Нуклеиновые кислоты

Состав полимерной цепи нуклеиновых кислот. Молекула ДНК как отправная точка в процессе роста и развития. Сборка полимерной цепи ДНК. Размещение двух полимерных цепей ДНК, ее химические свойства. Строение молекулы РНК. Участие ДНК и РНК в синтезе белков.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 15.11.2011
Размер файла 821,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство республики Бурятии.

Средняя школа №

Реферат по теме:

Нуклеиновые кислоты.

Выполнил ученик:

Проверила:

Улан-Удэ 2007.

НУКЛЕИНОВЫЕ КИСЛОТЫ - биологические полимерные молекулы, хранящие всю информацию об отдельном живом организме, определяющие его рост и развитие, а также наследственные признаки, передаваемые следующему поколению. Нуклеиновые кислоты есть ядрах клеток всех растительных и животных организмов, что определило их название (лат. nucleus - ядро).

Состав полимерной цепи нуклеиновых кислот. Полимерная цепь нуклеиновых кислот собрана из фрагментов фосфорной кислоты Н3РО3 и фрагментов гетероциклических молекул, представляющих собой производные фурана. Есть лишь два вида нуклеиновых кислот, каждая построена на основе одного из двух типов таких гетероциклов - рибозы или дезоксирибозы (рис.1).

Рис.1. СТРОЕНИЕ РИБОЗЫ И ДЕЗОКСИРИБОЗЫ.

Название рибоза (от лат. Rib - ребро, скрепка) имеет окончание - оза, что указывает на принадлежность к классу сахаров (например, глюкоза, фруктоза). У второго соединения нет группы ОН (окси-группа), которая в рибозе отмечена красным цветом. В связи с этим втрое соединение называют дезоксирибозой, т.е., рибоза, лишенная окси-группы.

Полимерная цепь, построенная из фрагментов рибозы и фосфорной кислоты, представляет собой основу одной из нуклеиновых кислот - рибонуклеиновой кислоты (РНК). Термин "кислота" в названии этого соединения употреблен потому, что одна из кислотных групп ОН фосфорной кислоты остается незамещенной, что придает всему соединению слабокислый характер. Если вместо рибозы в образовании полимерной цепи участвует дезоксирибоза, то образуется дезоксирибонуклеиновая кислота, для которой повсеместно принято широко известное сокращение ДНК.

Структура ДНК. Молекула ДНК служит отправной точкой в процессе роста и развития организма. На рис.2 показано, как объединяются в полимерную цепь два типа чередующихся исходных соединений, показан не способ синтеза, а принципиальная схема сборки молекулы ДНК.

Рис. 2. Сборка полимерной цепи ДНК из фрагментов фосфорной кислоты и дезоксирибозы.

В окончательном варианте полимерная молекула ДНК содержит в боковом обрамлении азотсодержащие гетероциклы. В образовании ДНК участвуют четыре типа таких соединений, два из них представляют собой шестичленные циклы, а два - конденсированные циклы, где шестичленное кольцо спаяно с пятичленным (рис.3).

Рис.3. СТРОЕНИЕ АЗОТСОДЕРЖАЩИХ ГЕТЕРОЦИКЛОВ, входящих в состав ДНК

На втором этапе сборки к свободным группам ОН дезоксирибозы присоединяются показанные выше азотсодержащие гетероциклические соединения, образуя у полимерной цепи боковые подвески (рис.4).

Рис. 4. Присоединение к полимерной цепи азотсодержащих гетероциклов.

Присоединенные к полимерной цепи молекулы аденина, тимина, гуанина и цитозина обозначают первыми буквами названий исходных соединений, то есть, А, Т, Г и Ц.

Сама полимерная цепь ДНК имеет определенную направленность - при мысленном продвижении вдоль молекулы в прямом и обратном направлении одни и те же группировки, входящие в состав цепи, встречаются на пути в разной последовательности. При движении в одном направлении от одного атома фосфора к другому вначале на пути следования идет группа СН2, а затем две группы СН (атомы кислорода можно не принимать во внимание), при движении в противоположном направлении последовательность этих групп будет обратной (рис.5).

Рис.5. НАПРАВЛЕННОСТЬ ПОЛИМЕРНОЙ ЦЕПИ ДНК.

При описании того, в каком порядке чередуются присоединенные гетероциклы, принято использовать прямое направление, то есть от группы СН2 к группам СН.

