Определение емкости ионообменной смолы

Емкость ионообменной смолы как количество ионов, которое может быть поглощено определенным объемом смолы. Методика определения данного показателя титрованием в лабораторных условиях. Основные типы реакций, протекающих с участием ионообменных смол.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 15.11.2012
Размер файла 216,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Определение емкости ионообменной смолы

Общие понятия

В общих словах, под емкостью ионообменной смолы понимается количество ионов, которое может быть поглощено определенным объемом смолы. Причем единицы измерения емкости смолы могут быть разными. Например, мг-экв/мл (meq/ml), г-экв/л (eq/l) или килогран на кубический фут (Kgr/ft3). Зная эквивалентную массу вещества, можно рассчитать емкость смолы. Эквивалентная масса вещества определяется как отношение молярной массы вещества к его валентности (строго говоря, к числу эквивалентности вещества). Например, молярный вес кальция равен 40 г./моль, а валентность 2, тогда эквивалентная масса равна 20 г./моль (40/2 = 20). Ионообменная смола с обменной емкостью 1,95 г.-экв/л способна извлечь из раствора 1,95 Ч 20 = 39 грамм на 1 литр смолы.

На практике обменная емкость смолы определяется в лабораториях титрованием. Через колонку, в которую помещена навеска катионита в водородной форме (H-форма), пропускают раствор гидроксида натрия (NaOH). Часть ионов Na+ обменивается на ионы водорода. Гидроксид натрия, не вступивший в реакцию с ионогенной группой смолы, оттитровывают кислотой. Вычитая из начальной концентрации гидроксида натрия концентрацию остаточную, можно определить емкость катионита. Другой способ определения обменной емкости ионита состоит в пропускании через слой смолы раствора хлористого кальция. Аналогичным образом определяется емкость анионообменной смолы (в OH-форме), через которую пропускают раствор кислоты.

Емкость смолы может быть измерена в мг-экв/мл (объемная) или мг-экв/г (весовая). Если определена емкость, выраженная в мг-экв/г (причем имеется в виду масса сухого ионита), то, зная влажность смолы, легко перейти к мг-экв/мл.

На рисунке обменная емкость смолы графически изображена областью желтого цвета, расположенную между вертикальными прямыми АN и СL. Область серого цвета, расположенная ниже кривой, - это концентрация ионов в очищенной воде. В начале цикла концентрация ионов в фильтрате очень мала, и остается постоянной на протяжении всего фильтроцикла, в момент, когда фронт фильтрования достигнет конца слоя ионита, наступает проскок ионов в фильтрат (на рисунке - точка Р). Это является сигналом к регенерации смолы. Обычно, регенерацию фильтра проводят до проскока. Например, в промышленности концентрация ионов жесткости, при которой фильтр выводят в регенерацию, может достигать величины менее 0,05 0Ж, а в бытовых системах умягчения - менее 0,5 0Ж. Длина отрезка x - y соответствует объему очищенной воды в литрах или галлонах. Площадь фигуры ANLB - полное поглощение ионов смолой, а площадь фигуры ANMB - количество поглощенных ионов до момента наступления проскока.

Говоря о емкости, мы чаще подразумеваем именно рабочую, а не полную обменную емкость. Рабочая емкость не является величиной постоянной, она зависит от множества факторов: марки ионита, концентрации и типа поглощаемых ионов, pH раствора, от требований, предъявляемых к очищенной воде, скорости потока, высоты слоя ионита и других требований.

Достижение высокой степени извлечения ионов из водного раствора требует увеличения дозы регенерирующего раствора (красная линия). Однако, увеличивать концентрацию регенерирующего раствора бесконечно невозможно (зеленая линия - теоретическая зависимость между степенью восстановления емкости смолы и расходом регенерирующего раствора). На практике, чтобы достигнуть высокую емкость, необходимо увеличивать количество смолы. При первом фильтроцикле степень восстановления ионообменных свойств может достигать 100%, но с течением времени эта величина будет уменьшаться. Например. большинство производителей систем умягчения воды рекомендуют использовать раствор NaCl концентрацией 100 - 125 г./л для восстановления емкости катионита до 50 - 55% от полной обменной емкости.

