Концепции современного естествознания

Изучение естествознания как науки о явлениях и законах природы. Понятие физического поля. Типы фундаментальных взаимодействий. Основные законы и принципы химии. Исследование клетки как структурной единицы живого мира. Изучение звезд – красных гигантов.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 13.10.2014
Размер файла 27,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ и науки

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное Государственное бюджетное образовательное учреждение высшего профессионального образования

Кафедра «Прикладная физика»

Контрольная работа

«Концепции современного естествознания»

Санкт-Петербург

Оглавление

Введение

1. Понятие физического поля. Типы фундаментальных взаимодействий

2. Основные законы и принципы химии

3. Клетка, как структурная единица живого мира

4. Звезды - красные гиганты

Список используемой литературы

Введение

Естествознание - наука о явлениях и законах природы. На современном этапе развития естествознание включает множество отраслей: физику, химию, биологию, биохимию, геохимию, астрономию, генетику, экологию и др. Естествознание охватывает широкий спектр вопросов о разнообразных свойствах объектов и явлений природы, которую можно рассматривать как целостную систему. Успехи естествознания, особенно с XVII-XVIII вв., надолго сделали принципы естествознания эталоном рациональности. Изучение природы было естественным стремлением человека познать окружающий мир и стало основой практической деятельности. Основные понятия, само представление о закономерностях изменения явлений, способы применения законов природы были порождены ее исследованием. Отношение к природе, понимание ее места в мироздании, представление о явлениях, происходящих в ней, были основой научных и философских систем в различных цивилизациях. В настоящее время естественнонаучные знания являются сферой активных действий и основанные на них современные технологии формируют новый образ жизни человека.

Основные мировоззренческие и методологические принципы современного естествознания, ведущие направления их развития и положение в общекультурной картине мира предлагаются для изучения в курсе «Концепции современного естествознания». Однако подробное изложение естественнонаучных знаний, накопленных во всех отраслях естествознания, - необходимый, но сложный процесс, для решения которого в данном учебнике используется принцип концептуальности изложения научного материала.

Понятие «концепция» включает в себя основополагающие идеи, принципы, что позволяет студентам получить фундаментальные знания о природе и на их основе более детально изучить специализированные дисциплины профильной подготовки. Концептуальное мышление и восприятие естествознания необходимо для студентов естественных, технических и гуманитарных факультетов, так как оно показывает роль естествознания в современной жизни, приложимость его принципов и законов к разнообразным сферам теоретической и практической деятельности человека.

естествознание химия клетка звезда

1. Понятие физического поля. Типы фундаментальных взаимодействий

Все взаимодействия осуществляются посредством особой формой материи - физическим полем. Оно может быть векторным или скалярным. Физическое поле связывает тела в единые системы и передает взаимодействие с конечной скоростью (в вакууме - со скоростью света). Поле, проявляющее себя в действии сил на различные тела, называют силовым полем. Каждое тело создает вокруг себя поле. Силовому полю как одной из форм материи присущи ее свойства: пространственно-временная протяженность, инертность, движение, энергия, импульс. Не изменяющееся со временем силовое поле называют стационарным. Если силы, действующие на тело, во всех точках одинаковы по модулю и направлению (F = const), поле называют однородным.

Силовое поле, в котором работа силы поля А зависит только от начального и конечного положений тела и не зависит от вида его траектории, называется потенциальным (консервативным).

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций, и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырем фундаментальным взаимодействиям.

В порядке возрастания интенсивности эти фундаментальные взаимодействия представляются следующим образом: гравитационное взаимодействие; слабое взаимодействие; электромагнитное взаимодействие; сильное взаимодействие. Именно эти взаимодействия, в конечном счете, отвечают за все изменения в природе, именно они являются источником всех преобразований материальных тел, процессов. Каждое из четырех фундаментальных взаимодействий имеет сходство с тремя остальными и в то же время свои отличия.

Прежде всего, следует сказать о том, что является общим для этих фундаментальных взаимодействий. Иначе говоря: как понимает современная физика сущность взаимодействия? Как уже отмечалось, еще в середине XIX в. с созданием теории электромагнитного поля выяснилось, что передача взаимодействия осуществляется не мгновенно (принцип дальнодействия), а с конечной скоростью посредством некоторого посредника -- непрерывно распределенного в пространстве поля (принцип близкодействия). Скорость распространения электромагнитного поля равна скорости света.

