Биохимические реакции в организме

Макроэргические соединения организма, строение и биологическая роль. Структурная формула цитидиловой кислоты и её нуклеозидтрифосфата. Аэробные дегидрогеназы. Коферменты НАД+, НАДФ+: строение, механизм действия, участие в биологическом окислении.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 16.12.2011
Размер файла 514,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО РЫБОЛОВСТВУ

КОНТРОЛЬНАЯ РАБОТА №2

по дисциплине «БИОХИМИЯ»

вариант № 51

5.Макроэргические соединения организма. Строение, биологическая роль. Напишите структурную формулу цитидиловой кислоты (ЦМФ) и её нуклеозидтрифосфата.

Макроэргимческие соединемния (греч. makros большой + ergon работа, действие; синоним: высокоэргические соединения, высокоэнергетические соединения) группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. Разрыв макроэргических связей в молекулах Макроэргимческие соединемния сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма.

Все известные Макроэргимческие соединемния содержат фосфорильную (--РО3Н2) или ацильную группы и могут быть описаны формулой Х--Y, где Х -- атом азота, кислорода, серы или углерода, а Y -- атом фосфора или углерода. Реакционная способность Макроэргимческих соединемний связана с повышенным сродством к электрону атома Y, что обусловливает высокую свободную энергию гидролиза Макроэргимческих соединемний, составляющую 6--14 ккал/моль.

Важной группой соединений, в которую входят Макроэргимческие соединемния, являются аденозинфосфорные, или адениловые, кислоты -- нуклеозиды, содержащие аденин, рибозу и остатки фосфорной кислоты (см. рис.).

Наиболее значительное из них -- аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ).

АТФ представляет собой аденозинфосфорную кислоту, содержащую 3 остатка фосфорной кислоты (или фосфатных остатка), служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, кофермент многих ферментов. АТФ не единственное биологически активное соединение, содержащее пирофосфатные связи. Некоторые фосфорилированные соединения по количеству энергии, заключенной в таких связях, не отличаются от АТФ. Однако дифосфаты таких соединений не могут заменить аденозиндифосфорную кислоту в тех процессах, которые ведут к синтезу АТФ, а их трифосфаты не могут заменить АТФ в последующих процессах энергетического обмена, в которых АТФ используется как донор энергии, необходимой для протекания биосинтетических реакций. Возможно, что такая высокая степень специфичности отражает не столько уникальность АТФ, сколько уникальные особенности биохимических процессов, приспособленных исключительно к АТФ.

В отдельных биосинтетических реакциях непосредственным источником энергии служат не АТФ, а некоторые другие трифосфонуклеотиды. Однако их нельзя считать первичным источником энергии, поскольку сами они образуются в результате переноса фосфатной или пирофосфатной группы от АТФ. Это справедливо и для вещества другого типа, приспособленного для запасания энергии, -- креатинфосфата. Макроэргическими в молекуле АТФ являются две пирофосфатные связи: между б- и в- и между в- и г-фосфатными остатками. При гидролизе концевой пирофосфатной связи освобождается 8,4 ккал/моль (при рН 7,0, температуре 37°, избытке ионов Mg2+ и концентрации АТФ, равной 1 М). Все процессы в организме, сопровождающиеся накоплением энергии, в конечном счете, ведут к образованию АТФ, который выполняет роль связующего звена между процессами, протекающими с потреблением энергии, и процессами, сопровождающимися выделением и накоплением энергии.

Отщепление фосфатных остатков от молекул АТФ происходит при участии аденозинтрифосфатаз (АТФ-аз) -- ферментов класса гидролаз, широко распространенных в клетках всех организмов и обеспечивающих использование энергии АТФ для осуществления различных процессов жизнедеятельности. Группа транспортных АТФ-аз осуществляет активный перенос ионов, аминокислот, нуклеотидов, Сахаров и других веществ через биологические мембраны, создание и поддержание градиентов концентраций ионов (ионных градиентов) по обе стороны биологических мембран. Активный транспорт ионов, обеспечиваемый за счет энергии гидролиза АТФ, лежит в основе биоэнергетики (Биоэнергетика) клетки, процессов клеточного возбуждения, поступления в клетку и выведения веществ из клетки и организма, К важнейшим транспортным АТФ-азам, обеспечивающим перенос ионов при гидролизе АТФ, относятся Н+ -- АТФ-аза мембран митохондрий, хлоропластов и бактериальных клеток, Са2+ -- АТФ-аза внутриклеточных мембран мышечных клеток и эритроцитов, а также содержащаяся практически во всех плазматических мембранах Na+, К+АТФ-аза. В результате осуществляемого этими ферментами транспорта ионов против градиента их концентраций на мембране генерируется разность электрических потенциалов. Нарушение функционирования транспортных АТФ-аз (например, выключение АТФ-аз в условиях гипоксии в отсутствие АТФ) ведет к развитию многих патологических состояний. Известны лекарственные средства (например, сердечные гликозиды), регулирующие активность этих ферментов.

