях в виде малорастворимых фосфатов. Эти потери фосфора компенсируются только из одного источника - выветривающихся горных пород суши, куда они попадают со дна океанов в результате длительных геологических процессов.

Деятельность человека нарушила природный круговорот фосфора. Соединения фосфора используются для производства удобрений и моющих средств. Это приводит к загрязнению водоемов соединениями фосфора. В таких условиях фосфор перестает быть элементом, ограничивающим рост массы живых существ, особенно водорослей и других водных растений.

Список использованной литературы

1. Ершов Ю.А., Попков В.А., Берлянд А.С., Книжник А.З., Михайличенко Н.И. Общая химия. Биофизическая химия. Химия биогенных элементов. -М.: Высшая школа, 1993. -560 с.

2. Фримантл М. Химия в действии. -М.: Мир, 1991. т.2, 620 с.

3. Хьюз М. Неорганическая химия биологических процессов. -М.: Мир, 1983. - 416 с.

4. Жолнин А.В., Арбузина Р.Ф., Констанц Э.В., Рыльникова Г.И. Методическое пособие к лабораторным занятиям по общей химии. ч. II. -Челябинск: ЧГМА, 1993 -176 с.

Размещено на Allbest.ru


Подобные документы

  • Характеристика литосферы, состава химических элементов и минералов в земной коре. Строение, химический состав и функции гидросферы, атмосферы. Особенности фотосинтеза органических веществ, происходящего в биосфере. Исследование биогеохимических процессов.

    реферат [14,6 K], добавлен 18.04.2010

  • Физические и химические свойства углерода. Его основные кристалические модификации. Углерод глазами кристаллохимика и химика-неорганика. Применение углерода в металлургии. Промышленный синтез алмазов. Возможности образования алмазов вне земной коры.

    реферат [74,6 K], добавлен 23.01.2010

  • Содержание и биологическая роль химических элементов в организме человека. Биогенные элементы – металлы и неметаллы, входящие в состав организма человека. Элементы-органогены: углерод, кислород, водород, азот, фосфор, сера. Основные причины их дефицита.

    реферат [362,5 K], добавлен 11.10.2011

  • Натрий как типичный элемент верхней части земной коры. Характеристика и сущность основных физических и химических свойств натрия. Взаимодействие натрия с простыми веществами, способы его получения. Участие натрия в минеральном обмене животных и человека.

    контрольная работа [81,2 K], добавлен 20.10.2011

  • Особенности атмосферы Земли. Химический состав и основные оболочки атмосферы. Квантовый выход как важнейший параметр фотохимической реакции. Фотохимия кислорода и озона в атмосфере. Фотохимические реакции и процессы с участием метана и оксидов азота.

    реферат [26,8 K], добавлен 27.05.2010

  • Экстрактивные вещества коры сосны. Жиры, воски и их составляющие. Фенольные вещества коры хвойных пород деревьев. Определение влажности, целлюлозы, общего лигнина. Получение и разделение гексанового экстракта коры сосны на кислые и нейтральные вещества.

    дипломная работа [501,5 K], добавлен 24.08.2011

  • Количественная оценка распределения химических элементов. Закономерности в распределении кларков. Изучение спектров звезд. Процессы образование химических элементов. Превращение водорода в гелий. Оценка состава Земли. Кларки элементов для земной коры.

    реферат [28,5 K], добавлен 16.05.2013

  • Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.

    реферат [18,0 K], добавлен 03.05.2009

  • Роль скорости химических реакций, образования и расходования компонентов. Кинетика химических реакций. Зависимость скорости реакции от концентрации исходных веществ. Скорость расходования исходных веществ и образования продуктов. Закон действующих масс.

    реферат [275,9 K], добавлен 26.10.2008

  • Углерод: положение в таблице Менделеева, нахождение в природе, свободный углерод. Атомы углерода в графите. Фуллерены как класс химических соединений, молекулы которых состоят из углерода. Первый способ получения твердого кристаллического фуллерена.

    доклад [11,9 K], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.