Однако уже в первой четверти XX в., с появлением квантовой механики значительно углубилось представление о физическом поле. В свете квантово-волнового дуализма любое поле является не непрерывным, а имеет дискретную структуру, ему должны соответствовать определенные частицы, кванты этого поля. Например, квантами электромагнитного поля являются фотоны. Когда заряженные частицы обмениваются между собой фотонами, это приводит к появлению электромагнитного поля. Фотоны и являются переносчиками электромагнитного взаимодействия.

Аналогичным образом и другие виды фундаментальных взаимодействий имеют свои поля и соответствующие частицы, переносящие это полевое взаимодействие. Изучение конкретных свойств, закономерностей этих полей и частиц -- носителей фундаментальных взаимодействий -- главная задача современной физики.

2. Основные законы и принципы химии

Химия - наука о свойствах вещества и его превращениях, она включает в себя законы и принципы, описывающие эти превращения, а так же представления и теории, позволяющие дать им объяснение. Законы и принципы превращений веществ открыты на основе исследования соотношений макропараметров. Таковы, установленные в начале 19 го века законы постоянства состава, кратных соотношений, простых объемных отношений, законы термодинамики, закон действующих масс, и др. Чтобы объяснить эти законы нужны представления и теории, оперирующие понятиями более глубокого уровня, чем макроскопический, уровня атомов и молекул. Уже представление об атомно-молекулярном строении вещества совместно с концепцией неуничтожимости атомов объясняет законы постоянства состава и кратных отношений.

Уровня атомов и молекул недостаточно для объяснения периодического закона Д.И.Менделеева и для понимания химической связи. Для их объяснения необходимо перейти на уровень ядер и электронов, с точки зрения которого все изучаемые химией формы существования вещества различные комбинации ядер и электронов.

Таким образом, мы получаем иерархию уровней:

Макроскопические тела молекулы и атомы электроны и ядра адроны и лептоны.

Каждый предыдущий уровень объясняется последующим и так до бесконечности. Мы будем иметь дело с тремя верхними уровнями.

Атомно-молекулярное учение заключается в следующем:

1. Все вещества состоят из молекул.

2. Молекулы состоят из атомов.

3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

Рассмотрим следующие определения:

Вещество - вид материи, которая обладает массой покоя.

Состоит из элементарных частиц: электронов, протонов, нейтронов, мезонов и др. Химия изучает главным образом вещество, организованное в атомы, молекулы, ионы и радикалы. Такие вещества принято подразделять на простые и сложные (химического соединения). Простые вещества образованы атомами одного химического элемента и потому являются формой его существования в свободном состоянии, например сера, железо, озон, алмаз. Сложные вещества образованы разными элементами и могут иметь состав постоянный (стехиометрические соединения или дальтониды) или меняющийся в некоторых пределах (нестехиометрические соединения или бертоллиды).

Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства.

Различным элементам соответствуют различные атомы, обозначаемые символом данного элемента (Ag, Fe, Mg).

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек.

В настоящее время известно 118 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

Ионы (от греч. ion - идущий), одноатомные или многоатомные частицы, несущие электрический заряд. Положительные ионы называют катионами (от греч. kation, буквально - идущий вниз), отрицательные - анионами (от греч. anion, буквально идущий вверх). В свободном состоянии существуют в газовой фазе (в плазме).

Валентность (от лат. valentia - сила), способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи.

Количественной мерой валентности атома элемента Э служит число атомов водорода или кислорода (эти элементы принято считать соответственно одно- и двухвалентными), которые Э присоединяет, образуя гидрид ЭНх или оксид Эn Оm. Валентность элемента может быть определена и по другим атомам с известной валентностью. В рамках электронной теории химической связи валентность атома определяется числом его неспаренных электронов в основном или возбужденном состоянии, участвующих в образовании общих электронных пар с электронами других атомов.

Реакции химические (от лат. re- - приставка, означающая обратное действие, и actio - действие), превращения одних веществ (исходных соединений) в другие (продукты реакции) при неизменяемости ядер атомов.

Исходные вещества иногда называют реагентами, однако чаще (особенно в органической химии) термин "реагент" используют по отношению к одному, наиболее активному исходному соединению, определяющему направление химической реакции.

Атомное ядро - центральная часть атома, состоящая из Z протонов и N нейтронов, в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A = Z + N.

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Химическая формула - это условная запись состава вещества с помощью химических знаков (предложены в 1814 г. Й. Берцелиусом) и индексов (индекс - цифра, стоящая справа внизу от символа. Обозначает число атомов в молекуле). Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

Простые вещества- молекулы, состоят из атомов одного и того же элемента.

Cложные вещества - молекулы, состоят из атомов различных химических элементов.

Аллотропия - явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам.

Международная единица атомных масс равна 1/12 массы изотопа 12C - основного изотопа природного углерода.

