Технологии с применением плазмохимических реакций

Химическая кинетика как учение механизмов и закономерностей протекания во времени химических процессов, предмет и направления изучения. Особенности плазмохимических, фотохимических и радиационно-химических реакций. Генераторы озона и озонные технологии.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 22.07.2013
Размер файла 37,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

????????? ?? http://www.allbest.ru/

????????? ?? http://www.allbest.ru/

Технологии с применением плазмохимических реакций

1. Основы плазмохимических преобразований

До настоящего момента мы рассматривали атомы и молекулы в воздухе, их возбуждение, диссоциацию, ионизацию и возбуждение не акцентируя внимание на химических преобразованиях, которые происходят с этими частицами. Теперь мы рассмотрим процессы химических преобразований, которые происходят с различными атомами, молекулами, активными радикалами и ионами, которые возникают в процессе формирования и развития электрического разряда в воздухе.

Все физико-химические процессы происходящие в плазме газового разряда можно разделить на три временных интервала:

t  1015 с на этом интервале времени завершаются процессы возбуждения атомов и молекул электронным или фотонным ударом;

t  1013 с на этом интервале времени завершаются процессы ионизации и диссоциации атомов и молекул;

этот интервал времени имеет переменную продолжительность вплоть до t  10с в зависимости от состава газа, температуры и давления это стадия химических процессов и реакций.

Понятие кинетики химических реакций

Химическая кинетика это учение механизмов и закономерностей протекания во времени химических процессов. Под химической реакцией понимается процесс превращения одного или нескольких веществ (реагентов) в вещества (продукты реакции), отличающиеся от исходных по химическому или изотопному составу, по строению молекул или заряду.

В большинстве случаев химический процесс происходит не путем прямого превращения исходных веществ в продукты реакции, а состоит из нескольких стадий. Каждую из этих стадий можно рассматривать как самостоятельную химическую реакцию со своими исходными веществами и продуктами. Такие реакции называются элементарными.

Важнейшими характеристиками химической реакции являются степень превращения (т.е. отношение количества вещества, вступившего в реакцию, к его исходному количеству) и скорость реакции (т.е. количество вещества, вступающего в реакцию или образующегося в результате реакции в единицу времени в единице объема):

,

где N число молей (или молекул) в единице объема.

Поясним сказанное на примере реакции:

aA + bB  cC + dD, (1)

где A, B, C, D реагенты и продукты реакции, а числа a, b, c, d стехиометрические коэффициенты, которые определяют количественные соотношения, в которых вещества вступают в реакцию.

Например:

2NaOH + H2SO4  Na2SO4 + 2H2O.

В этой реакции: NaOH и H2SO4 реагенты; Na2SO4 и H2O продукты реакции. Стехиометрические коэффициенты a = 2, b = 1, c = 1, d = 2 показывают, что если в реакцию вступят два моля NaOH и один моль H2SO4, то эти вещества прореагируют полностью и образуется один моль Na2SO4 и два моля H2O.

Скорость изменения плотности каждого реагента или продукта реакции в ходе такой реакции будет связана со скоростью реакции следующим соотношением:

.

Для элементарных химических реакций действует следующее обобщенное правило химической кинетики (закон действующих масс): скорость элементарной химической реакции в каждый момент времени пропорциональна произведению текущих концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам. Для реакции (12.1) выражение для скорости реакции будет иметь вид:

,

где k константа скорости реакции, независимая от плотности реагентов. Ее еще называют удельной скоростью реакции, поскольку при концентрации каждого из реагирующих веществ, равной единице, она равна фактически скорости реакции.

Понятие константы скорости реакции широко используется в плазмо-химических технологиях при оценке интенсивности и роли происходящих в них химических реакций.

При протекании реакции по стадиям производятся и расходуются так называемые промежуточные вещества, которые обычно представляют из себя химически активные частицы ионы, возбужденные молекулы, свободные радикалы. Свободные радикалы это молекулы в особом состоянии, когда происходит разрыв связи между атомами, и эти молекулы приобретают, таким образом, свободные валентные связи. В результате свободные радикалы получают некоторую избыточную потенциальную энергию по сравнению с исходными молекулами. Как следствие это приводит к увеличению химической активности. Свободные радикалы существуют очень короткое время (~103).

Свободные радикалы образуются, например, при взаимодействии молекул с электронами в электрическом поле:

Ионы, свободные атомы и радикалы имеют неспаренные электроны на внешней электронной оболочке и в связи с их высокой химической активностью их называют химически активными частицами. Возбужденные молекулы и атомы служат передатчиками энергии от электронов плазмы к активным (ионизируемым или диссоциируемым) атомам или молекулам.

Сложные реакции состоят из простых реакций (стадий), которые можно в свою очередь классифицировать по нескольким группам:

Необратимые реакции вида: A B. Химические реакции называются необратимыми, если вещества практически полностью превращаются в конечный продукт. Важнейшим условием необратимости химических реакций является выделение одного из продуктов реакции в виде осадка, образование газообразного продукта реакции либо образование малодиссоциированного продукта реакции (например, воды).