Расщепление АТФ может сопровождаться не только переносом фосфорильной группы на молекулу-акцептор, как это происходит в реакциях, катализируемых киназами (Киназы), но и переносом пирофосфатной группы (например, при синтезе пуринов), остатка адениловой кислоты (при активации аминокислот в процессе синтеза белка) или аденозина (биосинтез S-аденозилметионина).

АТФ образуется из аденозиндифосфорной кислоты (АДФ) в результате окислительного фосфорилирования при переносе электронов в митохондриальной электронпереносящей цепи или в результате фосфорилирования на уровне субстрата (см. Гликолиз). Содержание АТФ в клетке непосредственно связано с содержанием других аденозинфосфорных кислот -- АДФ и адениловой кислоты (АМФ), образующих систему адениловых нуклеотидов клетки. Суммарная концентрация адениловых нуклеотидов в клетке равна 2--15 мМ, что составляет приблизительно 87% общего фонда свободных нуклеотидов.

Существенную роль в поддержании равновесия между аденозинфосфорными кислотами играет обратимая и практически равновесная реакция, катализируемая ферментом аденилаткиназой (аденилаткиназу мышечной ткани называют миокиназой): АТФ + АМФ = 2 АДФ.

Важным макроэргическим соединением, участвующим в ресинтезе АТФ в мышечной ткани, является содержащийся в скелетных мышцах всех позвоночных животных креатин-фосфат -- фосфорилированное производное креатина, или в-метилгуанидинуксусной кислоты (Креатинин).

Обратимое ферментативное взаимодействие креатина с АТФ: креатин + АТФ = креатинфосфат + АДФ, катализируемое креатинкиназой (креатинфосфокиназой), играет существенную роль в аккумуляции энергии, необходимой для мышечного сокращения.

Наряду с АТФ к макроэргическим соединениям относятся и другие нуклеозидтрифосфорные кислоты: гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ), инозинтрифосфат (ИТФ) и тимидинтрифосфат (ТТФ), играющие роль поставщиков энергии в различных биосинтетических процессах и взаимопревращениях углеводов, липидов, а также соответствующие нуклеозиддифосфорные кислоты, пирофосфорная и полифосфорная кислоты, фосфоенолпировиноградная и 1,3-дифосфоглицериновая кислоты, ацетил- и сукцинилкофермент А, аминоацильные производные адениловой и рибонуклеиновых кислот и др.

макроэргический цитидиловый дегидрогеназа кофермент

Цитидиловая кислота, цитидин-монофосфат, природное соединение, нуклеотид, состоящий из остатков пиримидинового основания цитозина, углевода рибозы и фосфорной кислоты

15. Аэробные дегидрогеназы. Коферменты НАД+, НАДФ+. Строение, механизм действия, роль в биологическом окислении. В какие ферменты входят эти динуклеотиды? Приведите примеры реакций, которые они катализируют

К этой группе относятся ферменты, которые не способны непосредственно передавать водород кислороду, а отдают водород какому-нибудь промежуточному переносчику, как, например, НАД, НАДФ или другим.

Анаэробные дегидрогеназы являются двухкомпонентными ферментами и легко диссоциируют при диализе, распадаясь на более активные коферменты. Коферментами являются никотинамидаде-ниндинуклеотид (НАД) и никотинамидадениндинуклеотидфосфат (НАДФ). Эти коферменты очень реакционноспособны в окислительно-восстановительных системах. Они играют важную роль в процессе алкогольного брожения.

В процессе последнего этапа алкогольного брожения в результате декарбоксилирования пировиноградной кислоты и образования уксусного альдегида под действием алкогольдегидрогеназы в уксусный альдегид передается водород от НАДН2 и образуется этиловый спирт.

Пиридиновые дегидрогеназы, содержащие в качестве коферментов НАД и НАДФ, дегидрируют яблочную, молочную, изоли-монную кислоты, глюкозу, различные спирты и другие соединения.

К группе аэробных дегидрогеназ (оксидаз) относят ферменты, в состав которых в качестве кофермента входит витамин В2 (рибофлавин), поэтому их называют флавиновыми ферментами. Они способны отнимать водород от окисляемого вещества и передавать его другим соединениям или кислороду воздуха. К этой группе ферментов относятся полифенолоксидаза, аскорбинатоксидаза.

