Логика и этапы развития методологии химии

Формирования химии как науки: исторический анализ. Исходные методологические позиции раннего периода химических исследований. Классические методы исследований в химии в XVI-XVIII в. Отход от традиционных методов и методологический сдвиг в химии XX в.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 22.06.2012
Размер файла 133,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

К концу века чётко оформились три концептуальных системы химии: учение о составе, структурная химия и учение о химическом процессе. Однако в каждой из основных концепций химии оставались нерешёнными фундаментальные вопросы: о причине периодичности свойств элементов, о природе связи между атомами, о природе сил химического сродства. Ответить на эти вопросы предстояло химии XX столетия, начало которого ознаменовалось общим кризисом естествознания, вылившимся в новую научную революцию.

§ 2.Стадия методологического сдвига в химии XX века

Открытие делимости атома, ознаменовавшее собой конец господствовавшего в естествознании механистического атомизма, произошло на рубеже XX века. Это открытие имеет достаточно длинную предысторию.

В 1897-1898 гг. французские учёные Пьер Кюри и Мария Склодовская-Кюри установили, что испускание уранового излучения является свойством атома урана; это свойство не зависит от того, в каком соединении находится уран. В 1898 г. супруги Кюри обнаружили, что таким же свойством обладает и другой элемент - торий. В том же году они начали исследования богемской смоляной обманки - одного из природных минералов урана, испускающим более сильное излучение, чем чистые соли урана (супруги Кюри предложили новый термин - радиоактивность). Результатом их работы стало открытие двух новых радиоактивных элементов - полония и радия.

В 1899 г. английский физик Эрнест Резерфорд обнаружил неоднородность уранового излучения: в магнитном поле лучи разделяются таким образом, что можно выделить две составляющих, соответствующих потокам частиц с положительными и отрицательными зарядами. Поль Виллар в 1900 г. выделил ещё один тип: лучи, не отклоняющиеся магнитным полем. Резерфорд предложил обозначать эти излучения первыми буквами греческого алфавита: альфа-, бета- и гамма-лучи. Беккерель показал, что в-лучи отклоняются магнитным полем в том же направлении и на ту же величину, что и катодные лучи, и, следовательно, представляют собой поток электронов.

В 1900 г. Резерфорд установил, что соединения тория непрерывно выделяют радиоактивный газ - эманацию тория (радон), положив тем самым начало исследованиям продуктов радиоактивного распада. В 1903 г. Уильям Рамзай, первооткрыватель инертных газов, и Фредерик Содди доказали, что при б-распаде радия образуется гелий. В том же году Э. Резерфорд и Ф. Содди заложили основы теории радиоактивного распада, показав, что уран, торий и актиний являются родоначальниками семейств радиоактивных элементов, являющихся продуктами их распада; конечным продуктом распада является свинец. В качестве важнейшей характеристики радиоактивных элементов было предложено введённое П. Кюри понятие период полураспада.

Исследования радиоактивности в корне изменили классическое понятие атома; стало очевидным, что атом надлежит понимать как сложную систему, в образовании которой участвуют некие более простые частицы. Хотя для химии установление делимости атома не привело к каким-либо принципиальным изменениям в теории, серьёзную проблему составляла необходимость размещения в периодической таблице элементов многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающиеся периоды полураспада. С одной стороны, Теодор Сведберг в 1909 г. показал, что химически многие продукты радиоактивного распада тождественны. С другой стороны, было установлено, что атомные массы свинца и неона, полученных в результате радиоактивного распада, достоверно отличаются от атомных масс "обычных" элементов. Проблема была решена в 1913-1914 гг. Фредериком Содди.

К началу 20-х годов XX века изменилось само понятие химического элемента, берущее начало от Роберта Бойля. Вместо элемента как химически неразложимого вещества, состоящего из тождественных неделимых атомов, сформировалось представление об элементе как о совокупности атомов с одинаковым зарядом ядра. В 1919 г. Резерфорд осуществил первую искусственную ядерную реакцию, превратив азот в кислород бомбардировкой б-частицами, и экспериментально доказал существование протона; в 1920 г. он же высказал гипотезу о существовании нейтрона (который был экспериментально обнаружен Чедвиком в 1931 г.). Весьма примечательно, что название ядра простейшего атома - протон - созвучно праутовскому протилу.

