Производство метилового спирта

Метанол как один из важнейших по значению и масштабам производства органический продукт, выпускаемый химической промышленностью. Производство исходного газа для его синтеза и характеристика целевого продукта. Свойства метанола и его водных растворов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 26.06.2013
Размер файла 425,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Свойства растворов метанола в смеси с другими веществами значительно отличаются от свойств чистого метилового спирта. Интересно рассмотреть изменение свойств системы метанол--вода. Температура кипения водных растворов метанола закономерно увеличивается при повышении концентрации воды и давления. Температура затвердевания растворов по мере увеличения концентрации метанола понижается: -54 °С при содержании 40% СНзОН и --132°С при 95% СНзОН. Плотность водных растворов метанола увеличивается при понижении температуры и почти равномерно уменьшается с увеличением концентрации метанола от плотности воды до плотности спирта при измеряемой температуре. Зависимость вязкости от концентрации метанола имеет при всех исследованных температурах максимум при содержании СНзОН около 40%. В точке максимума вязкость раствора больше вязкости чистого метанола.

Метанол смешивается во всех отношениях со значительным числом органических соединений. Со многими из них он образует азеотропные смеси -- растворы, перегоняющиеся без изменения состава и температуры кипения, т. е. без разделения; К настоящему времени известно свыше 100 веществ, в числе которых имеются и соединения, обычно присутствующие в метаноле-сырце. К этим веществам, например, относятся ацетон, метилацетат, метилэтилкетон, метилпропионат и некоторые другие. Необходимо отметить, что азеотропные смеси с содержанием таких соединений, как ме-тилэтилкетон, метилпропионат, пропилформиат, изобутилформиат и ряд других имеют температуру кипения, близкую к температуре кипения чистого метанола 62°С.

Метанол сочетает свойства очень слабого основания и еще более слабой кислоты, что обусловлено наличием алкильной и гидро-ксильной групп. При окислении метанола кислородом в присутствии катализатора образуется формальдегид:

СНзОН + 0,5СО2 - НСНО + Н2О

На этой реакции основан широко применяемый в промышленности метод получения формальдегида, который используют в производстве пластических масс. При действии щелочей металлом водород гидроксильной группы метанола замещается с образованием алкоголята

2СНзОН + 2Na ----> 2CH3ONa + 2

который стоек только в отсутствие воды, так как вода омыляет его до метанола и щелочи:

СН3ОNa + Н2О СНзОН + NaOH

С аммиаком метанол образует метиламины:

СНзОН + NH3 ----> CH3NH2 + Н2О

СНзОН + СНзNН2 ----> (CH3)2NH2 + Н2О

CH3OH + (СНз)2NH2 ----> (СН3)3NH2 + Н2О

Эти реакции протекают в паровой фазе в присутствии катализаторов при 370--400 °С и повышенных давлениях.

Дегидратацией на катализаторе при повышенных температурах получают диметиловый эфир:

2СН3ОН ----> (СНз)2О + Н2О

При взаимодействии метанола и минеральных кислот образуются сложные эфиры.

Этот процесс называется этерификацией, и его широко используют в промышленной практике для получения различных метиловых эфиров -- метилхлоридов, метилбромидов, метилнитратов, метилсульфатов и др.:

СНзОН + H2SO4 ---->- СНзSОзОН + Н2О

Органические кислоты также реагируют с метанолом с образованием сложных эфиров:

СНзОН + СНзСООН ----> СНзСООСНз + Н2О

4. Физико-химическое обоснование основных процессов производства целевого продукта.

2.2 Основные закономерности процесса синтеза метанола

Равновесие реакции образования метанола. Процесс получения метанола основан на взаимодействии водорода и окиси углерода:

2 + СО СНзОН + 21,67 ккал

Реакция может протекать как в прямом, так и в обратном направлениях. В соответствии с законом действующих масс скорость любой химической реакции пропорциональна произведению концентраций реагирующих веществ. Тогда скорости прямой и обратной реакций выразятся уравнениями

1 = k1 2]2 [СО] 2 = k2 [СНзОН]

где [H2], [СО] и [СНзОН]--концентрации водорода, окиси углерода и метанола; k1, k2--константы скорости прямой и обратной реакций, значения которых зависят от температуры.

При условии равновесия скорости прямой и обратной реакций становятся равными

k1 2]2 [СО] = k2 [СНзОН] откуда:

где К--константа равновесия реакции.

Значение константы равновесия необходимо для расчета равновесного выхода метанола. Равновесный выход--это теоретический максимальный выход метанола, который может быть получен из водорода и окиси углерода, взятых при данных концентрациях, температуре и давлении процесса. Константу равновесия можно определить как теоретическим, так и экспериментальным путем.