В реакциях, катализируемых этими ферментами, в качестве софермента участвует никотина мидадениндинуклеотид (НАД). Две половины молекулы НАД объединенные связью между статками фосфорной кислоты. Одна половина представляет остаток нуклеотида (адеииловой кислоты). Другая половина тоже нуклеотид, его азотсодержащая гетероциклическая группа представлена амидом никотиновой кислоты. НАД Зависимые дегидрогеназы катализируют реакции окисления веществ путем дегидрирования при этом окисляемое вещество служит донором водорода, а НАД выполняет ролъ акцептора водорода, т е восстанавливается.

НАД находится в цитозоле в свободном состоянии и взаимодействует с ферментом в момент реакции в этом отношении он сходен с субстратами ферментов

НАД Зависимые дегидрогеназы катализируют следущие типы реакции

1. Дегидрирование гидроксильных групп

2. Дегидрирование альдегидных групп

3. Дегидрирование аминогрупп

27. Ароматические аминокислоты. Участие в построении гормонов, биологически активных аминов. Укажите нормы потребления триптофана, фенилаланина в питании человека

Аминокисломты (аминокарбомновые кисломты) -- органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Ароматические: фенилаланин, тирозин, триптофан, (гистидин)

Триптофамн ---- (в-индолиламинопропионовая, или б-2-амино-3-(1H-индол-3-ил)пропионовая кислота, сокр.: Три, Трп, Trp, W) -- ароматическая альфа-аминокислота. Существует в двух оптически изомерных формах -- L и D и в виде рацемата (DL).

L-триптофан является протеиногенной аминокислотой и входит в состав белков всех известных живых организмов. Относится к ряду гидрофобных аминокислот, поскольку содержит ароматическое ядро индола. Участвует в гидрофобных и стэкинг-взаимодействиях.

Для того чтобы в организме в нормальных количествах вырабатывался серотонин, необходимо, чтобы с пищей поступала аминокислота триптофан - именно он является предшественником серотонина в организме.

Триптофан. Триптофан является одной из важнейших аминокислот, которая по многообразию своих биологических свойств превосходит многие другие жизненно важные компоненты и в наибольшей степени связана с тканевым синтезом, процессами обмена и роста.

Потребность организма в триптофане составляет примерно 1 г в сутки. Однако набрать это, казалось бы, небольшое количество триптофана, за счет продуктов пищевого рациона трудно. Основными источниками триптофана являются мясо, рыба, творог, яйца; в 100 г этих продуктов содержится около 0,2 г триптофана. Рекордсменом по содержанию предшественника серотонина является твердый сыр. В ста граммах сыра содержится целых семьсот девяносто миллиграммов триптофана, а в сое семьсот четырнадцать миллиграммов. Чуть меньше - пятьсот миллиграммов в плавленом сыре.

Далее идут продукты, которые значительно уступают по содержанию триптофана, в ста граммах куриных яиц двести миллиграммов триптофана, в ста граммах чечевицы - двести восемьдесят четыре миллиграмма триптофана, в ста граммах нежирного мяса - двести миллиграммов, а может и больше. Большое количество триптофана содержится в грибах вешенках - до двухсот тридцати миллиграммов, достаточно много его в фасоли - двести шестьдесят миллиграммов, в жирном твороге предшественника серотонина двести десять миллиграммов, а в таких продуктах, как обезжиренный творог, пшено и гречка триптофана содержится сто восемьдесят миллиграммов.

Как ни странно это звучит, чтобы в мозг попало больше триптофана, нужно есть то, что почти целиком состоит из углеводов,- такие, например, продукты, содержащие сложные углеводы, как хлеб, рис, паста или чистые углеводы: столовый сахар или фруктозу.

При использовании для расслабления нужно принимать в течение дня между приемами пищи и запивать соком или водой, но не с молоком или другими продуктами, содержащими белок. Лучше всего принимать триптофан с витаминами группы В.

Всегда принимайте добавки перед едой, поскольку, чтобы проявить свое действие, триптофан должен соединиться с системой транспорта аминокислот, которая доставит его в мозг. Триптофан хорошо адсорбируется в желудочно-кишечном тракте.

Для того чтобы заместить израсходованную при метаболизме белка аминокислоту, здоровому взрослому требуется 3,5 мг на кг веса. Из всех незаменимых аминокислот триптофан меньше всего представлен в пище - из-за того, что уровень триптофана в пище слабо соотносится с другими аминокислотами.

Разовые дозы свыше 2 г не рекомендуются, хотя успешные тесты Исследовательского Центра по психиатрии в Мэриленде показали, что нет опасности привыкания к триптофану или его передозировки (благодаря тому, что триптофан является естественной частью нашего тела, организму, чтобы использовать его, не нужно изменять никаких функций, как это бывает с лекарствами). Побочные действия при приеме Триптофана не выявлены.