1 а.е.м = 1/12 * m (12C) = 1,66057 * 10-27 кг

Относительная атомная масса (Ar) - безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1/12 массы атома 12C.

Средняя абсолютная масса атома (m) равна относительной атомной массе, умноженной на а.е.м.

Ar(Mg) = 24,312; m(Mg) = 24,312 * 1,66057 * 10-24 = 4,037 *10-23 г

Относительная молекулярная масса (Mr) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1/12 массы атома углерода 12C.

Mг = mг /(1/12 mа(12C))

mr - масса молекулы данного вещества;

mа(12C) - масса атома углерода 12C.

Mг = У Aг(э). Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль. Количество вещества, моль. Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается н, измеряется в моль. Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

Число Авогадро ди Кваренья (NA). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 * 1023. (Постоянная Авогадро имеет размерность - моль-1).

Молярная масса показывает массу 1 моля вещества (обозначается M). M = m / х. Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества и численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая - безразмерная.

M = NA * m(1 молекула) = NA * Mг * 1 а.е.м. = (NA * 1 а.е.м.) * Mг = Mг

Это означает, что если масса некоторой молекулы равна, например, 80 а.е.м. (SO3), то масса одного моля молекул равна 80 г. Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных соотношений к молярным. Все утверждения относительно молекул остаются справедливыми для молей (при замене, в случае необходимости, а.е.м. на г) Например, уравнение реакции: 2Na + Cl2 > 2NaCl, означает, что два атома натрия реагируют с одной молекулой хлора или, что одно и то же, два моль натрия реагируют с одним молем хлора.

Основные законы:

1) Закон сохранения массы веществ (М.В. Ломоносов, 1748 г.; А. Лавуазье, 1789 г.) Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции. Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи. Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

2) Закон постоянства состава. Впервые сформулировал Ж. Пруст (1808 г)

Все индивидуальные химические вещества имеют постоянный качественный и количественный состав и определенное химическое строение, независимо от способа получения. Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.

3) Закон Авогадро ди Кваренья (1811 г.)

В равных объемах различных газов при одинаковых условиях (температура, давление и т.д.) содержится одинаковое число молекул. (Закон справедлив только для газообразных веществ.)

Следствия:

· Одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы.

· При нормальных условиях (0°C = 273°К, 1 атм = 101,3 кПа) 1 моль любого газа занимает объем 22,4 л.

3. Клетка, как структурная единица живого мира

Современная клеточная теория включает следующие положения:

1) Все живые организмы состоят из клеток. Клетка - структурная, функциональная единица живого, основная единица строения и развития всех живых организмов, наименьшая единица живого;

2) Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

3) Размножение клеток происходит путём их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки.

4) В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.

5) Клеточное строение организмов - свидетельство того, что все живые организмы имеют единое происхождение.

Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов. Она их главный «строительный» компонент, клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки - зиготы.

Клетка - основа физиологических и биохимических процессов в организме, т.к. на клеточном уровне происходят, в конечном счёте, все физиологически и биохимические процессы. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и ещё раз подтвердила единство всего органического мира. Все живые организмы состоят из клеток - из одной клетки (простейшие) или многих (многоклеточные). Клетка - это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Существует эволюционно неклеточные организмы (вирусы), но и они могут размножаться только в клетках.

Различные клетки отличаются друг от друга и по строению, и по размерам (размеры клеток колеблются от 1мкм до нескольких сантиметров - это яйцеклетки рыб и птиц), и по форме (могут быть круглые как эритроциты, древовидные как нейроны), и по биохимическим характеристикам (например, в клетках, содержащих хлорофолл или бактериохлорофилл, идут процессы фотосинтеза, которые невозможны при отсутствии этих пигментов), и по функциям (различают половые клетки - гаметы и соматические - клетки тела, которые в свою очередь подразделяются на множество разных типов).

Клетка состоит из тех же химических элементов, что и неживая природа: в ней присутствует большинство элементов периодической системы Менделеева. В клетках живых организмов особенно велико содержание четырех элементов - кислорода (О), углерода (С), водорода (Н), азота (N), называемых макроэлементами. В сумме они составляют около 98% всего содержимого клетки. Вместе с серой и фосфором эти элементы входят в состав биополимеров-белков, жиров, углеводов и нуклеиновых кислот.

Микроэлементы: сера (S), фосфор (Р), калий (К), натрий (Ма), кальций (Са), магний (Мд), железо (Fe), хлор (CI), в сумме составляют около 1,9% содержимого клетки.