Давление. В технических расчетах обычно пользуются выражением константы равновесия через парциальное давление компонентов. При повышении давления и понижении температуры равновесие сдвигается в сторону увеличения выхода метанола. В промышленных условиях синтез метанола осуществляется из газовой смеси, содержащей кроме водорода и окиси углерода также двуокись углерода. Поэтому при расчете равновесия синтеза метанола из смеси газов Н2--СО--CO2 необходимо учитывать следующую реакцию:

СО2 + Н2(г)-СО + Н2О -- 9,8 ккал;

Равновесный выход метанола, степень превращения окиси и двуокиси углерода в значительной мере меняются в зависимости от давления, температуры, отношения Н2: СО и содержания двуокиси углерода в газе. Влияние давления и температуры на равновесный выход метанола определено для следующего состава газа: 1,25 объемн.% СО2; 10,6 объемн.% СО; 74,2 объемн.% Н2;-13,95 объемн.% (CH4+N2).

При повышении давления выход метанола почти прямо пропорционально увеличивается и резко возрастает степень превращения окиси и двуокиси углерода (при 380°С):

Давление, кгс/см2 .......... 50 100 200 300 400

Выход СН3ОН, объемн. %...... 0,37 1,56 5,54 9,31 11,68

Следует заметить, что с увеличением давления более резкий рост равновесного выхода метанола наблюдается при пониженных температурах. Так, при изменении давления от 50 до 300 кгс/см5 равновесный выход метанола при 280 °С увеличивается в 2,4 раза а при 380 °С -- в 2,3 раза (отношение H2: СО =4: 1).

Температура. С повышением температуры равновесный выход метанола понижается. Наиболее резкое понижение наблюдается при температурах выше 340°С. В этих условиях (при 300 кгс/см2) начинает снижаться степень превращения окиси и двуокиси углерода в метанол, причем более резко окиси углерода:

Температура, °С ....... 250 300 340 360 380 400

Выход метанола, объемн. %. . 15,44 14,81 12,88 11,37 9,31 7,40

Степень превращения, %

СО ........... 99,75 97,20 87,52 78,96 66,19 53,29

СО2 ........... 98,00 89,80 77,00 71,50 66,61 64,00

При давлении 50 кгс/см2 и повышении температуры от 180 до 300 °С равновесный выход метанола снижается более чем в 7 paз (отношение Н2:СО=3,6, содержание двуокиси углерода 6,0 объемн. %). При этом степень превращения окиси и двуокиси углерода в метанол уменьшается с 75,3 до 14,6%.

При повышении отношения Н2: СО степени превращения окиси и двуокиси углерода возрастают, причем степень превращения СО2 в большей мере, а равновесный выход метанола снижается. При 300 кгс/см2 и 380 °С равновесный выход метанола и степень превращения окислов углерода в зависимости от отношения Н2: СО меняются следующим образом:

Отношение Н2:СО . ......... 2 4 8 10 14

Выход СН3ОН, объемн. %,..... 17,25 13,80 8,39 7,05 5,40

Степень превращения, %

СО ............... 44,50 60,39 66,85 67,80 67,97

СО2 .............. 19,50 45,71 70,52 76,15 82,39

При увеличении содержания окиси углерода в газе, т. е. уменьшении отношения Н2: СО, равновесный выход метанола возрастает пропорционально при 50 кгс/см2 и 6 объемн. % СО2). Так, при 8 объемн. % СО, равновесный выход метанола составляет 5,71 объемн. %, при 16 объемн. % СО--11,41 объемн. %, а при 24 объемн, % СО--16,82 объемн. % СНзОН.

Двуокись углерода. Реакция восстановления двуокиси углерода водородом до окиси углерода в промышленных условиях синтеза метанола протекает практически до равновесного состояния и пренебрегать ею при расчете равновесных выходов метанола нельзя. При повышении содержания двуокиси углерода в газе равновесный выход метанола меняется незначительно. Степень превращения окислов углерода в метанол при этом снижается с 42,2% при 6 обьемн.% СО2 до 32,7% при 12 объемн.% СО2.

Инертные компоненты. В промышленных условиях синтез метанола протекает в присутствии инертных к данному процессу газов (метан, азот). Они в реакции не участвуют и не оказывают прямого влияния на равновесие реакции образования метанола. Однако наличие их в газе снижает парциальное (эффективное) давление реагирующих веществ, что ведет к уменьшению равновесного выхода метанола. Поэтому концентрацию инертных компонентов необходимо поддерживать на минимальном уровне.