Открытие основных составных частей атома и возможности превращений элементов (оказалось, алхимики были не столь уж и не правы, говоря о том, что трансмутация - лишь вопрос искусства) привело к коренному пересмотру представлений о строении вещества. Алхимический термин трансмутация возвратился в науку; теперь он стал означать превращение атомов одних химических элементов в другие в результате радиоактивного распада их ядер либо ядерных реакций.

Первые модели строения атома появились в самом начале XX века. Жан Перрен в 1901 г. высказал предположение о ядерно-планетарном устройстве атома. Подобную же модель предложил в 1904 г. японский физик Хантаро Нагаока. В модели Нагаоки атом уподоблялся планете Сатурн; роль планеты выполнял положительно заряженный шар, представляющий собой основную часть объёма атома, а электроны располагались подобно спутникам Сатурна, образующим его кольца. Однако более широкое распространение получила т.н. кексовая модель атома: в 1902 г. Уильям Томсон (лорд Кельвин) высказал предположение о том, что атом представляет собой сгусток положительно заряженной материи, внутри которого равномерно распределены электроны. Простейший атом - атом водорода - представлял собой, по мнению У. Томсона, положительно заряженный шар, в центре которого находится электрон. Детально данную модель разработал Дж. Дж. Томсон, считавший, что электроны внутри положительно заряженного шара расположены в одной плоскости и образуют концентрические кольца. Дж. Дж. Томсон предложил способ определения числа электронов в атоме, основанный на рассеивании рентгеновских лучей в предположении, что именно электроны должны являться центрами рассеивания. Проведённые эксперименты показали, что количество электронов в атомах элементов равно приблизительно половине величины атомной массы. Дж. Дж. Томсон, предположив, что число электронов в атоме непрерывно возрастает при переходе от элемента к элементу, впервые попытался связать строение атомов с периодичностью свойств элементов.

В 1906-1909 гг. Ганс Гейгер, Эрнст Марсден и Эрнест Резерфорд, пытаясь найти экспериментальные подтверждения модели Томсона, провели свои знаменитые опыты по рассеиванию б-частиц на золотой фольге. Они использовали б-частицы вместо электронов, т.к. благодаря своей большей массе (в 7350 раз больше массы электрона) б-частицы не претерпевают заметного отклонения при столкновении с электронами, что позволяет регистрировать только столкновения с положительной частью атома. В качестве источника б-частиц ими был взят радий, а частицы, претерпевавшие рассеяние в тонкой золотой фольге, регистрировались по сцинтилляционным вспышкам на экране из сульфида цинка, находящемся в затемнённой комнате.

Результат опытов оказался совершенно противоположным ожидаемому. Большинство б-частиц проходило через золотую фольгу по прямым или почти прямым траекториям, но в то же время некоторые б-частицы отклонялись на очень большие углы, что свидетельствовало о наличии в атоме чрезвычайно плотного положительно заряженного образования. Основываясь на этих экспериментальных фактах, Резерфорд в 1911 г. предложил свою ядерную модель атома: в центре атома находится положительно заряженное ядро, объём которого ничтожно мал по сравнению с размерами атома; вокруг ядра вращаются электроны, число которых приблизительно равно половине атомной массы элемента. Модель атома Резерфорда при несомненных достоинствах содержала важное противоречие: в соответствии с законами классической электродинамики вращающийся вокруг ядра электрон должен был непрерывно испускать электромагнитное излучение, теряя энергию. Вследствие этого радиус орбиты электрона должен был быстро уменьшаться, и рассчитанное из этих представлений время жизни атома оказывалось ничтожно малым. Тем не менее, модель Резерфорда послужила основой для создания принципиально новой теории, которую разработал в 1913 г. датский физик Нильс Хенрик Давид Бор.

Модель Бора опиралась на квантовую гипотезу, которую выдвинул в 1900 г. немецкий физик Макс Карл Эрнст Людвиг Планк. Планк постулировал, что вещество может испускать энергию излучения только конечными порциями, пропорциональными частоте этого излучения. Применив квантовую гипотезу для объяснения фотоэффекта, Альберт Эйнштейн в 1905 г. предложил фотонную теорию света.