Само понятие "направление цепи" помогает понять то, как располагаются две цепи ДНК при их объединении, а также имеет прямое отношение к синтезу белка.

На следующей стадии две молекулы ДНК объединяются, располагаясь таким образом, чтобы начало и концы цепей были направлены в противоположные стороны. В этом случае гетероциклы двух цепей обращены навстречу друг другу и оказываются расположенными неким оптимальным образом, имеется в виду, что между парами группировок С=О и NH2, а также между єN и NH=, входящими в состав гетероциклов, возникают водородные связи (см. ВОДОРОДНАЯ СВЯЗЬ). На рис.6 показано, как располагаются две цепи относительно друг друга и как при этом возникают водородные связи между гетероциклами. Самая важная деталь - состоит в том, что пары, связанные водородными связями, жестко определены: фрагмент А всегда взаимодействует с Т, а фрагмент Г - всегда с Ц. Строго определенная геометрия этих групп приводит к тому, что эти пары исключительно точно подходят друг другу (как ключ к замку), пара А-Т связана двумя водородными связями, а пара Г-Ц - тремя связями.

Рис. 6. Размещение двух полимерных цепей ДНК.

Водородные связи заметно слабее обычных валентных связей, но из-за большого их количества вдоль всей полимерной молекулы соединение двух цепей становится достаточно прочным. В молекуле ДНК содержится десятки тысяч групп А, Т, Г и Ц и порядок их чередования в пределах одной полимерной молекулы может быть различным, например, на определенном участке цепи последовательность может иметь вид: - А-А-Т-Г-Ц-Г-А-Т-. Поскольку взаимодействующие группы строго определены, то на противолежащем участке второй полимерной молекулы обязательно будет последовательность - Т-Т-А-Ц-Г-Ц-Т-А-. Таким образом, зная порядок расположения гетероциклов в одной цепи, можно указать их размещение в другой цепи. Из этого соответствия следует, что суммарно в сдвоенной молекуле ДНК количество групп А равно количеству групп Т, а количество групп Г - количеству Ц (правило Э. Чаргаффа).

Две молекулы ДНК, связанные водородными связями, показаны на рис.5 в виде двух плоско лежащих цепей, однако в действительности они располагаются иным образом. Истинное направление в пространстве всех связей, определяемое валентными углами и стягивающими водородными взаимодействиями, приводит к определенном изгибам полимерных цепей и повороту плоскости гетероциклов, что приблизительно показано в первом видеофрагменте рис.7 с помощью структурной формулы. Гораздо точнее всю пространственную конструкцию можно передать только с помощью объемных моделей (рис.7, второй видеофрагмент). При этом возникает сложная картина, поэтому принято использовать упрощенные изображения, которые особенно широко применяют при изображении структуры нуклеиновых кислот или белков. В случае нуклеиновых кислот полимерные цепи изображают в форме плоских лент, а гетероциклические группировки А, Т, Г и Ц - в виде боковых стержней или простых валентных штрихов, имеющих различные цвета, либо содержащих на конце буквенные обозначения соответствующих гетероциклов (рис.7, третий видеофрагмент).

Рис. 7. Спираль ДНК.

Во время поворота всей конструкции вокруг вертикальной оси (рис.8) отчетливо видна спиральная форма двух полимерных молекул, которые как бы навиты на поверхность цилиндра, это широко известная двойная спираль ДНК.

При таком упрощенном изображении не исчезает основная информация - порядок чередования группировки А, Т, Г и Ц, определяющий индивидуальность каждого живого организма, вся информация записана четырехбуквенным кодом.

Строение полимерной цепи и обязательное присутствие четырех типов гетероциклов однотипно для всех представителей живого мира. У всех животных и высших растений количество пар А - Т всегда несколько больше, чем пар Г - Ц. Отличие ДНК млекопитающих от ДНК растений в том, что у млекопитающих пара А - Т на всем протяжении цепи встречается ненамного чаще (приблизительно в 1,2 раза), чем пара Г - Ц. В случае растений предпочтительность первой пары гораздо более заметна (приблизительно в 1,6 раза).

ДНК - одна из самых больших известных на сегодня полимерных молекул, у некоторых организмов ее полимерная цепь состоит из сотен миллионов звеньев. Длина такой молекулы достигает нескольких сантиметров, это очень большая величина для молекулярных объектов. Т.к. поперечное сечение молекулы всего 2 нм (1нм = 10-9 м), то ее пропорции можно сопоставить с железнодорожным рельсом длиной в десятки километров.