При определении емкости необходимо знать ионную форму смолы (солевая, кислотная, основная). При регенерации или в процессе работы объем засыпанной смолы меняется, происходит процесс, называемый «дыханием» смолы. В таблице показано, как ведут себя смолы в различных процессах.

Тип смолы

Процесс

Уменьшение объема, %

Увеличение объема, %

1

Сильнокислотный катионит

Na+ > H+

6 - 10

Na+ > Ca2+

5 - 7

2

Сильноосновный анионит

Cl- > OH-

20

Cl- > NO

3 - 5

3

Слабокислотный катионит

H+ > Ca2+

20

H+ > Na+

50

4

Слабоосновный анионит

FB > Cl-

20 - 25

Различают катиониты и аниониты. Реакции, в которых участвуют иониты приведены в таблице.

ионообменный смола реакция титрование

Причем, в англоязычной литературе символ SAC обозначает сильнокислотный катионит, SBA - сильноосновный анионит, WAC - слабокислотный катионит, а WBA - слабоосновный анионит. Способность к ионному обмену определяется наличием функциональной группы, сильнокислотные катиониты содержат сульфогруппу - SO3H, а слабокислотные катиониты карбоксильную группу - COOH. Сильнокислотные катиониты обмениваются катионами при любых значениях pH раствора, то есть ведут себя, как сильные кислоты в растворе. А слабокислотные катиониты подобны слабым кислотам и вступают в реакцию ионного обмена только при значениях pH выше 7. Аниониты содержат функциональные группы пяти типов: (-NH2, NH=, N?, - N(CH3) 3OH, - N(CH3) 2С2H4OH). Первые три группы придает аниониту слабоосновные свойства, а группы - N(CH3) 3OH, - N(CH3) 2С2H4OH - сильноосновные. Слабоосновыные аниониты вступают в реакции с анионами сильных кислот (SO, Cl-, NO), а сильноосновные с анионами сильных и слабых (HCO, HSiO) в диапазоне pH от 1 до 14. Говоря о емкости сильноосновного анионита, следует обратить внимание на то, что в смоле присутствуют функциональные группы, присущие и слабоосновным анионитам. При старении сильноосновного анионита или под действием высоких температур происходит снижение основности и частичное разрушение функциональных групп.

Рассмотрим подробнее реакции, протекающие с участием ионообменных смол. Реакция 1 - умягчение воды на сильнокислотном катионите в солевой (Na) форме, 2 - удаление нитрат-ионов на сильноосновном анионите в Cl-форме. Применение в качестве регенерирующего раствора хлорида натрия и хлорида калия способствует широкому применению этого типа смол в быту, промышленности и очистке сточных вод. Катиониты также могут восстанавливаться растворами кислот (например, соляная кислота), а аниониты - раствором едкого натра (NaOH). Иониты в H и OH-форме используют в схемах подготовки обессоленной воды (реакции 3 и 4). Слабокислотный катионит проявляет ионообменные свойства при высоких значениях pH (реакция 5), а слабоосновный анионит - при низких значениях pH (реакция 6). Реакция 5 - одновременное умягчение и снижение щелочности воды. Следует заметить, что WBA смола в результате регенерации щелочным раствором переходит не в OH-форму, а так называемую FB-форму (свободное основание).