Ещё одной предпосылкой для боровской модели атома стали серии спектральных линий водорода, которые обнаружили в 1885 г. швейцарский ученый Иоганн Якоб Бальмер, в 1906 г. американский физик Теодор Лайман и в 1909 г. немецкий физик Фридрих Пашен. Эти серии (в видимой, ультрафиолетовой и инфракрасной областях спектра) подчинялись очень простой закономерности: частоты были пропорциональны разности обратных квадратов целых чисел.

Бор объяснил устойчивость планетарной модели атома и одновременно эти спектральные данные с позиций квантовой теории, сформулировав ряд постулатов, накладывающих на модель атома квантовые ограничения. Согласно постулатам Бора, электрон может вращаться вокруг ядра лишь по некоторым дозволенным («стационарным») орбитам, находясь на которых, он не излучает энергию. Ближайшая к ядру орбита соответствует «нормальному» (наиболее устойчивому) состоянию атома. При сообщении атому кванта энергии электрон переходит на более удалённую орбиту. Обратный переход из «возбуждённого» в «нормальное» состояние сопровождается испусканием кванта излучения.

Для атома водорода расчёты спектров на основе модели Бора дали хорошее согласие с экспериментом, но для других элементов получалось существенное расхождение с опытными данными. В 1916 г. немецкий физик Арнольд Иоганн Вильгельм Зоммерфельд уточнил модель Бора. Зоммерфельд высказал предположение, что кроме круговых, электрон может двигаться и по эллиптическим орбитам. При этом почти одинаковому уровню энергии соответствует число типов орбит, равное главному квантовому числу. Зоммерфельд дополнил модель побочным (орбитальным) квантовым числом (определяющим форму эллипсов) и зависимостью массы электрона от скорости. Основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями (в классическую картину вводились квантовые ограничения), Нильс Бор в 1921 г. заложил основы формальной теории периодической системы. Причина периодичности свойств элементов, по мнению Бора, заключалась в периодическом повторении строения внешнего электронного уровня атома.

В первой половине 1920-х гг. в модель атома были добавлены ещё два квантовых числа. Немецкий физик Альфред Ланде ввёл для описания движения электрона в атоме магнитное квантовое число, а молодые физики Джордж Юджин Уленбек и Сэмюэл Абрахам Гаудсмит в 1925 г. ввели в атомную физику представление о спине электрона, Следует отметить, что американский физик Артур Холли Комптон, основываясь на атомных спектрах высокого разрешения, ещё в 1921 г. высказывал предположение о квантованном вращении электрона, а в следующем году Отто Штерн и Вальтер Герлах экспериментально наблюдали разделение пучка атомов серебра в магнитном поле на две части, соответствующие ориентации электронных спинов.

В 1925 г. Вольфганг Паули опубликовал свою работу, содержащую формулировку принципа запрета, носящего его имя: в данном квантовом состоянии может находиться только один электрон. Паули указал, что для характеристики состояния электрона необходимо четыре квантовых числа: главное квантовое число n, азимутальное квантовое число l и два магнитных числа m1 и m2.

В 1927 г. немецкий физик Фридрих Хунд сформулировал эмпирические правила заполнения электронных оболочек. С применением запрета Паули и принципа насыщения уровней к 1927 г. была в целом построена электронная структура всех известных к тому времени 92 элементов. Создание учения о строении электронных оболочек атомов позволило разработать формальную физическую теорию периодической системы, объяснившую причины периодичности свойств элементов и их соединений, а также создать первые теории химической связи.

На протяжении всего XIX века химия, основанная на атомно-молекулярной теории, не могла дать никаких объяснений природе связи между атомами. Понятие валентности, при всей плодотворности его применения, оставалось сугубо эмпирическим. Лишь после открытия делимости атома и установления природы электрона как составной части атома возникли реальные предпосылки для разработки первых теорий химической связи.

Все дальнейшие попытки объяснения природы валентных сил находились в тесной связи с представлениями о строении атома. Дж. Дж. Томсон в своей модели строения атома указывал на участие электронов в образовании связи между атомами. В 1908 г. Уильям Рамзай высказал идею о связи атомов посредством общего электрона. Нильс Бор в 1913 г. предложил динамическую модель молекулы, в которой химическая связь возникает за счёт электронов, находящихся на общей для двух атомов орбите, плоскость которой перпендикулярна линии, соединяющей ядра. Иоганнес Штарк в 1915 г. ввёл в теорию понятие о валентных электронах: согласно Штарку, валентность атома не связана с общим числом электронов в атоме, а определяется только числом поверхностных электронов. Представления Штарка о валентных электронах и модель атома Резерфорда - Бора легли в основу новых теорий химической связи.