Химические свойства ДНК. В воде ДНК образует вязкие растворы, при нагревании таких растворов до 60° С или при действии щелочей двойная спираль распадается на две составляющие цепи, которые вновь могут объединиться, если вернуться к исходным условиям. В слабокислых условиях происходит гидролиз, в результате частично расщепляются фрагменты - Р-О-СН2 - с образованием фрагментов - Р-ОН и НО-СН2, соответственно результате образуются мономерные, димерные (сдвоенные) или тримерные (утроенные) кислоты, представляющие собой звенья, из которых была собрана цепь ДНК (рис.8).

Рис.8. ФРАГМЕНТЫ, ПОЛУЧАЕМЫЕ ПРИ РАСЩЕПЛЕНИИ ДНК.

Более глубокий гидролиз позволяет отделить участки дезоксирибозы от фосфорной кислоты, а также группировку Г от дезоксирибозы, т.е., более детально разобрать молекулу ДНК на составляющие компоненты. При действии сильных кислот (помимо распада фрагментов - Р (О) - О-СН2-) отщепляются и группировки А и Г. Действие иных реагентов (например, гидразина) позволяет отделить группировки Т и Ц. Более деликатное расщепление ДНК на компоненты проводят с помощью биологического препарата - дезоксирибонуклеазы, выделяемой из поджелудочной железы (окончание - аза всегда указывает на то, что данное вещество представляет собой катализатор биологического происхождения - фермент). Начальная часть названия - дезоксирибонуклеаза - указывает, какое именно соединение расщепляет этот фермент. Все указанные способы расщепления ДНК ориентированы, в первую очередь, на детальный анализ ее состава.

Самая важная информация, содержащаяся в молекуле ДНК, - порядок чередования групп А, Т, Г и Ц, ее получают с помощью специально разработанных методик. Для этого создан широкий набор ферментов, которые находят в молекуле ДНК строго определенную последовательность, например, Ц-T-Г-Ц-A-Г (а также соответствующую ей последовательность на противоположной цепи Г-А-Ц-Г-Т-Ц) и вычленяют ее из состава цепи. Таким свойством обладает фермент Pst I (торговое наименование, оно образуется из названия того микроорганизма Providencia stuartii, из которого получают этот фермент). При использовании другого фермента Pal I удается найти последовательность Г-Г-Ц-Ц. Далее сопоставляются результаты, полученные при действии широкого набора различных ферментов по заранее разработанной схеме, в результате удается определить последовательность таких групп на определенном участке ДНК. Сейчас подобные методики доведены до стадии широкого применения, они используются в самых разнообразных областях, далеких от научных биохимических исследований, например, при идентификации останков живых организмов или установлении степени родства.

Структура РНК во многом напоминает ДНК, отличие в том, что в основной цепи фрагменты фосфорной кислоты чередуются с рибозой, а не с дезоксирибозой (рис.). Второе отличие - к боковому обрамлению присоединяется гетероцикл урацил (У) вместо тимина (Т), остальные гетероциклы А, Г и Ц те же, что у ДНК. Урацил отличается от тимина отсутствием метильной группы, присоединенной к циклу, на рис.9 эта метильная группа выделена красным цветом.

Рис.9. ОТЛИЧИЕ ТИМИНА ОТ УРАЦИЛА - отсутствие у второго соединения метильной группы, выделенной в тимине красным цветом.

Фрагмент молекулы РНК показан на рис.10, порядок следования группировок А, У, Г и Ц, а также их количественное соотношение может быть различным.

Рис.10. ФРАГМЕНТ МОЛЕКУЛЫ РНК. Основное отличие от ДНК - наличие группировок ОН в рибозе (красный цвет) и фрагмента урацила (синий цвет).

Полимерная цепь РНК приблизительно в десять раз короче, чем у ДНК. Дополнительное отличие в том, что молекулы РНК не объединяются в двойные спирали, состоящие из двух молекул, а обычно существуют в виде одиночной молекулы, которая на некоторых участках может образовывать сама с собой двухцепные спиральные фрагменты, чередующиеся с линейными участками. На спиральных участках взаимодействие пар соблюдается также строго, как в ДНК. Пары, связанные водородными связями и формирующие спираль (А-У и Г-Ц), возникают на тех участках, где расположение групп оказывается благоприятным для такого взаимодействия.

Для подавляющего большинства живых организмов количественное содержание пар А-У больше чем Г-Ц, у млекопитающих в 1,5-1,6 раза, у растений - в 1,2 раза. Существует несколько типов РНК, роли, которых в живом организме различны.

