Атомные и молекулярные орбитали

Понятие геометрии молекул. Квантовая теория как основа современной теории валентности. Строение молекул и атомов. Характеристика уравнения Шредингера. Интерпретация физического смысла волновой функции. Особенности квантования, размеры атомных орбиталей.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 19.05.2011
Размер файла 216,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Молекулы органических соединений образуются из атомов, расположенных в трехмерном пространстве. Разные атомы образуют разное число связей. Молекулы имеют определенное пространственное строение, которое называют геометрией молекулы. Особенности строения каждой конкретной молекулы, прочность связей между составляющими ее атомами объясняются теорией валентности. Основой современной теории валентности является квантовая теория, которая в настоящее время настолько развита, что с помощью ЭВМ можно правильно и достаточно точно предсказать строение небольших несложных молекул. К описанию молекул с позиций квантовой теории существует несколько подходов, однако наиболее широко применяется теория молекулярных орбиталей (сокращенно МО), поскольку именно она наиболее эффективна для понимания строения и реакционной способности органических молекул. В этой главе мы рассмотрим строение молекул в рамках теории МО, а в остальных главах применим эту теорию к проблемам реакционной способности, стереохимии и селективности в разнообразных химических реакциях. Мы увидим, что теорию молекулярных орбиталей во многих случаях можно успешно применять, пользуясь лишь легко воспринимаемыми "картинками", эскизами МО, почти не используя математический аппарат квантовой теории.

Описание строения молекул, естественно, начинается со строения атомов. Когда-то понятие "атом" было исключительно химической категорией. Но в XX веке физики "отняли" у химиков атом, обновили его квантовым содержанием, объяснили атомные спектры, изотопию, радиоактивность и другие экспериментальные наблюдения. В начале этой главы мы кратко рассмотрим физические основы теории атома, а затем перейдем к теории образования химической связи и молекулярным орбиталям простейших молекул.

Уравнение Шредингера

Ядро занимает лишь незначительную часть общего объема атома, хотя концентрирует почти всю массу атома. Вокруг ядра группируются электроны. Они вносят очень небольшой вклад в общую массу атома, но зато занимают большой объем и обусловливают размеры атома. Главная концепция современной теории микромира состоит в том, что в атомной шкале частицы и волны незаметно переходят друг в друга, т.е. частицы имеют свойства волн, а волны - свойства частиц. Несмотря на то, что волновая природа фотонов (то есть света) была установлена давно, почти никто до 1925 г. не принимал всерьез точку зрения, согласно которой вещество (например, электроны, атомы) подобно волне, а не корпускулярно. Но в 1925 г. Дэвиссон и Джермер открыли дифракцию (т.е. волновые свойства) электронов на кристаллической решетке. Опыт по дифракции, позднее проведенный с другими частицами, включая молекулярный водород, четко показал, что частицы имеют волновые свойства.

В 1924 г. Л. Де Бройль предположил, что любая частица, движущаяся с моментом количества движения р, должна иметь в некотором смысле длину волны, выражаемую как где к - постоянная Планка. В 1926 г.Э. Шредингер предложил уравнение, которое применимо для любой системы (электрона, движущегося автомобиля и т.д.) и решением которого является волновая функция этой системы.

Можно сказать, что роль уравнения Шредингера в квантовой теории такая же, как роль уравнений Ньютона в классической механике: их часто называют "вдохновенными постулатами". Уравнения Ньютона позволяют рассчитать траекторию частицы, а уравнение Шредингера - ее волновую функцию.

Интерпретация волновой функции будет дана в следующем разделе, а пока остановимся на вопросе, почему решение уравнения Шредингера называется именно волновой, а не какой-либо иной функцией. Для этого напишем уравнение Шредингера для простейшего случая частицы, которая может свободно двигаться в одном измерении. Она имеет вид

где ш - волновая функция; V - потенциальная энергия частицы в точке х; Е - ее полная энергия (кинетическая плюс потенциальная); ("аш" перечеркнутая) - постоянная Планка, деленная на 2п; т - масса частицы. Предположим, что в какой-то области перемещения потенциальная энергия частицы равна нулю.