Двусторонние или обратимые реакции вида: А  В. Бульшая часть химических реакций обратима. Обратимыми называются такие химические реакции, которые протекают при данной температуре в двух противоположных направлениях прямом и обратном.

Параллельные реакции вида: A B, A C, A L;

Последовательные реакции вида: A B, B C, C L.

Сам процесс или акт химического превращения заключается в том, что при сближении двух или нескольких частиц происходит постепенная перестройка связей между атомами. При этом одни связи разрываются, а другие образуются. В результате из исходных веществ образуются продукты реакции.

Состояние, в котором одни связи уже растянулись, но еще не разорвались, а новые только образуются, называется переходным состоянием. Совокупность частиц, находящихся в переходном состоянии образует, так называемый, активированный комплекс, который в переходном состоянии находится на вершине потенциального барьера.

В качестве примера рассмотрим ход реакции H2+I2=2HI, которая, как показали современные исследования, является сложной реакцией, состоящей из трех элементарных реакций

I2 2I*; I* + H2 HI + H*; 2H* H2.

Рассмотрим более подробно вторую элементарную реакцию. В процессе протекания этой реакции сначала радикал йода I* сближается с молекулой водорода, далее связь между атомами водорода растягивается и образуется активный комплекс, состоящий из атома йода и двух атомов водорода. И, наконец, формируется связь между атомом йода и атомом водорода и образуется несвязанный радикал водорода.

Примерами быстро протекающих химических реакций могут служить реакции типа взрыва, а медленно протекающих реакций реакции ферментации виноградного сока с получением виноградного вина, которые протекают от нескольких месяцев до нескольких лет.

На практике скорость химической реакции можно определить графически из зависимости массы продукта химической реакции в единице объема от времени протекания реакции.

Особенности плазмохимических, фотохимических и радиационно-химических реакций

Скорость большинства химических реакций растет с повышением температуры. Это связано с тем, что далеко не каждое столкновение молекул реагирующих веществ приводит к химической реакции между ними. Для того чтобы образовались новые молекулы, необходимо предварительно ослабить или разорвать связи между атомами в молекулах исходных веществ. Для этого требуется затрата определенного количества энергии. Повышение температуры означает увеличение хаотического движения молекул. Зависимость константы скорости реакции от температуры передает полуэмпирическое уравнение Аррениуса:

,

где А некоторая константа, зависящая от вступающих в реакцию веществ; R газовая постоянная; Т температура; Еа так называемая энергия активации реакции.

Энергией активации называют избыточную энергию, которая должна быть сообщена молекулам для того чтобы их столкновение могло привести к образованию нового вещества (т.е. произошла химическая реакция между этими частицами). Величина энергии активации зависит от вида реагирующих частиц и от их энергетического состояния. Так, для реакций между валентно-насыщенными молекулами (входящие в молекулы атомы имеют полностью заполненную внешнюю электронную оболочку) энергия активации близка к энергии диссоциации и составляет 100200 кДж/моль. Реакции атомов (или радикалов) с молекулами протекают с промежуточными значениями энергии активации (40100 кДж/моль). Реакции между атомами и радикалами (или между радикалами) происходят с энергией активации близкой к нулю.

Таким образом, химические реакции идут успешно тогда, когда реагенты приобретают определенное количество энергии, и главной особенностью плазмохимических реакций является то, что в газоразрядной плазме под действием различных внешних воздействий атомы и молекулы имеют возможность перейти в активные частицы: радикалы, ионы или возбужденные частицы. Это обстоятельство позволяет преодолеть потенциальный барьер совершенно новых элементарных химических реакций, что обеспечивает образование совершенно новых химических соединений никогда не образующихся в данных условиях, либо позволяют создать перекос в скоростях обратимых химических реакций и тем самым создать условия для наработки таких продуктов реакции, которые при нормальных условиях имеют крайне низкие равновесные концентрации.

Приведем практически важные примеры использования плазмо-химических реакций. Наибольшее распространение получил электросинтез озона, т.е. преобразование молекул кислорода О2 в молекулы озона О3. Плазма газового разряда используется для его получения уже около ста лет. Все это время шел непрерывный процесс поиска более рациональной формы газового разряда и условий протекания химических реакций. Поэтому эти реакции на сегодняшний день наиболее исследованы и являются основой для дальнейших разработок.

Более десяти лет ведутся исследования по применению плазмы газового разряда для очистки газовых выбросов тепловых электрических станций от оксидов азота и серы. Созданы пилотные установки, ведутся активные исследования и поиски новых технических решений.

В последние годы начаты работы по применению плазмы импульсного газового разряда для очистки газовых выбросов лакокрасочных, гальванических и пропиточных производств от паров растворителей и компаундов в замен энергоёмких технологий высокотемпературного дожига.

2. Генераторы озона и озонные технологии

???????????????? ???????????? ???????? ???????