Химические свойства РНК напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных спиральных участков делает молекулы РНК химически более уязвимыми. При действии кислот или щелочей основные фрагменты полимерной цепи Р (О) - О-СН2 легко гидролизуются, группировки А, У, Г и Ц отщепляются легче. Если нужно получить мономерные фрагменты (подобные тем, что на рис.8), сохранив при этом химически связанные гетероциклы, используют деликатно действующие ферменты, называемые рибонкулеазами.

Участие ДНК и РНК в синтезе белков - одна из основных функций нуклеиновых кислот. Белки - важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор - взаимоориентация азотсодержащих гетероциклов ДНК и РНК.

Основная задача ДНК - хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК. Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной.

На первой стадии часть двойной спирали раскрывается, освободившиеся ветви расходятся, и на группах А, Т, Г и Ц, оказавшихся доступными, начинается синтез РНК, называемой матричной РНК, поскольку она как копия с матрицы точно воспроизводит информацию, записанную на раскрывшемся участке ДНК. Напротив группы А, принадлежащей молекуле ДНК, располагается фрагмент будущей матричной РНК, содержащий группу У, все остальные группы располагаются друг напротив друга в точном соответствии с тем, как это происходит при образовании двойной спирали ДНК.

По указанной схеме образуются полимерная молекула матричной РНК, содержащая несколько тысяч мономерных звеньев.

На втором этапе матричная ДНК перемещается из ядра клетки в околоядерное пространство - цитоплазму. К полученной матричной РНК подходят так называемые транспортные РНК, которые несут с собой (транспортируют) различные аминокислоты. Каждая транспортная РНК, нагруженная определенной аминокислотой, приближается к строго обусловленному участку матричной РНК, нужное место обнаруживается с помощью все того же принципа взаимосоответствия групп А-У, и Г-Ц. В конечном итоге две аминокислоты, оказавшиеся рядом, взаимодействуют между собой, так начинается сборка будущей белковой молекулы.

Важная деталь состоит в том, что временное взаимодействие матричной и транспортной РНК проходит всего по трем группам, например, к триаде Ц-Ц-У матричной кислоты может подойти только соответствующая ей тройка Г-Г-А транспортной РНК, которая непременно несет с собой аминокислоту глицин. Точно также к триаде Г-А-У может приблизиться лишь набор Ц-У-А, транспортирующий только аминокислоту лейцин. Таким образом, последовательность групп в матричной РНК указывает, в каком порядке должны соединяться аминокислоты. Кроме того, система содержит в закодированном виде дополнительные регулирующие правила, некоторые последовательности из трех групп матричной РНК указывает на то, что в этом месте синтез белка должен остановиться, т.е. молекула достигла необходимой длины.

Синтез белка проходит с участием еще одного - третьего вида РНКислот, они входят в состав рибосом и потому их называют рибосомными. Рибосома, представляющая собой ансамбль определенных белков рибосомных РНК, обеспечивает взаимодействие матричной и транспортной РНК, играя роль конвейерной ленты, которая передвигает матричную РНК на один шаг после того, как произошло соединение двух аминокислот.

Основной смысл двухстадийной схемы состоит в том, что полимерная цепь белковой молекулы собирается из различных аминокислот в намеченном порядке и строго по тому плану, который был записан в закодированном виде на определенном участке ДНК. Таким образом, ДНК представляет собой отправную точку всего этого запрограммированного процесса.

В процессе жизнедеятельности белки постоянно расходуются, и потому они регулярно воспроизводятся по описанной схеме, весь синтез белковой молекулы, состоящей из сотен аминокислот, проходит в живом организме приблизительно в течение одной минуты.

Первые исследования нуклеиновых кислот были проведены во второй половине 19 в., понимание того, что в ДНК зашифрована вся информация о живом организме, пришло в середине 20 в., структуру двойной спирали ДНК установили в 1953 Дж. Уотсон и Ф. Крик на основании данных рентгеноструктурного анализа, что признано крупнейшим научным достижением 20 столетия. В середине 70-х годов 20 в. появились методики расшифровки детальной структуры нуклеиновых кислот, а вслед за тем были разработаны способы их направленного синтеза. Сегодня ясны далеко не все процессы, происходящие в живых организмах с участием нуклеиновых кислот, и сегодня это одна из самых интенсивно развивающихся областей науки.