Представления об электровалентности или полярной валентности получили развитие в работах немецкого физика Вальтера Косселя. В 1916 г. он разработал теорию гетерополярной (ионной) связи, основанную на модели атома Бора и представлении об особой стабильности двух- или восьмиэлектронных оболочек инертных газов. Реакционная способность атома, по Косселю, определяется его стремлением приобрести такую электронную конфигурацию. Учитывая тот факт, что большинство неорганических соединений полярно и способно диссоциировать на ионы, он предположил, что природа валентных сил заключается в электростатическом притяжении ионов, образующихся за счёт отдачи одним атомов одного или нескольких электронов другому.

Представления об электровалентности или полярной валентности получили развитие в работах немецкого физика Вальтера Косселя. В 1916 г. он разработал теорию гетерополярной (ионной) связи, основанную на модели атома Бора и представлении об особой стабильности двух- или восьмиэлектронных оболочек инертных газов.

Открытый Г. Мозли закон (1913) связал положение элемента в периодической системе и его характеристическое рентгеновское излучение. Это привело к выводу, что атомный номер химического элемента численно равен заряду атомного ядра этого элемента, а следовательно общему числу электронов в оболочке нейтрального атома. Ещё более глубокое понимание периодического закона было достигнуто на основании работ Н. Бора и др. учёных, показавших, что по мере перехода от элементов с меньшими атомными номерами к элементам с большими их значениями происходит заполнение электронами оболочек (уровней и подуровней), всё далее расположенных от ядра. При этом периодически повторяется сходная структура внешних электронных конфигураций, от чего и зависит в основном периодичность химических и большинства физических свойств элементов и их соединений. Решающую роль в понимании закономерностей заполнения электронных оболочек атома и объяснении атомных и молекулярных спектров сыграл Паули принцип. Сделанные открытия позволили решить многие вопросы, связанные с дальнейшей разработкой и теоретическим обоснованием периодической системы Менделеева. Обнаружение изотопов показало, что не атомная масса, а заряд ядра определяет место элемента в периодической системе. Открытием нейтронов (Дж. Чедвик, 1932) и искусственной радиоактивности (И. и Ф. Жолио-Кюри, 1934) были заложены основы получения новых радиоактивных изотопов и элементов, отсутствующих в природе, и последующего синтеза трансурановых элементов.

С решением проблемы строения атома связан вопрос о природе химической связи. В. Коссель (1916) и Г. Льюис (1916) предложили первые электронные теории валентности и химической связи. Теория Косселя рассматривала образование ионной связи, теория Льюиса -- ковалентной. Описательная сторона этих теорий, хорошо согласующаяся с моделью атома Бора и объясняющая некоторые характерные особенности химической связи, сохраняет в известной мере своё значение до сих пор. Выдвинутые позже концепции, в частности резонанса теория (Л. Полинг), позволяют получать некоторые качественные и полуколичественные данные о симметрии молекул, об эквивалентности тех или иных связей и структурных элементов в молекулах, о стабильности и реакционной способности молекул.

Однако только на основе квантовой механики удалось объяснить природу химической связи, точно рассчитать энергию связи для простейшей молекулы -- молекулы водорода (нем. учёные В. Гейтлер и Ф. Лондон, 1927) -- и многие физические параметры др. двухатомных и нескольких многоатомных молекул (H2O, HF, LiH, NH3 и др.), в том числе межатомные расстояния, энергии образования из атомов, частоты колебания в спектрах, электрические и магнитные свойства, насыщаемость и направленность связей.

Новейший этап развития химии характеризуется быстрой разработкой пространственных представлений о строении вещества, стереохимических концепций. Ещё в 1874--75 Ж. А. Ле Бель и Вант-Гофф высказали предположение, что 4 атома или радикала, связанные с атомом углерода, расположены не в одной плоскости, а в пространстве, по вершинам тетраэдра, в центре которого находится атом углерода. В связи с этим было расширено представление об изомерии, установлено несколько её видов и были заложены основы стереохимии. Для многих молекул были определены их стабильные пространственные конфигурации; в дальнейшем исследователи установили лабильные конформации молекул, возникающие в результате некоторого затруднения свободного вращения атомных групп вокруг простых связей.