Тогда в левой части уравнения Шредингера пропадет второй член, и получится упрощенное уравнение решением которого будет . Но ехр (iкх) = соsкх + isinkх, следовательно . Поскольку У=0, полная энергия Е будет исключительно кинетической энергией частицы, которая связана с моментом количества движения соотношением Е=р2/2т, откуда р = (2тЕ) 0.5. Сопоставление этой формулы с написанным выше выражением для к дает момент количества движения частицы . Известно, что стандартная форма гармонической волны имеет вид , а в выражение для волной функции входит ). Следовательно, можно представить как волну с длиной . Комбинируя выражения для р и А, получим соотношение де Бройля: . Такимобразом, решение уравнения Шредингера сводится к волнам де Бройля, существование которых экспериментально доказано в опытах по дифракции вещества, поэтому оно и было названо волновой функцией.

Легко видеть, что если потенциальная энергия равна нулю, то длина волны частицы равна нулю, то длина волны частицы равна h/p. Когда потенциальная энергия отлична от нуля, но имеет постоянную величину, уравнение Шредингера превращается в а решение снова имеет вид но при этом Использование соотношения к = 2р дает Из этого следует, что для постоянной полной энергии с ростом V величина Е-V уменьшается, и поэтому длина волны растет до тех пор, пока не достигнет бесконечного значения при E=V. Но (E-V) - это кинетическая энергия частицы. Следовательно, с понижением кинетической энергии длина волны де Бройля растет и для состояния покоя достигает бесконечного значения. Анализ уравнения Шредингера, представляющего собой дифференциальное уравнение второго порядка, показывает, что оно имеет бесконечное число решений, т.е. энергия частицы Е может принимать любые значения. Однако, энергия квантована, поэтому некоторые решения необходимо обязательно исключить. Но для начала нужно придать физический смысл волновой функции ц

Интерпретация физического смысла волновой функции

Явного физического смысла решения (ш) уравнения Шредингера не имеют. Смысл имеет квадрат волной функции ш2. Интерпретация волновой функции цj была дана М. Борном по аналогии с волновой оптикой, в которой квадрат амплитуды электромагнитной волны рассматривается как интенсивность электромагнитного излучения. В корпускулярной теории света интенсивность - это число имеющихся фотонов, т.е. интенсивное монохроматическое излучение соответствует большому числу фотонов (каждый с энергией pн; а малоинтенсивное - небольшому числу таких фотонов.

Аналогия для частиц состоит в том, что волновую функцию можно рассматривать как амплитуду, квадрат которой есть вероятность обнаружить частицу в каждой точка пространства. Например, для электрона : это величина, пропорциональная вероятности обнаружить электрон в бесконечно малом промежутке между - вероятность обнаружить электрон в бесконечно малом объеме пространства Л, расположенном на расстоянии г от центра координат (который обычно помещают в центре ядра). Вероятностная интерпретация волновой функции означает, что нельзя сказать в точности, где находится частица, например, электрон. Можно говорить лишь о вероятности ее нахождения в различных областях пространства.

Лучше всего это проиллюстрировать на конкретном примере. Возьмем атом водорода в низшем (основном) состоянии. Для этого случая решение уравнения Шредингера приводит к волной функции вида А - радиус Бора, г - расстояние от центра ядра. С помощью этого уравнения можно рассчитать, что вероятность (пропорциональная ш2) найти электрон внутри небольшой сферы объемом 1 пм (около 1/100 объема атома) в точке, отстоящей на 0.5 А от ядра, составляет 15% от вероятности найти электрон у самого ядра, а вероятность найти электрон на расстоянии 1 мм от ядра столь мала (десять в степени - (10)), что ею можно полностью пренебречь. Однако конечная вероятность найти электрон даже в 1 км от ядра не равна нулю.