Больным астмой, по всей вероятности, следует избегать триптофана, поскольку любой предшественник серотонина может усиливать затруднения дыхания, а высокие дозы способны вызывать заметное чувство утомления после упражнений. Применение при беременности и в период лактации (грудного вскармливания) не рекомендуется.

Лекарственное взаимодействие триптофана с другими лекарственными средствами не выявлено.

Прием аминокислот без включения триптофана у женщин вызывает усиление симптомов, связанных с менструацией (ПМС), а у мужчин в 30% случаев усиливает раздражительность и агрессивность.

Фенилаланин является незаменимой аминокислотой, потому должен ежедневно поступать в организм в достаточном количестве с белками пищи.

Фенилаланин является исходным сырьём синтеза другой аминокислоты -- тирозина, когда уменьшается её поступление в организм с пищей. Из тирозина впоследствии синтезируются такие биологически активные вещества, как адреналин, норадреналин, дофамин. Они являются гормонами и нейромедиаторами (то есть непосредственно участвуют в передаче нервного импульса), которые вызывают активацию психики, ясность и остроту мышления, приподнятое настроение, оптимистический взгляд на мир и собственную личность.

Сам фенилаланин может конвертироваться в один из биогенных аминов -- фенилэтиламин (ФЭА) - слегка стимулирующее, но смягчающее ум химическое вещество, содержащееся в шоколаде, которое, как утверждают, воссоздает чувство влюбленности. Низкие уровни ФЭА у страдающих депрессией свидетельствуют об изменениях в метаболизме фенилаланина. Как фармакологические антидепрессанты, так и фенилаланин повышают уровни ФЭА, что говорит о том, что у них сходные механизмы действия.

Фенилаланин связан с функцией щитовидной железы и надпочечников, участвует в образовании тироксина - основного гормона щитовидной железы. Этот гормон регулирует скорость обмена веществ, например, ускоряет "сжигание" питательных веществ, имеющихся в избытке.

Кроме того, фенилаланин является основой синтеза эндорфинов. Их называют «гормонами счастья». И это не случайно. Ведь при повышении уровня эндорфинов в крови человек испытывает ощущение радости, благополучия и умиротворённости. Более того, эндорфины облегчают хронические и острые боли, способствуют более скорому выздоровлению при различных заболеваниях.

Признано безопасным и не имеющим побочных эффектов потребление L-фенилаланина в количестве от 100 до 500 мг. Принимайте L-фенилаланин натощак, утром и вечером. Однако учтите, что дозы, превышающие 4 г, могут вызвать у некоторых людей головную боль. По всей видимости, необходимыми для метаболизма фенилаланина кофакторами (стимулирующими действие веществами) являются витамин B6, витамин С, медь, железо и ниацин. Микстура, содержащая D- и L-фенилаланин, помогает справиться с болью. Это может оказать благотворное влияние на организм спортсменов, страдающих в результате травм от острых или хронических болей. В контроле за болью наиболее эффективными считаются дозы D- и L-фенилаланина от 500 мг до 1,5 г в день.

37. Гликолиз. Ферменты, участвующие в процессе. Энергетический эффект. Роль процесса

Гликолиз -- это катаболический путь обмена веществ в цитоплазме; он, по-видимому, протекает почти во всех организмах и клетках независимо от того, живут они в аэробных или анаэробных условиях. Баланс гликолиза простой: в аэробных условиях молекула глюкозы деградирует до двух молекул пирувата. Кроме того, образуются по две молекулы АТФ и НАДН + H+ (аэробный гликолиз). В анаэробных условиях пируват претерпевает дальнейшие превращения, обеспечивая при этом регенерацию НАД+. При этом образуются продукты брожения, такие, как лактат или этанол (анаэробный гликолиз). В этих условиях гликолиз является единственным способом получения энергии для синтеза АТФ из АДФ и неорганического фосфата.

Гликолиз -- катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: С6Н1206 -> 2С3Н402 + 2Н2. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:

глюкоза + АТФ -> глюкозо-6-фосфат + АДФ

Реакция идет в присутствии ионов магния и фермента гексокиназа. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментом фосфоглюкоизомеразой:

глюкозо-6-фосфат --> фруктозо-6-фосфат

Далее происходит еще одно фосфорилирование при участии АТФ. Фосфорная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой:

фруктозо-6-фосфат + АТФ -> фруктозо-1,6-дифосфат + АДФ

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Реакция протекает по уравнению:

Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (Н3Р04) и фермента глицеральдегид-3-фосфатдегидро-геназы. Молекула этого фермента состоит из четырех идентичных субъединиц. Каждая субъединица представляет одиночную полипептидную цепь приблизительно из 220 аминокислотных остатков. Фермент содержит SH-группы и кофермент НАД, который взаимосвязан с ферментом на всем протяжении процесса. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии. За счет энергии окисления при участии неорганического фосфата (Н3Р04) в молекуле ДФГК образуется макроэргическая фосфатная связь. Одновременно происходит восстановление кофермента НАД.