Ультрамикроэлементы: цинк (Zn), медь (Си), иод (J), фтор (F) и др., составляют менее 0,1% содержимого клетки. Все элементы играют в клетке важную роль и необходимы в строго определенном количестве, их недостаток или избыток приводит к различным нарушениям обмена в организме.

Органические вещества клетки:

Белки - это макромолекулы, или биополимеры. Мономерами белков живых клеток являются 20 разных аминокислот. Между карбоксильной группой СООН (кислая) и аминной группой Н - N - Н (основная) двух соседних аминокислот формируется пептидная (ковалентная) связь. Различные комбинации аминокислот в белковых молекулах придают белкам специфичность. Последовательное соединение аминокислот в белке образует его первичную структуру - полипептид. В большинстве случаев полипептид закручивается в спираль - вторичную структуру белка.

Функции белков:

1) Строительная: белки входят в состав клеточных структур.

2) Транспортная: способность белков связывать и переносить с током крови многие химические соединения (например, транспорт гемоглобином кислорода).

3) Рецепторная функция: обеспечивает взаимодействие клеток между собой, а также различными макромолекулами белков к обратимому изменению структуры в ответ на действие физических и химических факторов лежит в основе раздражимости.

4) Сократительная функция обеспечивается особыми сократительными белками, благодаря которым происходит движение жгутиков, ресничек, сокращение мышц и т.п.

5) Энергетическая функция: белки - это запасной источник энергии.

6) Каталитическая функция: белки-ферменты ускоряют химические реакции.

7) Защитная функция: белки-антитела (иммуноглобулины) обезвреживают антигены (инородные вещества), вызывающие заболевания организма.

8) Регуляторная функция обеспечивается белками-гормонами, которые регулируют обмен веществ.

Углеводы делятся на простые - моносахариды (рибоза, дезоксирибоза, глюкоза, фруктоза и др.) и сложные - дисахариды (сахароза, лактоза, мальтоза) и полисахариды (крахмал, гликоген, целлюлоза, хитин и др.).

Функции углеводов: входят в состав нуклеиновых кислот и АТФ, являются универсальным источником энергии в организме, участвуют в обезвреживании и выведении из организма ядовитых веществ, полисахариды играют роль запасных продуктов.

Липиды - это нейтральные жиры, воска, фосфолипиды и стероидные гормоны. Они нерастворимы в воде, но хорошо растворимы в органических растворителях (бензине, эфире, бензоле и др.). В их состав, как правило, входят глицерин и жирные кислоты.

Функции липидов: используются как запасной источник энергии; входят в состав клеточных мембран; выполняют защитные функции (теплоизоляция).

Нуклеиновые кислоты - это молекулы ДНК (дезоксирибонуклеиновой кислоты) и РНК (рибонуклеиновой кислоты). ДНК - биополимер, ее мономеры - нуклеотиды состоят из азотистого основания (аденин, гуанин, цитозин, тимин), моносахарида (дезоксирибоза) и остатка фосфорной кислоты. Сама молекула ДНК - это 2 закрученные в спираль полинуклеотидные цепи, объединенные между собой водородными связями.

Функция ДНК: запись, хранение и воспроизведение наследственной информации.

Рибонуклеиновая кислота (РНК) одно-цепочечный биополимер, состоящий из нуклеотидов, в которых азотистое основание тимин заменено урацилом, а углевод дезоксирибоза -- рибозой. Различают 3 вида РНК: информационную (и-РНК), транспортную (т-РНК) и рибосомальную (р-РНК).

Функции РНК: участие в воспроизведении наследственной информации (в синтезе белка).

Аденозинтрифосфорная кислота (АТФ)- мононуклеотид, состоящий из ри-бозы, аденина и трех остатков фосфорной кислоты.

Функция: АТФ - универсальный источник энергии в клетке.

4. Звезды - красные гиганты

Когда датский астроном Эйнар Герцшпрунг (1873-1967) впервые в 1905 г. разрабатывал свою главную последовательность, он обратил внимание, что существует два вида красных звезд. Один из них -- тусклые, другой -- очень яркие; переходного вида нет.

Красная звезда выглядит красной оттого, что имеет холодную или самое большее нагретую докрасна поверхность, в то время как звезды такого типа, как наше Солнце, раскалены добела. Температура поверхности красных звезд, очевидно, не выше 2000 °C. Можно предположить, что такие звезды на единицу поверхности дают сравнительно мало света и если б они имели размер нашего Солнца или меньше, они поневоле должны быть тусклыми. Поэтому тусклость красных звезд не вызывает удивления. Но как объяснить существование очень ярких красных звезд?