Современная теоретическая химия основывается на общефизическом учении о строении материи, на достижениях квантовой теории, термодинамики и статистической физики. Применение методов квантовой механики к решению химических задач привело к возникновению квантовой химии. Её задачей стало решение волнового уравнения Шредингера для многоэлектронных систем молекул. Одним из первых результатов была теория валентных связей, ещё широко использовавшая традиционное представление о паре электронов как носительнице химической связи (Гейтлер, Лондон, Дж. Слэтер, Полинг). Затем был разработан метод молекулярных орбиталей (МО), рассматривающий целостную электронную структуру молекулы; каждая молекулярная орбиталь (волновая функция) учитывает вклад в неё всех электронных орбиталей атомов. Наиболее распространённый вариант метода МО основанный на приближённом описании молекулярных орбиталей через линейную комбинацию атомных орбиталей (ЛКАО МО). В ряде случаев для простейших молекул на основе использования новейшей вычислительной техники могут быть проведены весьма сложные расчёты молекул без всяких предварительных упрощений задачи. На основе указанного метода рассчитываются энергетические и электронные параметры молекул (распределение электронной плотности, величина энергии, длина и порядок связей, некоторые физические свойства соединений). Метод МО получил ныне распространение в теории органической химии. В неорганической химии на основе его сочетания с теорией кристаллического поля (Х. Бете) возникла теория поля лигандов.

Квантовохимическое рассмотрение кинетических соотношений, установленных Аррениусом и Вант-Гоффом, привело к возникновению учения об абсолютных скоростях химических реакций, являющегося основой химической кинетики. Это позволило вычленить очень важную теоретическую проблему современной химии -- вопрос о природе переходного состояния, промежуточного активированного комплекса, внутри которого происходят во многом ещё неясные процессы перестройки структуры молекул.

Детальное изучение кинетики и механизмов реакций, исследование элементарных актов химических взаимодействий -- важная задача химической физики. Большое значение приобрели работы в области цепных реакций, основы теории которых были разработаны Н. Н. Семеновым и С. Хиншелвудом. Кинетические исследования сыграли важную роль в развитии технологии переработки нефти, горения топлива, синтеза высокомолекулярных веществ. Показана возможность химической фиксации азота при обычных температуре и давлении, что может существенно изменить будущую технологию.

Ядерные превращения и сопутствующие им физико-химические явления, продукты ядерных реакций, радиоактивные изотопы, элементы и вещества служат объектами изучения ядерной химии и радиохимии. Работы в этом направлении имеют большое значение для получения и извлечения атомного сырья, разделения изотопов, использования расщепляющихся материалов.

Взаимодействие вещества с излучением и частицами высоких энергий различной природы, приводящее к химическим превращениям, изучается радиационной химией Воздействие радиации инициирует многие процессы, в том числе синтез высокомолекулярных соединений из мономеров. В частности, под действием света происходят фотохимические реакции. Фотохимия исследует как связывание энергии электромагнитного излучения (например, в фотосинтезе, осуществляемом зелёными растениями), так и многочисленные реакции синтеза и распада, изомеризации и перегруппировок, возникающие в ходе указанного взаимодействия. Для промышленного производства перспективно использование мощной энергии лазера.

В электрохимии накоплен большой материал по исследованию электролитов, их электропроводности, электрохимических процессов, создана электрохимическая кинетика, изучаются неравновесные электродные потенциалы, процессы коррозии металлов, разрабатываются новые химические источники тока. Успехи теоретической электрохимии позволили дать более прочную научную основу многим промышленным электрохимическим процессам.

Влияние магнитных полей на химическое поведение молекул рассматривается магнетохимией. Область термохимических исследований расширилась в результате изучения взаимодействия вещества с плазмой, в частности в целях использования в плазмохимической технологии. Становление плазмохимии относится к 60-м гг., когда были выполнены основополагающие работы в СССР, США и ФРГ.

Химические превращения совершаются во всех агрегатных состояниях вещества -- в жидком, газообразном и твёрдом. Всё большую актуальность приобретают исследования химических реакций твёрдых тел (топохимические реакции).