В целом реакция выглядит следующим образом:

На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой:

Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем 3-ФГК превращается в 2-ФГК, иначе говоря, фосфатная группа переносится из положения 3 в положение 2. Реакция 1 катализируется ферментом фосфоглицеромутазой и идет в присутствии магния:

Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Мп2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая связь. Образуется фосфоенолпировиноградная кислота (ФЕП):

Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+:

Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза. В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе следующее:

Реакция гликолиза носит название субстратного фосфорилирования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата. Если считать, что при распаде АТФ из АДФ и Фн выделяется 30,6 кДж, то за период гликолиза накапливается в макроэргических фосфатных связях всего 61,2 кДж. Прямые определения показывают, что распад молекулы глюкозы до пировиноградной кислоты сопровождается выделением 586,6 кДж. Следовательно, энергетическая эффективность гликолиза невелика. Кроме того, образуются 2 молекулы НАДН, которые вступают в дыхательную цепь, что приводит к дополнительному образованию АТФ. Образовавшиеся две молекулы пировиноградной кислоты участвуют в аэробной фазе дыхания.

44. Холестерин. Строение. Схема распада и биосинтеза. Пути использования холестерина в организме

Холестерин (др.-греч. чплЮ -- желчь и уфесеьт -- твёрдый; синоним: холестерол) -- органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных (прокариот). Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), остальные 20 % поступают с пищей. В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включая кортизол, кортизон, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормона тестостерона, а по последним данным -- играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака.

Биосинтез холестерина -- образование в живом организме органического спирта холестерина стероидной природы. Синтез холестерина происходит в клетках печени (50 %), кишечнике и коже. В клетке он идёт в гладком эндоплазматическом ретикулуме и цитозоле. Биосинтез холестерина служит основой синтеза других стероидных соединений. Начальные этапы синтеза являются общими с этапами синтеза других изопреноидов.

Нумерация атомов в молекуле холестерина

В 1940-е годы Блох установил, что все атомы углерода холестерина происходят из ацетата, причём оба атома включаются в одинаковых количествах. В настоящее время установлена следующая цепь биосинтеза холестерина, включающая в себя несколько ступеней. (Образование промежуточных соединений этого пути может происходить и другими способами).

Превращение трёх молекул активного ацетата в пятиуглеродный мевалонат.

Превращение мевалоната в активный изопреноид -- изопентенилпирофосфат.

Образование тридцатиуглеродного изопреноида сквалена из шести молекул изопентенилдифосфата.

Циклизация сквалена в ланостерин.

Последующее превращение ланостерина в холестерин.

Ланостерин превращается в мембранах гладкого эндоплазматического ретикулума в холестерин.

1. Метильная группа при С14 окисляется, и образуется 14-десметилланостерин.

2. Затем удаляются ещё два метила при С4, и образуется зимостерол.

3. Далее двойная связь C8=С9 перемещается в положение С8=С7 и образуется Д7,24-холестадиенол.

4. Двойная связь далее перемещается в положение С5=С6,образуется десмостерол.

5. После чего в боковой цепи восстанавливается двойная связь, и образуется холестерин.

Реакции синтеза холестерола происходят в цитозоле клеток. Это один из самых длинных метаболических путей в организме человека.

Сложный путь синтеза холестерола можно разделить на 3 этапа. Первый этап заканчивается образованием мевалоната (мевалоновой кислоты). Две молекулы ацетил-КоА конденсируются ферментом тиолазой с образованием ацетоацетил-КоА.

Фермент щдроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток с образованием ГМГ-КоА (3-гидрокси-3-метилглутарил-КоА). Эта последовательность реакций сходна с начальными стадиями синтеза кетоновых тел. Однако реакции синтеза кетоновых тел происходят в митохондриях печени, а реакции синтеза холестерола - в цитозоле клеток.

Следующая реакция, катализируемая ГМГ-КоА-редуктазой, является регуляторной в метаболическом пути синтеза холестерола. В этой реакции происходит восстановление ГМГ-КоА до мевалоната с использованием 2 молекул NADPH. Фермент ГМГ-КоА-редуктаза - гликопротеин, пронизывающий мембрану ЭР, активный центр которого выступает в цитозоль.

На втором этапе синтеза мевалонат превращается в пятиуглеродную изопреноидную структуру, содержащую пирофосфат - изопентенилпирофосфат. Продукт конденсации 2 изопреновых единиц - геранилпирофосфат. Присоединение ещё 1 изопреновой единицы приводит к образованию фарнезилпирофосфата - соединения, состоящего из 15 углеродных атомов. Две молекулы фарнезилпирофосфата конденсируются с образованием сквалена - углеводорода линейной структуры, состоящего из 30 углеродных атомов.