Квантование

Любое свойство объекта, любое явление квантовано, все в мире квантовано, включая само пространство. В этом заключается основной принцип квантовой механики. Энергия объекта не может измениться на произвольную величину. Объект может обладать лишь определенными значениями энергии, и нельзя сделать так, чтобы он имел какую-то промежуточную энергию. Это, между прочим, и явилось причиной введения уравнения Шредингера, которое вместе с предложенной выше интерпретацией волновой функции успешно объясняет квантование энергии. В разделе 1.1 указывалось, что для согласия с принципом квантования некоторые из бесконечного числа решений уравнения Шредингера нужно исключить. Это можно сделать на основе вероятностной интерпретации волновой функции.

Ограничение на волновые функции можно наложить с помощью простого заключения, состоящего в том, что если есть вероятность найти частицу в области dx или сумма таких вероятностей по всему пространству должна быть равна единице. Это следует из того, что частица, если она существует, определенно где-то находится, пусть даже она "размыта" по всей вселенной. Таким образом, возникает критерий полной вероятности (по-иному его называют "условие нормировки"), который налагает жесткие ограничения на волновые функции, ибо ему удовлетворяют не все решения уравнения Шредингера, а только волновые функции, нормированные к единице, когда

для одномерного движения или

для трехмерного движения, где х - длина, а ф - объем.

Чтобы пояснить это, опять обратимся к атому водорода. В основном состоянии волновая функция пропорциональна (см. предыдущий раздел), т.е. спадает по экспоненциальному закону при удалении от ядра. Однако интегрируя по всему пространству, можно вычислить, что условию нормировки, т.е. критерию полной вероятности, удовлетворяют не любые коэффициенты пропорциональности А в уравнении а только один (называемый нормировочным множителем N), , который и был использован в предыдущем разделе при расчетах вероятности найти электрон на разных расстояниях от ядра. При других значениях А критерий полной вероятности не соблюдается и эти решения уравнения Шредингера неприемлемы. Если эти решения неприемлемы, то их отбрасывают, и тогда в уравнении Шредингера полная энергия Е электрона в атоме водорода не может иметь значения, соответствующие этим неприемлемым решениям. Так мы приходим к квантованию и теперь должны заявить, что возможны только некоторые значения энергии электрона в атоме водорода, поскольку другие значения соответствуют неверным свойствам распределения электрона в пространстве.

Атомные орбитали

Орбитали атома вододрода.

Когда рассматриваются волновые функции для электронов в отдельных атомах, эти функции называют атомными орбиталями (сокращенно АО). Экспериментальные доказательства существования атомных орбиталей можно получить из атомных спектров. Например, при электрическом разряде в газообразном водороде молекулы Н2 диссоциируют на атомы, а атомы испускают свет строго определенных частот, которые группируются сериями: в видимой области (так называемая серия Бальмера), ультрафиолетовой (серия Лаймана), инфракрасной (серия Пашена). Еще в доквантовый период было замечено, что все серии удовлетворяют одному простому уравнению:

атомный молекулярный орбиталь квантование

Атом водорода трехмерен, поэтому уравнение Шредингера должно включать кинетическую энергию во всех трех измерениях и будет иметь несколько более сложный вид, чем представленное в разделе 1.1 этой главы уравнение для одномерного движения. При его решении с наложением граничных условий, которые вытекают из вероятностной интерпретации волновой функции, были получены следующие выводы.

1. Необходимо принять, что существуют три безразмерных квантовых числа, которые обозначают символами п, / и т. Появление квантового числа п вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые

числа / и т связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число / характеризует величину углового момента, а число т - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n - 1, 2, 3.;

2. Энергия электрона, вообще говоря, должна зависеть от всех трех квантовых чисел, или, по крайней мере, от двух, однако уникальной особенностью атома водорода (но не других атомов) является то, что энергия электрона зависит только от п. По этой причине п называется главным квантовым числом. (Так, для п = 3l может принимать значения 0, 1 и 2, но энергия электрона остается постоянной.) Разрешенными энергиями будут энергии, имеющие вид Еп = R/п2.