Физико-химические и биологические свойства озона

Озон это второе относительно устойчивое соединение (аллотропное) кислорода. В отличие от молекулы кислорода, молекула озона состоит из трех атомов и имеет более длинные связи между атомами кислорода (длина связи в молекуле озона 128 ?, в то время как длина связи в молекуле кислорода 121 ?).

Физические свойства озона. Озон может существовать во всех трех агрегатных состояниях. При нормальных условиях озон газ голубоватого цвета. Температура кипения озона равна 112С, а температура плавления составляет 192С.

Слово озон в переводе с греческого означает «пахнущий» и это название действительно отражает одну из особенностей озона, т.к. его характерный запах проявляется уже при концентрациях 10710.

Благодаря своей химической активности озон имеет очень низкую предельно-допустимую концентрацию в воздухе (соизмеримую с ПДК боевых отравляющих веществ) 510 или 0,1 мг/м3.

Химические свойства озона. Следует отметить прежде всего два основных свойства озона:

Озон в отличие от атомарного кислорода является относительно устойчивым соединением. Он самопроизвольно разлагается при высоких концентрациях, при этом чем выше концентрация, тем выше скорость реакции разложения. При концентрациях озона 1215% озон может разлагаться со взрывом. Следует также отметить, что процесс разложения озона ускоряется с ростом температуры, а сама реакция разложения 2О32 + 68 ккал экзотермична и сопровождается выделением большого количества тепла.

Озон является одним из сильнейших природных окислителей. Окислительный потенциал озона составляет 2,07 В (для сравнения у фтора 2,4 В, а у хлора 1,7 В).

Озон окисляет все металлы за исключением золота и группы платины.

Озон доокисляет оксиды серы и азота:

Озон окисляет аммиак с образованием нитрита аммония:

.

Озон активно вступает в реакцию с ароматическими соединениями с разрушением ароматического ядра. В частности озон реагирует с фенолом с разрушением ядра.

Озон активно взаимодействует с насыщенными углеводородами с разрушением двойных углеродных связей.

Взаимодействие озона с органическими соединениями находит широкое применение в химической промышленности и в смежных отраслях. Использование реакции озона с непредельными соединениями позволяет получать искусственным путем различные жирные кислоты, аминокислоты, гормоны, витамины и полимерные материалы. Реакции озона с ароматическими углеводородами дифениловую кислоту, фталиевый диальдегид и фталевую кислоту и др.

Реакции озона с ароматическими соединениями легли в основу технологий дезодорации различных сред, помещений и сточных вод.

Биологические свойства озона. Несмотря на большое количество исследований механизм недостаточно раскрыт.

Известно, что при высоких концентрациях озона наблюдаются поражения дыхательных путей, легких и слизистой оболочки. Длительное воздействие озона приводит к развитию хронических заболеваний легких и верхних дыхательных путей.

Воздействие малыми дозами озона оказывает профилактическое и терапевтическое воздействие и начинает активно использоваться в медицине.

Озон воздействует на все микроорганизмы, разрушая мембрану и окисляя протоплазму. При этом следует отметить, что концентрации озона губительные для простых микроорганизмов на несколько порядков ниже, чем для более высокоорганизованных.

Размещено на Allbest.ru


Подобные документы

  • Виды фотохимических процессов, протекающих при фотовозбуждении молекул. Различие кинетики фотохимических и темновых реакций. Полные и локальные скорости фотохимических реакций. Кинетика флуоресценции, фосфоресценции и интеркомбинационной конверсии.

    курсовая работа [2,8 M], добавлен 13.10.2011

  • Химическая кинетика и ее значение в управлении химическими процессами. Классификация реакций по средам протекания, их отличительные черты. Скорость химических реакций, зависимость ее от температуры среды и наличия света. Принцип действия катализаторов.

    реферат [152,7 K], добавлен 29.05.2009

  • Химическая реакция как превращение вещества, сопровождающееся изменением его состава и (или) строения. Признаки химических реакций и условия их протекания. Классификация химических реакций по различным признакам и формы их записи в виде уравнений.

    реферат [68,7 K], добавлен 25.07.2010

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат [26,7 K], добавлен 27.02.2010

  • Химическая кинетика – наука о скоростях химических реакций. Открытие новой области физической химии, элементарного акта, названной "фемтохимия". Три типа математических моделей (математического описания) сложных процессов. Детерминированные модели.

    реферат [74,3 K], добавлен 27.01.2009

  • Химическая кинетика изучает закономерности химических превращений веществ во времени в процессе перехода реагирующей системы к термодинамическому равновесию. Кинетические уравнения простых реакций. Основной закон химической кинетики Гульдберга-Вааге.

    реферат [38,1 K], добавлен 29.01.2009

  • Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация [1,6 M], добавлен 30.04.2012

  • Тепловые эффекты химических реакций, а также основные факторы, влияющие на их динамику. Закон Гесса: понятие и содержание, сферы практического применения. Энтропия системы и анализ уравнения Больцмана. Направления химических реакций и энергия Гиббса.

    лекция [34,1 K], добавлен 13.02.2015

  • Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат [773,3 K], добавлен 25.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.