На третьем этапе синтеза холестерола сквален через стадию образования эпоксида ферментом циклазой превращается в молекулу ланостерола, содержащую 4 конденсированных цикла и 30 атомов углерода. Далее происходит 20 последовательных реакций, превращающих ланостерол в холестерол. На последних этапах синтеза от ланостерола отделяется 3 атома углерода, поэтому холестерол содержит 27 углеродных атомов.

С5 - изопентенилпирофосфат; С1 - Фарнезилпирофосфат. Все атомы углерода холестерола происходят из ацетил-КоА. Сквален - углеводород линейной структуры - превращается ферментом циклазой в ланостерол, содержащий 4 конденсированных кольца и гидроксильную группу. Ланостерол через ряд последовательных реакций превращается в холестерол (I, II, III - этапы синтеза).

54. Цикл трикарбоновых кислот

Цимкл трикарбомновых кисломт (цикл Крембса, цитрамтный цикл) -- центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии -- АТФ.

Цикл Кребса -- это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.

Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год).

У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.

Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса.

Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО2 + АТФ = Оксалацетат(субстрат Цикла Кребса) + АДФ + Фн.

Функции

1. Интегративная функция -- цикл является связующим звеном между реакциями анаболизма и катаболизма.

2. Катаболическая функция -- превращение различных веществ в субстраты цикла:

Жирные кислоты, пируват,Лей,Фен -- Ацетил-КоА.

Арг, Гис, Глу -- б-кетоглутарат.

Фен, тир -- фумарат.

3. Анаболическая функция -- использование субстратов цикла на синтез органических веществ:

Оксалацетат -- глюкоза, Асп, Асн.

Сукцинил-КоА -- синтез гема.

CО2 -- реакции карбоксилирования.

4. Водорододонорная функция -- цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н+ и одного ФАДН2.

5. Энергетическая функция -- 3 НАДН.Н+ дает 7.5 моль АТФ, 1 ФАДН2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

66. Азотистые экстрактивные вещества мышечной ткани. Экстрактивные вещества. Под экстрактивными веществами понимают водорастворимые вещества. Они делятся на азотистые и безазотистые

Азотистые небелковые вещества разделяются на аминокислоты, азотистые основания и пр.

Общее содержание свободных аминокислот в мышечной ткани не более 0,7% к ее массе.

Азотистые основания состоят из оснований групп карнозина, креатина, холина, пуриновых и пиримидиновых оснований.

К прочим азотистым веществам относятся: креатинфосфорная -- КРФ, аденозинтрифосфорная -- АТФ, аденозиндифосфорная -- АДФ, аденозинмонофосфорная-- АМФ, или адениловая, кислоты, а также инозиновая кислота, глютатион, глютамин, мочевина, аммонийные соли.

Азотистые экстрактивные вещества придают мясу вкусовые и ароматические свойства, которые хорошо проявляются после его тепловой обработки.

Основное значение экстрактивных веществ заключается в их вкусовых свойствах и стимулирующем действии на секрецию пищеварительных желез.

В скелетных мышцах содержится ряд важных азотистых экстрактивных веществ: адениновые нуклеотиды (АТФ, АДФ и АМФ), нуклеотиды неаде-нинового ряда, креатинфосфат, креатин, креатинин, карнозин, ансерин, свободные аминокислоты и др. Концентрация адениновых нуклеотидов в скелетной мускулатуре кролика (в микромолях на 1 г сырой массы ткани) составляет: АТФ - 4,43, АДФ - 0,81, АМФ - 0,93. Количество нуклеотидов неаденинового ряда (ГТФ, УТФ, ЦТФ и др.) в мышечной ткани по сравнению с концентрацией адениновых нуклеотидов очень мало.

На долю креатина и креатинфосфата приходится до 60% небелкового азота мышц. Креатинфосфат и креатин относятся к тем азотистым экстрактивным веществам мышц, которые участвуют в химических процессах, связанных с мышечным сокращением.

Напомним, что синтез креатина в основном происходит в печени. Из печени с током крови он поступает в мышечную ткань, где, фосфори-лируясь, превращается в креатинфосфат. В синтезе креатина участвуют три аминокислоты: аргинин, глицин и метионин .

К азотистым веществам мышечной ткани принадлежат имидазолсо-держащие дипептиды карнозин и ансерин. Карнозин был открыт В.С. Гу-левичем в 1900 г.; метилированное производное карнозина ансерин был обнаружен в мышечной ткани несколько позже.