Атомные орбит али атома водорода имеют очень важное значение, так как они показывают, как распределен электрон (или электронная плотность) в пространстве. Амплитуда АО ш (r) различна в разных местах пространства, а вероятность нахождения электрона в некоторой бесконечно малой области dф вокруг точки r составляет . Пространственное распределение электрона можно изобразить путем указания величины с помощью разной плотности штриховки на диаграмме. Распределение плотности в некоторых АО водорода представлено на рис.1.1

Орбиталь основного состояния атома водорода очень проста: она сферически симметрична и ее плотность экспоненциально спадает по мере удаления от ядра. Следовательно, наиболее вероятно найти электрон около ядра, где ц/ и, таким образом, у? ^ максимальны. Это согласуется спред став легшем, что электрон для достижения наименьшей потенциальной энергии должен стремиться к ядру. Однако орбнталь не совсем "прижата" к ядру, а распространяется и на области, достаточно удаленные от него. Такая ситуация возникает вследствие того, что большое значение имеет не только потенциальная, но и кинетическая энергия электрона. Последнюю нельзя представить как кинетическую энергию движения по орбите вокруг ядра, которая приводит к появлению центробежной силы, удерживающей электрон вдали от ядра, поскольку угловой момент электрона в основном состоянии атома водорода равен нулю. (При п= 1 может быть только одно квантовое число величины углового момента: /=0, и, следовательно, равна нулю.) Таким образом, в классическом понимании электрон в основном состоянии атома водорода как бы не вращается вокруг ядра, а просто качается вдоль радиуса. С этим и связана его кинетическая энергия. С точки зрения квантовой теории, кинетическая энергия электрона связана с длиной волны электрона, распространяющейся в радиальном направлении. Если орбнталь "поджимается" к ядру, длина волны в радиальном направлении неизбежно уменьшается, и поэтому кинетическая энергия возрастает (разд.1.1). Реальная орбнталь является результатом компромисса между умеренно низкой потенциальной энергией и умеренно высокой кинетической энергией. Ближе к ядру электронная плотность выше, но она имеется и на удаленном от ядра расстоянии.

Рис.1.1 Распределение ппотностн некоторых атомных орбиталей атома водорода в пространстве.

Все орбитали с нулевым угловым моментом называются s-орбиталями. Орбиталь низшей энергии называется 1s-орбиталью. Если п=2 и 7=0, то это 2s-орбиталь. Ее энергия выше, чем энергия 1s-орбитали, по двум причинам. Во-первых, она имеет радиальный узел (рис.1.2), представляющий собой сферическую поверхность, внутри и снаружи которой волновая функция имеет разные знаки, и на самой этой поверхности электронная плотность равна нулю. Появление узлов на любой орбитали повышает энергию электрона, занимающего эту орбиталь, и чем больше узлов, тем энергия орбитали выше.

Это связано с тем, что с увеличением числа узлов длина волны электрона становится короче, т.е. большее число полуволи приходится на одну и ту же область пространства и поэтому его кинетическая энергия возрастает. Во - вторых, повышение энергии 2s-орбитали по сравнению с 1s-орбиталью связано с тем, что 2s-орбиталь простирается на расстояние, более далекое от ядра, и поэтому потенциальная энергия электрона на ней выше, чем на 1s-орбитали. Аналогичные замечания можно сделать и относительно более высоко лежащих s-орбиталей: и т.д.

Рис.1.2 Узловые свойства и симметрия атомных орбиталей.

Орбиталь с п=1 не имеет узлов. Орбитали с п=2 имеют один узел, с п=3 - два узла и т.д. Относительно операции симметрии инверсии (центр инверсии совпадает с центром ядра) все s-орбитали симметричны, все s-орбитали антисимметричны, все s-орбитали симметричны и т.д.