Слабокислотные катиониты по сравнению с сильнокислотными обладают более высокой обменной емкостью, для них свойственно большое сродство к ионам водорода, поэтому регенерация протекает легче и быстрее. Важно, что для регенерации WAC, также как и WBA, не используют растворы хлористого натрия или калия. Выбор той или иной марки ионообменной смолы зависит от многих условий. Например, различают два типа сильноосновных анионитов: тип I (функциональная группа - N(CH3) 3OH) и тип II (-N(CH3) 2С2H4OH). Аниониты типа I лучше поглощают ионы HSiO в отличие от анионитов типа II, но при этом последние характеризуются более высокой обменной емкостью и лучше регенерируются.

В заключении заметим, что в литературе, а также в паспорте на продукцию указывается полная весовая и обменная емкость смолы, которые определяются в лаборатории. Рабочая емкость смолы ниже заявленной производителем и зависит от многих факторов, которые не могут быть учтены в лабораторных условиях (геометрические характеристики слоя смолы, конкретные условия процесса: скорости потоков, концентрации растворенных веществ, степень регенерации и т.д.).

Размещено на Allbest.ru


Подобные документы

  • Ионообменные смолы - высокомолекулярные полимерные соединения трехмерной гелевой и макропористой структуры. Катионообменные, анионообменные и амфотерные ионообменные смолы. Показатели прочности и стабильности. Производство и применение ионообменных смол.

    доклад [29,4 K], добавлен 08.12.2010

  • Ионообменные смолы и их применение в цветной металлургии. Их структура и синтез. Приготовление растворов K2Cr2O7 и определение их концентрации. Подготовка смолы АВ-16гс к работе. Динамическая характеристика ионита марки "АВ16-гс" по бихромат-ионам.

    реферат [61,4 K], добавлен 21.12.2009

  • Рецептура смолы 135, количество и порядок закладки в нее ингредиентов. Стадии технологического процесса изготовления смолы, их характеристика и особенности. Экологическая безопасность производства, использование специального природоохранного оборудования.

    реферат [23,5 K], добавлен 17.02.2009

  • Получение стабильной водорастворимой мочевиноформальдегидной смолы, которая может применяться в качестве основы антипиренных древесных пропиток. Закономерности синтеза мочевиноформальдегидных смол. Условия реакции конденсации для получения клеящих МФС.

    дипломная работа [296,4 K], добавлен 16.03.2014

  • Природные (естественные) смолы-продукты жизнедеятельности животных или растений: канифоль, шеллак и копалы. Твердые органические диэлектрики-материалы, в составе которых находится углерод. Полимеризационные и поликонденсационные синтетические полимеры.

    реферат [38,5 K], добавлен 20.12.2007

  • Состав, свойства и направления переработки каменноугольной смолы. Фазовые равновесия жидкость-пар в системах. Легкая, фенольная, нафталиновая, поглотительная, антраценовая фракция и ее компоненты. Пек каменноугольный, новые идеи получения продукции.

    курсовая работа [337,3 K], добавлен 21.12.2015

  • Технологический процесс изготовления эпоксидной смолы, ее взаимодействие с различными отвердителями. Характеристика различных эпоксидных компаундов. Пенопласты из эпоксидных смол. Технология герметизации погружного насоса эпоксидным компаундом.

    курсовая работа [1,2 M], добавлен 14.06.2011

  • История развития производства и потребления эпоксидных связующих. Получение смол путем полимеризации и отверждения. Применение эпоксидных смол в качестве эпоксидного клея, для ремонта бетона, железобетонных конструкций, фундаментов и для их усиления.

    презентация [497,1 K], добавлен 15.09.2012

  • Описания продуктов природного происхождения, относящихся к классу терпеноидов, родственных эфирным маслам и имеющих в качестве предшественника изопрен. Классификация смол и бальзамов. Исследование их химического состава, методов получения и применения.

    реферат [52,2 K], добавлен 23.08.2013

  • Описание метода катионного обмена и этапов технологического процесса водоподготовки. Назначение и описание принципа работы деаэратора. Изучение классификации топливно-энергетических ресурсов. Получение феноло-формальдегидных смол и методы полимеризации.

    контрольная работа [49,7 K], добавлен 19.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.