Замедление процесса старения при помощи нуклеиновых кислот. Старение вызывается вырождением клеток. Наш организм построен из миллионов клеток, каждая из которых живет около двух лет или меньше. Но, прежде чем погибнуть, клетка воспроизводит себя. Почему, вы можете поинтересоваться, мы не выглядим также как десять лет назад?

Причина в том, что при каждом успешном воспроизводстве клетка претерпевает определенное изменение, в сущности, вырождение. Так что, по мере того, как наши клетки меняются или вырождаются, мы стареем.

Доктор Бенджамин С. Фрэнк, автор "Лечения старения и дегенеративных заболеваний нуклеиновой кислотой " (Нью-Йорк, Психологическая библиотека, 1969 г; пересмотрено в 1974 г.) обнаружил, что вырождающиеся клетки можно омолодить, снабдив их веществами, такими как нуклеиновые кислоты, которые напрямую питают их. Наши нуклеиновые кислоты - это ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота*).

ДНК - это по сути универсальный химический реактор для новых клеток. Он рассылает молекулы РНК, словно команду хорошо обученных рабочих, на формирование клеток. Когда ДНК прекращает давать команды РНК, прекращается построение новых клеток и сама жизнь.

Доктор Фрэнк обнаружил, что оказывая своему организму помощь в поддержании нормального количества нуклеиновых кислот, вы можете выглядеть на 6 - 12 лет моложе своего возраста. Согласно доктору Фрэнку, нам нужно 1 - 1,5 г нуклеиновых кислот ежедневно.

Хотя организм может сам синтезировать нуклеиновые кислоты, они слишком быстро распадаются на менее полезные составляющие и должны быть получены из внешних источников, если мы хотим замедлить или даже повернуть вспять процесс старения.

нуклеиновая кислота синтез белок

Продукты, богатые нуклеиновыми кислотами: завязь пшеницы, отруби, шпинат, спаржа, грибы, рыба (особенно сардины, лосось, анчоусы), печень цыпленка, овсянка и лук. Доктор Фрэнк рекомендует диету, согласно которой морепродукты едятся семь раз в неделю, с двумя стаканами снятого молока, стаканом фруктового или овощного сока и четырьмя стаканами воды ежедневно.

Уже после 2 месяцев дополнительного приема ДНК - РНК и диеты доктор Фрэнк обнаружил, что у пациентов появилось больше энергии и, как свидетельство, значительно сократилось количество складок и морщин и кожа выглядела более здоровой, розовой и помолодевшей.

Одно из самых последних достижений в борьбе со старением - супероксид дисмутаза (СОД). Этот фермент защищает организм от натиска свободных радикалов, разрушительных молекул, которые ускоряют процесс старения, разрушая здоровые клетки и коллаген ("цемент", который соединяет клетки между собой).

С возрастом в нашем организме вырабатывается меньше СОД, поэтому добавки вместе с натуральной диетой, которая снижает образование свободных радикалов, можете помочь увеличить период энергичной и продуктивной жизни.

Однако, важно отметить, что СОД очень быстро теряет активность при отсутствии таких важных минеральных веществ как цинк, медь и марганец. Дегидроэпиандростерон (ДГЭА), натуральный гормон, вырабатываемый надпочечниками, сегодня тоже стал применяться против старения, так как одним из его свойств является способность "снижать возбуждение" в процессах в организме и, таким образом, замедлять образование способствующих старению жиров, гормонов и кислот.

Новый класс нуклеиновых кислот открыт в США. Новый класс рибонуклеиновых кислот (РНК) открыт на биологическом факультете Массачусетского технологического института (MIT). Как сообщает пресс-служба института, профессор Дэвид Бартел (David Bartel) и его сотрудники опубликовали статью с описанием своей работы в журнале Cell.

Исследование выполнялось на традиционном для генетиков экспериментальном объекте - круглых червях Caenorhabditis elegans.

Ученым удалось выделить более пяти тысяч видов молекул, которые получили название 21U-РНК. Они состоят из 21 нуклеиновых оснований, последовательность которых всегда начинается с уридина, который специфичен для РНК.

Матрицей для синтеза этой, как и любой другой РНК клеточных живых существ является молекула ДНК. Идентифицированные участки для синтеза 21U-РНК локализованы в двух фрагментах состоящих из ДНК хромосом. По оценкам исследователей, всего в наследственном аппарате червей содержится информация для синтеза около двенадцати тысяч видов этого класса соединений.