Если n=0, единственным значением, разрешенным для l, является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2л-орбит аль) или 1. Если n= 1, атомные орбитали носят название р-орбнгалей. При n= 2 и l= 1 мы имеем 2р-орбнталь. Она отличается от 2s-орбнтали тем, что занимающий ее электрон обладает орбитальным угловым моментом величиной (2) Угловой момент является следствием наличия углового узла (рис.1.2), который, как говорят, "вводит кривизну в угловое изменение волновой функции" (шар превращается в гантель). Наличие орбитального углового момента оказывает сильное влияние на радиальную форму орбитали. В то время как все 5-орбит али у ядра имеют ненулевое значение,1s-орбитали там отсутствуют. Это можно представить как отбрасывание электрона от ядра орбитальным угловым моментом. Сила кулоновского притяжения электрона к ядру пропорциональна 1 /г где г - расстояние от ядра, а центробежная сила, отталкивающая электроны от ядра, пропорциональна r3 (3 - угловой момент). Поэтому, если угловой момент ^0, при очень малых г центробежная сила превосходит кулоновскую. Этот центробежный эффект проявляется также в АО с l=2, которые называются 1s-орбиталями, l=3 (s-орбитали) и более высоких орбиталях (Ј-, /? - , у-орбитали). Все эти орбит али, из-за того, что /^0, имеют нулевую амплитуду у ядра и, следовательно, вероятность обнаружить там электроны равна нулю.

У 2/? - орбнтали нет радиального узла, но зато 3/? - орбиталь его имеет. Эскизы нижних атомных орбит алей, иллюстрирующие свойства и симметрию АО (но не вероятностное распределение электрона внутри орбитали, как на рис.1.1), приведены на рис.1.2 Светлые и затемненные области - это места, где волновая функция имеет разные знаки. Поскольку выбор знака произволен, безразлично, будем ли мы соотносить затемненные области с положительным, а светлые области с отрицательным знаком волновой функции, или наоборот. Граница между светлой и темной областями орбнталей - это узел, т.е. то место, где волновая функция равна нулю, или, другими словами, место, где волновая функция меняет знак на противоположный. Чем больше узлов, тем выше энергия электрона, занимающего данную АО.

Поскольку для орбиталей l=0, квантовое число т может принимать значения +1, 0 и - 1. Разные значения т соответствуют орбнталям с различными ориеитациями орбитального углового момента, р-Орбиталь с т=0 имеет нулевую проекцию углового момента на ось 2 (рис.1.2), и по этой причине ее называют р2-орбиталью. Вид р2 - орбнтали (см. рис.1.1 и 1.2) говорит о том, что электронная плотность "собрана в заводи" вдоль оси 2. В этом случае существует горизонтальная узловая плоскость, проходящая через ядро, и вероятность найти электрон в этой плоскости равна нулю. Две другие р - орбнтали можно представить аналогичными картинами с ориентацией "лопастей" вдоль осей хну (см. рис.1.1), поэтому они называются рх и ру - орбнталями.

Если /? =3, то / может принимать значения 0, 1 и 2. Это прнаоднг к одной 3^-орбнгали, трем 3/? - орбнгалям и пяти 3^-орбнгалям.3б/-Орбнталей пять, поскольку при / =2 т может принимать значения 2, 1, 0, - 1 и - 2. Все Ъй - орбнтали имеют нулевую амплитуду у ядра. У них нет радиальных узлов (у 4с1 - орбнталей радиальные узлы появляются), но у каждой есть две узловые плоскости (см. рис.1.2).

Выше было сказано, что энергия электрона в атоме водорода зависит от главного квантового числа орбнтали, которую он занимает и не зависит от его орбитального углового момента. Таким образом, в атоме водорода электрон на 2л-орбнтали имеет ту же энергию, что и на любой из 2р-орбит алей. Если различные орбнтали имеют одинаковую энергию, они называются вырожденными. Вырождение атома водорода представляет собой нечто исключительное и в физике объясняется особой формой его кулоновского потенциала.

Размеры атомных орбиталей

Скорость многих реакций органических соединений зависит от того, насколько эффективно взаимодействуют, т.е. перекрываются, молекулярные орбнтали реагентов. Объемистые группы (например, трет-б утильн ая) препятствуют сближению реагентов, снижают степень взаимодействия орбиталей (иногда до нуля) и поэтому затрудняют реакцию. Для оценки стерических эффектов необходимо иметь представление о том, каковы размеры орбиталей и насколько далеко они распространены от ядра. Поскольку молекулярные орбнтали получаются из атомных орбиталей (раздел 1.5), размеры атомных орбиталей играют решающую роль. Размеры атомных орбиталей определяют и то, что мы называем "размерами атома".