В современной химии накапливаются данные о химической эволюции вещества во Вселенной, что позволяет составить общую картину эволюции природы. Современная ядерная физика и астрофизика сформировали представление о возникновении химических элементов. На основе изучении химия метеоритов, вулканических земных пород, лунного грунта постепенно вырисовывается картина химической дифференциации вещества на планетной стадии развития, в частности геохимической эволюции (см. Геохимия, Космохимия).

Обнаружение сложных органических молекул в межзвёздном пространстве, в метеоритах и древнейших горных породах Земли, а также модельные опыты по синтезу сложных органических веществ из простейших соединений (CH4, CO2, NH3, H2O) в условиях искрового разряда, радиоактивного и ультрафиолетового облучения позволили представить этапы химической эволюции материи, предшествовавшие возникновению жизни (см. также Происхождение жизни).

Геохимия вулканогенных и осадочных пород, гидрохимия, химия атмосферы, биогеохимия постепенно формируют представления о планетарных миграциях химических элементов, биохимия -- о жизненных циклах. На основе этих данных всё более наполняется конкретным содержанием учение В. И. Вернадского о решающей роли процессов жизнедеятельности для понимания судьбы химических элементов на нашей планете.

Большие успехи сделала органическая химия. Так, разработаны автоматические методы синтеза многих белков; установлена структура ряда важных природных веществ -- тетродотоксина, гемоглобина, аспартат-аминотрансферазы, содержащей 412 аминокислот, и др.; синтезированы сложнейшие природные соединения -- хинин, витамин B12 и даже хлорофилл. Огромное влияние оказала органическая химия на развитие молекулярной биологии. Органическая химия легла в основу создания мощной индустрии тяжелого органического синтеза.

Химия полимеров, которая сформировалась в самостоятельную химическую дисциплину лишь в 30-х гг., изучает весь комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и превращениях, а также о свойствах тел, построенных из макромолекул. Для современного этапа химии полимеров характерно углублённое изучение механизмов каталитической полимеризации, вызываемой металлоорганическими соединениями, в частности синтеза стереорегулярных полимеров, исследование микроструктуры высокомолекулярных соединений. Установлено, что свойства полимеров зависят не только от химического состава, строения и размеров макромолекул, но и в не меньшей степени от их взаимного расположения и упаковки (надмолекулярной структуры). Важным достижением явилось создание термостойких полимеров (кремнийорганических, полиимидов и др.). Успехи химии полимеров позволили создать такие важнейшие отрасли химической промышленности как производства пластмасс, синтетического каучука, химических волокон, лакокрасочных материалов, ионитов, клеёв и др.

На всех структурных уровнях организации живого важнейшую роль играют специфические химические процессы. Непрерывный обмен веществ в организме представляет собой сложнейшую систему согласованных химических реакций, осуществляемых с участием специфических белковых катализаторов -- ферментов.

Воздействие химических процессов, происходящих во внешней среде, на сообщества организмов (биоценозы), химическая миграция элементов внутри экосистем, химическое стимулирование или подавление симбиотических или конкурентных видов исследуются в рамках химической экологии. Формирование поведения организмов в сообществах в значительной степени зависит от химических средств передачи информации (например, феромонов, используемых животными для привлечения или отпугивания др. особей, регуляции жизнедеятельности в семьях пчёл, муравьев и т.д.).

Традиционные для биохимии нейрохимические исследования переросли в новую отрасль знаний, изучающую влияния химических соединений на психические процессы; формируется т. н. молекулярная психобиология, связывающая молекулярную биологию с наукой о поведении (см. также Психофармакология).

С середины 20 в. происходят коренные изменения в методах химических исследований, в которые вовлекается широкий арсенал средств физики и математики. Классические задачи химии -- установление состава и строения веществ -- всё успешнее решаются с использованием новейших физических методов. Неотъемлемой чертой теоретической и экспериментальной химии стало применение новейшей быстродействующей вычислительной техники для квантовохимических расчётов, выявления кинетических закономерностей, обработки спектроскопических данных, расчёта структуры и свойств сложных молекул.