Единообразие 21U-РНК при различном составе и компактное расположение ее генов говорит, по словам работающего в MIT нобелевского лауреата Филипа Шарпа (Phillip Sharp), свидетельствует о важной роли, которую играет это соединение в организме.

Определить эту роль пока не удалось.

Функции вирусных нуклеиновых кислот. Функция вирусных нуклеиновых кислот независимо от их типа состоит в хранении и передаче генетической информации. Вирусные ДНК могут быть линейными (как у эукариотов) или кольцевыми (как у прокариотов), однако в отличие от ДНК тех и других она может быть представлена однонитевой молекулой. Вирусные РНК имеют разную организацию (линейные, кольцевые, фрагментированные, однонитевые и двунитевые), они могут быть представлены плюс - или минус-нитями.

Плюс-нити функционально тождественны и-РНК, т.е. способны транслировать закодированную в них генетическую информацию на рибосомы клетки хозяина.

Минус-нити не могут функционировать как и-РНК, и для трансляции содержащейся в них генетической информации необходим синтез комплементарной плюс-нити.

РНК плюс-нитевых вирусов в отличие от РНК минус-нитевых имеют специфические образования, необходимые для узнавания рибосомами. У двунитевых как ДНК-, так и РНК-содержащих вирусов, информация обычно записана только в одной цепи, чем достигается экономия генетического материала.

Размещено на Allbest.ru


Подобные документы

  • Строение и общие свойства аминокислот, их классификация и химические реакции. Строение белковой молекулы. Физико-химические свойства белков. Выделение белков и установление их однородности. Химическая характеристика нуклеиновых кислот. Структура РНК.

    курс лекций [156,3 K], добавлен 24.12.2010

  • Теория полимеров: история и практическое применение. Моделирование высокомолекулярного вещества (материала) в модели полимерной цепи бусинок. Внутренняя и внешняя энергия полимерной сетки. Определение энтропии идеальной цепи с помощью константы Больцмана.

    реферат [1,0 M], добавлен 05.12.2010

  • Изучение истории открытия нуклеиновых кислот, которые были названы так потому, что впервые были открыты в ядрах клеток, и из-за наличия в их составе остатков фосфорной кислоты. Нахождение нуклеиновых кислот в природе, их химические свойства и применение.

    реферат [312,3 K], добавлен 18.04.2010

  • Что такое алкены, строение молекулы, физические и химические свойства. Выбор главной цепи, нумерация атомов главной цепи, формирование названия. Структурная изометрия. Химические свойства этилена, классификация способов получения, сфера применения.

    презентация [279,2 K], добавлен 20.12.2010

  • Основы статистики линейных полимерных цепей. Персистентная модель Порода. Структура, жесткость и гибкость полимерной цепи. Влияние эффектов исключенного объема. Теория вращательного трения для моделей персистентного ожерелья и червеобразного цилиндра.

    дипломная работа [1,3 M], добавлен 22.07.2011

  • История открытия, строение и виды нуклеиновых кислот. Принцип комплементарности азотистых оснований. Структура нуклеотидов и их соединение. Параметры двойной спирали ДНК. Ее биологические функции. Отличия молекул ДНК и РНК. Свойства генетического кода.

    презентация [1,6 M], добавлен 18.05.2015

  • Критерии классификации спиртов. Виды изомерии, характерные для алканолов. Изомерия положения гидроксильной группы в углеродной цепи и углеродного скелета. Физические и химические свойства спиртов, температура их кипения. Строение молекулы этанола.

    презентация [6,2 M], добавлен 08.08.2015

  • Влияние строения полимерной цепи и положения в ней функциональных групп, способных к комплексообразованию, на физико-химические свойства интерполимерных комплексов. Изучение полимер-металлических взаимодействий в растворе фотометрическим методом.

    диссертация [361,3 K], добавлен 25.06.2015

  • Обзор истории открытия и исследования нуклеиновых кислот. Описания высокомолекулярного органического соединения, биополимера, образованного остатками нуклеотидов. Комплементарность цепей в ДНК. Особенности образования полимера РНК. Правило Э. Чаргаффа.

    презентация [3,0 M], добавлен 05.05.2013

  • Классификация биополимеров. Аминокислоты, входящие в состав пептидов и белков, строение и свойства. Моноаминодикарбоновые кислоты и их амиды. Образование солей. Пептидная связь. Уровни структурной организации белка. Нуклеиновые кислоты и их производные.

    презентация [1,2 M], добавлен 28.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.