Каковы, например, размеры атома водорода в его основном электронном состоянии? Можно рассуждать так: поскольку при удалении от ядра орбиталь спадает экспоненциально, атом бесконечно велик, так как амплитуда волновой функции (орбитали) достигает нуля лишь в пределе бесконечного расстояния от ядра. Эта точка зрения принципиально правильна, но вряд ли она приемлема для химии.

Другая точка зрения состоит в том, чтобы считать за размер атома радиус, на котором наиболее вероятно найти электрон. Наиболее вероятным радиусом, при котором будет найден электрон, для орбитали является рад ну с Бора ао=0.5Ъ А (53 пм). Радиус наибольшей вероятности в случае 2 ^-орбитали водорода имеет величину 2.76 А (276 пм). Таким образом, с увеличением энергии атома, т.е. при его возбуждении, его размеры увеличиваются.

По мере увеличения атомного номера (Т) элемента орбитали "поджимаются" к ядру и наиболее вероятный радиус будет равен 53 им/где 2 - заряд ядра.

Таким образом, 1s-орбиталь атома углерода в 6 раз меньше 1л-орбнтали атома водорода.

Размещено на Allbest.ru


Подобные документы

  • Правило октета, структуры Льюиса. Особенности геометрии молекул. Адиабатическое приближение, электронные состояния молекул. Анализ метода валентных связей, гибридизация. Метод молекулярных орбиталей. Характеристики химической связи: длина и энергия.

    лекция [705,2 K], добавлен 18.10.2013

  • Основные достоинства и недостатки теории валентных связей. Приближенные квантовохимические способы расчета волновых функций, энергетических уровней и свойств молекул. Метод молекулярных орбиталей Хюккеля. Связывающие и разрыхляющие молекулярные орбитали.

    презентация [180,6 K], добавлен 31.10.2013

  • Возникновение неклассических представлений в физике. Эксперимент Дэвиссона и Джермера. Особенности квантово-механического описания микромира. Главные задачи квантовой химии. Электронное строение атомов и молекул. Атомные орбитали Зенера-Слейтера.

    лекция [198,0 K], добавлен 15.10.2013

  • Применение теории МО к координационным соединениям с лигандами, имеющими сигма-орбитали. Применение теории МО к координационным соединениям с лигандами, имеющими р- и пи-орбитали. Применение теории МО для описания строения пи-комплексов и металлоценов.

    реферат [983,8 K], добавлен 03.12.2002

  • Электронные орбитали атомов, молекул. Межэлектронное отталкивание. Заряд экранирования. Функции Слэтера-Ценера. Одноэлектронное приближение. Одноэлектронный гамильтониан. Модель экранирования (по Ферми). Правило Клечковского. Орбитальная энергия оболочки.

    реферат [89,2 K], добавлен 01.02.2009

  • Построение квантово-механической теории валентности. Происхождение электронного облака в межъядерной области и природа устойчивости простейшей молекулярной системы. Спектрально наблюдаемые свойства молекул. Физическое происхождение феномена валентности.

    реферат [3,6 M], добавлен 29.01.2009

  • Основные характеристики атомов. Связь кислотно-основных свойств оксида с электроотрицательностью. Разделение элементов на металлы и неметаллы. Типы химической связи. Схемы образования молекул простых веществ, углекислого газа. Общее понятие о валентности.

    лекция [235,5 K], добавлен 22.04.2013

  • Характеристика ковалентной связи, понятия насыщаемости, направленности и полярности. Гибридизация атомных орбиталей и ионная связь. Межмолекулярные химические связи (вандерваальсовы силы). Типы кристаллических решеток. Молекулярная структура льда.

    презентация [1,1 M], добавлен 11.08.2013

  • Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.

    презентация [1,1 M], добавлен 22.04.2013

  • Понятие о валентности как свойстве атомов присоединять определённое число атомов другого элемента. Определение валентности элементов по формулам. Сумма единиц валентности всех атомов одного элемента равна сумме единиц валентности атомов другого элемента.

    лекция [10,4 K], добавлен 16.05.2004

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.