Карнозиниансерин - специфические азотистые вещества скелетной мускулатуры позвоночных. Они увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Работами акад. С.Е. Северина показано, что имидазолсодержащие дипептиды не влияют непосредственно на сократительный аппарат, но увеличивают эффективность работы ионных насосов мышечной клетки.

Среди свободных аминокислот в мышцах наиболее высока концентрация глутаминовой кислоты (до 1,2 г/кг) и ее амида глутамина (0,8-1,0 г/кг). В состав различных клеточных мембран мышечной ткани входит ряд фосфоглицеридов: фосфатидилхолин, фосфатидилэтанол-амин, фосфатидилсерин и др. Кроме того, фосфоглицериды принимают участие в обменных процессах, в частности, в качестве субстратов тканевого дыхания. Другие азотсодержащие вещества: мочевина, мочевая кислота, аденин, гуанин, ксантин и гипоксантин - встречаются в мышечной ткани в небольшом количестве и, как правило, являются либо промежуточными, либо конечными продуктами азотистого обмена.

К белкам в известной степени могут быть отнесены азотистые экстрактивные вещества, обладающие нежелательными свойствами и требующие ограничения в пожилом возрасте. В 1 кг мяса содержится 3,27-3,82 г азотистых экстрактивных веществ. Основное значение экстрактивных веществ заключается в их вкусовых свойствах и сокогонном действии на пищеварительные железы. Экстрактивные вещества мяса являются энергичными возбудителями секреции желудочные желез, в связи, с чем крепкие бульоны и жареное мясо в наибольшей степени возбуждают отделение пищеварительных соков. Вываренное мясо этим свойством не обладает, и поэтому оно широко используется в диетическом питании при гастритах, язвенной болезни, заболеваниях печени и др. Из растительных белков наибольшую ценность представляют белки риса, бобовых, овсяной крупы, картофеля, которые по своему составу приближаются к животным белкам.

76. Биохимические изменения при сгущении и сушке молока

Сгущение и сушка молока

Физико-химические изменения липидов, белков, лактозы, солеи и других компонентов молока, начавшиеся при пастеризации, продолжаются в процессе сгущения и сушки. Длительное воздействие высоких температур может привести к нарушению структуры белков, оболочек шариков жира, комплексованию аминокислот с углеводами и другим необратимым изменениям, в результате которых снижается пищевая и биологическая ценность, а также стойкость молочных консервов при хранении.

Липиды. Во время сгущения происходит диспергирование жировой фазы с увеличением количества мелких шариков жира (диаметром менее 2мкм). В результате повышения дисперсности жира в сгущенном цельном молоке снижается количество дестабилизованного жира. Однако при увеличении продолжительности сгущения наблюдаются укрупнение шариков жира и частичная дестабилизация жировой эмульсии.

В процессах распыления сгущенного цельного молока и сушки происходит, как правило, дробление шариков жира. Но изменение дисперсности жира во многом зависит от температуры воздуха, подаваемого в сушилку, - при температуре от 160 до 170 °С размер шариков жира уменьшается, при температуре от 190 до 195 °С - увеличивается. Вместе с тем при сушке может увеличиться количество свободного жира, который отрицательно влияет на физико-химические и органолептические показатели продукта.

При сгущении и сушке происходит частичный гидролиз триглицеридов молочного жира и уменьшение в их составе количества ненасыщенных жирных кислот. При этом в продуктах может повышаться содержание летучих жирных кислот (уксусной, муравьиной и др.), лактонов, карбонильных соединений и др. Вследствие гидролиза уменьшается (на 10-16 %) количество фосфолипидов и появляются продукты их распада - лизофосфатиды и фосфатидные кислоты.

Белки и лактоза. В процессах сгущения и сушки изменяются структура и свойства белков молока. При сгущении вследствие увеличения концентрации солей кальция, изменения структуры ККФК и комплексования г-казеина с сывороточными белками происходит укрупнение мицелл казеина. В процессе сушки наблюдается частичное перераспределение фракций казеина, а также денатурация сывороточных белков, снижающая растворимостьпродукта. Во время сгущения и сушки часть белков и свободных аминокислот вступает во взаимодействие с лактозой, т. е. наблюдается реакция Майара. Это приводит к ухудшению органолептических свойств готовых продуктов. Свободные аминокислоты молока - цистеин, метионин и другие - могут подвергаться термическому расщеплению.

При сгущении молока увеличивается концентрация лактозы, ее раствор переходит в состояние, близкое к насыщенному. Последующее охлаждение сгущенного молока приводит к выпадению части лактозы в виде кристаллов.