Чтобы «прохладная» звезда светила очень ярко, надо предположить, что при слабом излучении на единицу поверхности общая поверхность такой звезды огромна, гораздо больше поверхности Солнца. Яркие красные звезды имеют диаметр в 100 раз больший, чем солнечный. Поэтому такие звезды, как Бетельгейзе или Антарес, называют красными гигантами.

Уже когда была определена главная последовательность, стало ясно, что красных гигантов в ней не будет. Конечно, разумно было предположить, что красные гиганты -- это звезды в процессе рождения: они медленно уплотняются под влиянием собственной гравитации и по мере этого становятся все меньше и горячее.

С течением времени красные гиганты сожмутся до «нормальных» размеров, разогреются и только тогда займут свое место в главной последовательности. Теперь, однако, так не думают.

Ученые исследовали скопления звезд, в которых все звезды считались одного возраста, поскольку все скопление (или кластер) возникло, скорее всего, одновременно.

Астрономы поняли, что все звезды скопления эволюционировали и что, чем крупнее была звезда, тем быстрее протекала эта эволюция. Они определили массы разных звезд и имели, так сказать, серию «проб», которые указывали на разные этапы эволюции. Наиболее массивными звездами были красные гиганты, это свидетельствовало о том, что, хотя такая звезда и не принадлежала к главной последовательности, ее следовало отнести к поздней фазе, а не к ранней стадии эволюции.

Наиболее общее мнение таково: медленно, на протяжении миллионов и миллиардов лет, водород в ядре звезды расходуется; гелий, образующийся в результате водородного превращения, будучи плотнее, чем водород, собирается в самом ее центре. Синтез водорода продолжается во внешнем слое этого все растущего гелиевого шара в центре звезды.

Список используемой литературы

1. Найдыш В.М. Концепции современного естествознания. - М.: Альфа М, Инфра-М, 2004 г.

2. Горелов А.А. Концепции современного естествознания. - М.;1997

3. Глинка Н.Л. Общая химия. - Л.: Химия, 1988 г.

4. Айзек Азимов, «Взрывающиеся солнца. Тайны сверхновых». Пер.: В. Вишневский, изд.: Наука, Москва, 1991 г.

5. Рузавин Г.И. Концепции современного естествознания. - М: Юнити-Дана, 2005 г.

Размещено на Allbest.ru


Подобные документы

  • Роль химии в развитии естественнонаучных знаний. Проблема вовлечения новых химических элементов в производство материалов. Пределы структурной органической химии. Ферменты в биохимии и биоорганической химии. Кинетика химических реакций, катализ.

    учебное пособие [58,3 K], добавлен 11.11.2009

  • Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат [25,9 K], добавлен 30.10.2009

  • Вклад Ломоносова в развитие химии как науки: обоснование закона сохранения массы вещества, исследование природы газового состояния, изучение явления кристаллизации. Основные направления развития физической химии во второй половине XVIII-XX веках.

    реферат [28,1 K], добавлен 26.08.2014

  • Краткая история возникновения химии как важнейшей отрасли естествознания и науки, изучающей вещества и их превращения. Алхимия и первые сведения о химических превращениях. Описание вещества, атомная, математическая химия и родоначальники российской химии.

    курсовая работа [25,5 K], добавлен 25.04.2011

  • Вещества и их взаимные превращения являются предметом изучения химии. Химия – наука о веществах и законах, которым подчиняются их превращения. Задачи современной неорганической химии – изучение строения, свойств и химических реакций веществ и соединений.

    лекция [21,5 K], добавлен 26.02.2009

  • Краткая биография Д.И. Менделеева, история его жизни и деятельности, основные труды в области химии. Открытие Менделеевым периодического закона и составление Периодической таблицы. Принципиальная новизна закона и его значение для химии и естествознания.

    реферат [291,3 K], добавлен 11.07.2011

  • Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат [30,3 K], добавлен 11.03.2009

  • Проблема строения вещества. Обобщение процессов, происходящих в химических системах. Понятие растворения и растворимости. Способы выражения концентрации растворов. Электролитическая диссоциация. Устойчивость коллоидных систем. Гальванические элементы.

    курс лекций [3,1 M], добавлен 06.12.2010

  • Основные направления научных достижений Д.И. Менделеева. Его значение в истории мировой науки, в области физической химии. Изучение упругости газов, химической теории растворов, создание периодического закона. Создание учебника-монографии "Основы химии".

    реферат [24,0 K], добавлен 19.03.2011

  • Роль химии в системе современного научного знания. Проблема соотношения химизма с более сложной формой материи - биологической. Три точки зрения на проблему химической формы материи и движения. Идея перехода химического знания к эволюционной парадигме.

    реферат [27,5 K], добавлен 27.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.