Из числа чисто химических методов, разработанных в 20 в., следует отметить микрохимический анализ, позволяющий производить аналитические операции с количествами веществ, в сотни раз меньшими, чем в методе обычного химического анализа. Большое значение приобрела хроматография, служащая не только для аналитических целей, но и для разделения весьма близких по химическим свойствам веществ в лабораторных и промышленных масштабах. Важную роль играет физико-химический анализ (ФХА) как один из методов определения химического состава и характера взаимодействия компонентов в растворах, расплавах и др. системах. В ФХА широко используются графические методы (диаграммы состояния и диаграммы состав -- свойство). Классификация последних позволила уточнить понятие химического индивида, состав которого может быть постоянным и переменным (см. Дальтониды и бертоллиды). Предсказанный Курнаковым класс нестехиометрических соединений приобрёл большое значение в материаловедении и новой области -- химия твёрдого тела.

Люминесцентный анализ, метод меченых атомов (см. Изотопные индикаторы), рентгеновский структурный анализ, электронография, полярография и др. физико-химические методы анализа находят широкое применение в аналитической химии. Использование радиохимических методик позволяет обнаружить присутствие всего нескольких атомов радиоактивного изотопа (например, при синтезе трансурановых элементов).

Для установления строения химических соединений важное значение имеет молекулярная спектроскопия, с помощью которой определяются расстояния между атомами, симметрия, наличие функциональных групп и др. характеристики молекулы, а также изучается механизм химических реакций. Электронная энергетическая структура атомов и молекул, величина эффективных зарядов выясняются посредством эмиссионной и абсорбционной рентгеновской спектроскопии. Геометрия молекул исследуется методами рентгеновского структурного анализа.

Обнаружение взаимодействия между электронами и ядрами атомов (обусловливающего сверхтонкую структуру их спектров), а также между внешними и внутренними электронами позволило создать такие методы установления строения молекул, как ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерный квадрупольный резонанс (ЯКР), гамма-резонансная спектроскопия . Особую роль по широте применения приобрела ЯМР-спектроскопия. Для выяснения пространственных характеристик молекул возрастающее значение приобретают оптические методы: спектрополяриметрия, круговой дихроизм, дисперсия оптического вращения. Разрушение молекул в вакууме под влиянием электронного удара с идентификацией осколков применяется для установления их строения методом масс-спектроскопии. Арсенал кинетических методов пополнился средствами, связанными с использованием ЭПР- и ЯМР-спектроскопии (химическая поляризация ядер), метода импульсного фотолиза и радиолиза. Это позволяет изучать сверхбыстрые процессы, протекающие за время 10-9 секунд и меньше.

Для исследования космических объектов с успехом применяются методы спектрального анализа в различных диапазонах электромагнитного спектра. В частности, методами радиоастрономии в межзвёздном пространстве были обнаружены облака химических соединений, включающие такие относительно сложные молекулы, как формальдегид, тиомочевину, метиламин, цианацетилен и др. С развитием космических полётов методы экспериментальной химии стали применяться на внеземных объектах (Луна, Венера, Марс).

Заключение

Основой как эмпирического, так и теоретического знания в химии является сравнительный метод. В химии определение абсолютных значений свойств иногда необязательно, так как важнейшие химические свойства относительны (кислотно-основные, окислительно-восстановительные). Поэтому ведущим методом формирования теоретического знания из эмпирического и стало составление рядов активности, плеяд соединений, гомологов и аналогов.

Помимо сравнительного метода, используются еще три ведущих метода исследования вещества: термодинамический, кинетический и квантовомеханический. Основным звеном, или концептуальной системой, связывающей химическую статику и динамику, является учение о химическом равновесии, которое рассматривается на энергетической основе (термодинамика).

В последнее время развитие физической химии все более идет по линии раскрытия индивидуальности объектов, изучения отличия кинетических факторов от термодинамических. Широкое распространение получил кинетический метод изучения механизмов химических реакций.

Рассмотрение системности химии показывает, что система философии «накладывается», проявляется в системе химии. В обеих науках выделяются элементарный и концептуальный уровни.

Основными элементами первого уровня являются категории, законы, принципы и методы. Поскольку в отличие от философии химия не только теоретическая, но и экспериментальная наука, в ней еще прибавляются понятия «элемент», «соединение», «реакция». Именно поэтому система химии оказывается богата деталями.

Идентична структура концептуального уровня, посвященного объективной реальности, где химической статике и химической динамике соответствуют учение о предметах и учение, о процессах в философии. Субъективная диалектика состоит из теории познания, методологии и диалектической логики, а «субъективная химия» в настоящее время по сути дела сводится к методологии химии.