Кинетика синтеза метанола. В гомогенных условиях (без катализатора) скорость взаимодействия окиси углерода и водорода ничтожно мала, и получить метанол в больших количествах невозможно. Для увеличения скорости реакции взаимодействия исходных компонентов используют вещества, которые, способствуя ускорению процесса, сами к концу реакций остаются химически неизменными. Для оценки этого ускорения, или иначе активности катализатора, необходимо знать скорость химического взаимодействия реагирующих компонентов. Если реакция протекает в гомогенных условиях, то скорость ее зависит от температуры, давления и концентрации реагирующих веществ. В гетерогенном, каталитическом процессе скорость реакции будет определяться также типом катализатора и состоянием его поверхности. Синтез метанола является гетерогенным каталитическим процессом, протекающим на границе раздела твердой (поверхность катализатора) и газообразной (смесь окиси углерода и водорода) фаз. До начала реакции окись углерода и водород концентрируются на поверхности катализатора (происходит адсорбция СО и H2). Суммарный процесс синтеза метанола состоит из следующих стадий:

диффузия исходных веществ к поверхности катализатора;

адсорбция этих веществ да поверхности катализатора;

химическое взаимодействие адсорбированных молекул СО и Н2 до метанола;

удаление (десорбция) образовавшегося метанола с поверхности катализатора.

Скорость процесса образования метанола будет равна скорости реакции в зависимости от начальных условии (температуры, давления, концентрации веществ, времени контакта газа с катализатором) позволило вывести кинетическое уравнение. Последнее используют при моделировании процесса и разработке промышленных реакторов.

Проведенные на электронно-вычислительной машине расчеты по кинетическому уравнению показали, что оно хорошо описывает процесс образования метанола.

На катализаторе СНМ-1 , может быть использовано для расчета промышленных реакторов. Пo рассчитанным зависимостям можно определить оптимальные параметры процесса и равновесные условия. Наибольший выход метанола наблюдается при 255-- 270° С, что согласуется с экспериментальными данными. С уменьшением парциального давления окиси углерода (повышение отношения Н2:СО) максимум активности катализатора смещается в сторону более низких температур.


Подобные документы

  • Актуальность производства метанола. Физические и химические свойства. Подготовка углеводородного сырья. Производство синтез-газа. Получение целевого продукта. Структурный анализ затрат. Формы отравления метаноловым спиртом. Применение метанола в мире.

    презентация [863,6 K], добавлен 15.11.2015

  • Физико-химические свойства метанола, области применения, текущее состояние рынка данного продукта. Производство, переработка метанола в России и перспективы его использования. Метанол как альтернативный энергоноситель. Новое топливо из природного газа.

    курсовая работа [2,1 M], добавлен 05.10.2011

  • Товарные и определяющие технологию свойства метанола, области применения в химической технологии. Сырьевые источники получения метанола. Перспективы использования различных видов сырья. Промышленный синтез метилового спирта и его основные стадии.

    контрольная работа [42,6 K], добавлен 10.09.2008

  • Выбор метода производства готового продукта. Характеристика исходного сырья, вспомогательных материалов и продукции. Способы получения уксусной кислоты из метанола. Уравнение реакции карбонилирования метанола. Катализаторы, носители, поглотители.

    дипломная работа [136,8 K], добавлен 03.11.2013

  • Синтез метанола из оксида углерода и водорода. Технологические свойства метанола (метиловый спирт). Применение метанола и перспективы развития производства. Сырьевые источники получения метанола: очистка синтез-газа, синтез, ректификация метанола-сырца.

    контрольная работа [291,5 K], добавлен 30.03.2008

  • Исследование возможности применения синтез–газа в виде альтернативного нефти сырья, его роль в современной химической технологии. Получение метанола, суммарная реакция образования. Продукты синтеза Фишера–Тропша. Механизм гидроформилирования олефинов.

    реферат [1,6 M], добавлен 27.02.2014

  • Характеристика исходного сырья для получения продуктов в азотной промышленности. Физико-химическое основы процеса. Характеристика целевого продукта. Технологическое оформление процесса синтеза аммиака. Охрана окружающей среды в производстве аммиака.

    курсовая работа [267,9 K], добавлен 04.01.2009

  • Особенности использования метанола в органическом синтезе. Промышленные способы получения и схема производства метанола. Влияние параметров управления на на равновесие и скорость химической реакции. Оптимизация работы реактора по экономическим критериям.

    курсовая работа [552,7 K], добавлен 23.02.2012

  • Отличие условий синтеза метанола от условий синтеза высших спиртов. Стадии процесса и их тепловой эффект. Влияние вида катализатора на параметры, скорость и глубину процесса. Синтез метанола на цинк-хромовом катализаторе. Схемы синтеза метанола.

    реферат [748,6 K], добавлен 15.06.2010

  • Серная кислота как важнейший продукт химической промышленности, ее свойства и применение, сырье для производства. Совершенствование традиционных технологий ее получения: проблемы и пути решения. Описание аппаратурного оформления процесса синтеза.

    курсовая работа [666,6 K], добавлен 26.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.