В процессе сушки небольшая часть лактозы кристаллизуется, но основная масса переходит в аморфное состояние. В аморфной лактозе преобладает в-форма, которая при дальнейшем процессе кристаллизации переходит в б-гидратную форму. Аморфное состояние лактозы обусловливает высокую гигроскопичность сухих молочных продуктов. Кристаллизация лактозы во время хранения сухого молока ухудшает его свойства.

Соли и витамины. В процессе сгущения концентрируются минеральные вещества молока, изменяется соотношение между катионами и анионами, часть фосфорнокислых солей кальция переходит в нерастворимое состояние. При сушке наблюдается дальнейшее выпадение фосфата кальция. Это приводит к понижению в готовых продуктах содержания растворимого кальция и фосфора. При сгущении и сушке снижается количество витаминов. Так, при сгущении уменьшается содержание витамина А на 10-19 % (каротина - на 12-15), В2 - на 8-21, С - на 20, В6 и B]2 - на 40, Е - на 3-12 %. Во время распылительной сушки витамин С разрушается на 20 %, витамины В1 и В2 - на 30, В12- на 10-35, B6 - на 34 % (остальные витамины изменяются незначительно). При вальцовой сушке потери витаминов (С, В1 и др.) значительнее.

Изменение составных частей молока в процессе его переработки

При производстве большинства молочных продуктов в молоко или сливки вносят специально подобранные штаммы молочнокислых, пропионовокислых бактерий и дрожжей. В результате жизнедеятельности микроорганизмов происходит глубокий распад молочного сахара, липидов и белков молока с образованием многочисленных химических соединений. Кроме того, бактериальные ферменты и ферменты молока катализируют разнообразные химические реакции, протекающие в процессе хранения молочных продуктов. Ферментативные реакции часто являются причиной порчи молочных продуктов.

Изучение биохимических свойств и активности микроорганизмов, входящих в состав заквасок, позволяет лучше использовать их при формировании консистенции, вкуса и аромата продуктов, интенсифицировать технологический процесс, повысить биологическую ценность и качество молочных продуктов. Кроме того, знание химических изменений, происходящих в сырье и продуктах при развитии в них посторонней технически вредной микрофлоры, позволяет успешнее вести борьбу с возбудителями пороков молочных продуктов и предупредить их возникновение.

Размещено на Allbest.ru


Подобные документы

  • Строение РНК, ее синтез и роль в передаче наследственности. Формула незаменимых аминокислот; структура холестерина, его источники и функции в организме. Распад и всасывание углеводов в желудочно-кишечном тракте; ферменты. Витамин В3; строение жиров.

    контрольная работа [1,1 M], добавлен 01.06.2012

  • Строение и уровни укладки белковых молекул, конформация. Характеристика функций белков в организме: структурная, каталитическая, двигательная, транспортная, питательная, защитная, рецепторная, регуляторная. Строение, свойства, виды и реакции аминокислот.

    реферат [1,0 M], добавлен 11.03.2009

  • Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация [759,6 K], добавлен 27.04.2015

  • Органические вещества, в состав которых входит углерод, кислород и водород. Общая формула химического состава углеводов. Строение и химические свойства моносахаридов, дисахаридов и полисахаридов. Основные функции углеводов в организме человека.

    презентация [1,6 M], добавлен 23.10.2016

  • Соединения магния, кальция и бария как лекарственные средства. Изменения в группе величины радиусов атомов и ионов, потенциал ионизации. Качественные реакции на ионы магния, кальция, стронция. Биологическая роль магния и кальция, значение для организма.

    реферат [24,6 K], добавлен 14.04.2015

  • Определение альдегидов (органических соединений). Их строение, структурная формула, номенклатура, изомерия, физические и химические свойства. Качественные реакции (окисление) и формулы получения альдегидов. Применение метаналя, этаналя, ацетона.

    презентация [361,6 K], добавлен 17.05.2011

  • Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.

    курс лекций [156,3 K], добавлен 24.12.2010

  • Общая характеристика состава жиров. Жирные кислоты, ненасыщенные (предельные) жирные кислоты, ненасыщенные (непредельные) жирные кислоты. Классификация жиров. Растительные, животные жиры. Применение того или иного жира. Значение жиров в кулинарии.

    курсовая работа [32,1 K], добавлен 25.10.2010

  • Белки (протеины) как сложные органические соединения. Формулы аминокислот. Строение молекулы белка, явление денатурации белка. Что такое углеводы, их строение, химическая формула. Самые распространенные моносахариды и полисахариды. Жиры и липоиды.

    реферат [29,4 K], добавлен 07.10.2009

  • Теоретические и практические аспекты синтеза, очистки и анализа свойств сульфаниловой кислоты. Формула бензольного кольца ароматических сульфокислот, их молекулярное строение. Гидролиз сульфанилина в кислой среде. Физические свойства исходных веществ.

    курсовая работа [744,3 K], добавлен 31.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.