Знания, накопленные в процессе изучения химических реакций, а также учение о химической связи и строении вещества обогатили и углубили представления человека о диалектике природных явлений и этим способствовали совершенствованию научной картины мира.

Философия объясняла развитие методов в химии на протяжении всей их истории. Будучи составной частью в истории формирования общей естественнонаучной картины мира, история познания химических свойств вещества, история практического овладения им, тесно переплеталась с историей развития отношения человека с окружающим миром, с историей познания материальной и духовной стороны этих отношений. История химии убедительно свидетельствует о том, что многие крупные представители этой науки отличались высокой философской, гносеологической культурой и в той или иной мере всегда проявляли интерес мировоззренческой, методологической и социальной стороне развития химии, а характер и уровень их философской позиции всегда отражался в направлениях, методах и результатах их исследований.

Можно отметить, что вопросы общего мировоззренческого характера и вопросы, касающиеся законов познания, особенно тесно вплетены в повседневную деятельность химика. Химическая наука находится сейчас на пороге грандиозного взлета. Ей предстоит выяснить процессы образования минералов земной коры, химических соединений на других планетах и звездах, проникнуть в самые тайники биохимических превращений, вооружить промышленность, сельское хозяйство, здравоохранение новыми синтетическими препаратами. Те успехи, которые одерживала химия в познании природы, явились результатом тесного единства в развитии химической теории и практики.

Развитие химии убеждает в необходимости дальнейшего углубленного изучения механизмов научного мышления химиков, его «технологии», его особенностей на разных этапах химической науки. Гносеологический анализ познавательной деятельности химика, его абстракций, моделей, применяемых методов упрощения и идеализации важен в первую очередь для самих химиков.

Недостаточное понимание действия и природы средств познания, их происхождения и возможностей обычно оказывается причиной методологических ошибок в исследованиях и выводах, беспомощности перед натиском метафизических и идеалистических спекуляций на гносеологических трудностях при замене одних абстракций на другие, приводит к напрасной трате научных сил и материальных средств.

В заключение можно сказать, что философские аспекты развития методологии химии являются аспектами, без которых наука химия не может успешно развиваться. Они, так или иначе выступают как одна из составных частей и в разработке конкретных научных проблем современной химии, прежде всего ее больших теоретических проблем, и в повседневной деятельности химика по добыванию новых знаний о веществе, по преобразованию веществ природы в жизненно нужные людям материальные блага.

Размещено на Allbest.ru


Подобные документы

  • Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат [24,8 K], добавлен 20.11.2006

  • Теоретическая основа аналитической химии. Спектральные методы анализа. Взаимосвязь аналитической химии с науками и отраслями промышленности. Значение аналитической химии. Применение точных методов химического анализа. Комплексные соединения металлов.

    реферат [14,9 K], добавлен 24.07.2008

  • Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат [30,3 K], добавлен 11.03.2009

  • Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация [1,8 M], добавлен 04.10.2013

  • Вклад Ломоносова в развитие химии как науки: обоснование закона сохранения массы вещества, исследование природы газового состояния, изучение явления кристаллизации. Основные направления развития физической химии во второй половине XVIII-XX веках.

    реферат [28,1 K], добавлен 26.08.2014

  • Основные функции химии. Свойства моющих и чистящих средств. Использование химии в здравоохранении и образовании. Обеспечение роста производства, продление сроков сохранности сельхозпродукции и повышение эффективности животноводства при помощи химии.

    презентация [14,3 M], добавлен 20.12.2009

  • Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.

    реферат [36,8 K], добавлен 20.05.2014

  • Пути познания и классификация современных наук, взаимосвязь химии и физики. Строение и свойства вещества как общие вопросы химической науки. Особенности многообразия химических структур и теория квантовой химии. Смеси, эквивалент и количество вещества.

    лекция [759,9 K], добавлен 18.10.2013

  • Роль химии в развитии естественнонаучных знаний. Проблема вовлечения новых химических элементов в производство материалов. Пределы структурной органической химии. Ферменты в биохимии и биоорганической химии. Кинетика химических реакций, катализ.

    учебное пособие [58,3 K], добавлен 11.11.2009

  • Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат [25,9 K], добавлен 30.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.