Кинетика ферментативных реакций

Зависимость скорости ферментативной реакции от концентрации субстрата. Определение воздействия разных значений рН среды на активность фермента. Повышение и снижение биохимических реакций под влиянием изменения температуры, учение об ингибиторах ферментов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 17.12.2010
Размер файла 753,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

Зависимость скорости ферментативной реакции от концентрации субстрата

Влияние pH

Влияние температуры

Влияние эффекторов

Список литературы

Введение

Одним из характерных проявлений жизни является способность живых организмов кинетически регулировать химические реакции, подавляя стремление к достижению термодинамического равновесия. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагирующих веществ (ферментов, субстратов) и условий их взаимодействия (концентрация, рН среды, температуры, присутствие активаторов или ингибиторов) на скорость ферментативной реакции. Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.

Зависимость скорости ферментативной реакции от концентрации

субстрата

фермент субстрат биохимический ингибитор

Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:

константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k-1) реакций, т.е.

Кp = k+1/k-1.

В состоянии равновесия скорость прямой реакции:

v+1 = k+1[А]*[B]

равна скорости обратной реакции:

v-1 = k-1[С]*[D],

т.е. v+1 = v-1

соответственно k+1[А]*[B] = k-1[С]*[D],

или

Рис. 1. - Теоретический график зависимости скорости ферментативной

реакции от концентрации субстрата при постоянной концентрации

фермента

а - реакция первого порядка (при [S]<Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxi скорость реакции не зависит от концентрации субстрата.

Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции

т.е. KS равна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KS зависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.

При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 1) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S -> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:

где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата; k' - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).

При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [S]. В этом случае реакция подчиняется кинетике нулевого порядка v=k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 1).

Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:

т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:

где v - наблюдаемая скорость реакции при данной концентрации субстрата [S]; KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax - максимальная скорость реакции при полном насыщении фермента субстратом.

Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KS скорость реакции является максимальной, т.е. v=Vmax (реакция нулевого порядка, см. рис. 1). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка). Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции

и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:

где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:

Рис. 2. - Кривая уравнения Михаэлиса-Ментен: гиперболическая

зависимость начальных скоростей катализируемой ферментом реакции

от концентрации субстрата

В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1 представляет собой константу диссоциации фермент-субстратного комплекса KS, тогда:

Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KS на величину k+2/k+1.

Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции V составляет половину от максимальной Vmax, т.е. если V = 1/2 Vmaх. Подставляя значение V в уравнение Бриггса-Холдейна, получаем:

разделив обе части уравнения на Vmах, получим

Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.

Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 2). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.

Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата [S0], неудобно, поскольку максимальная скорость Vmax является в данном случае асимптотической величиной и определяется недостаточно точно.

Рис. 3. - График Лайнуивера-Бэрка

Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Холдейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если

или

то после преобразования получаем уравнение:

которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии:

у = ах + b.

Если теперь в соответствии с этим уравнением построить график в координатах 1/v(y) от l/[S](x), то получим прямую линию (рис. 3), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax (обратная величина максимальной скорости).

Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 3). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.

Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].

Следует отметить некоторые ограничения применения уравнения Михаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая

Рис. 4. - Сигмоидная кинетическая кривая насыщения субстратом

кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4) наподобие кривой насыщения гемоглобина кислородом. Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:

где К' - константа ассоциации; n - число субстрат связывающих центров.

Влияние pH

Зависимость активности ферментов от рН среды. Ферменты обычно наиболее активны в пределах узкой зоны концентрации водородных ионов, соответствующей для животных тканей в основном выработанным в процессе эволюции физиологическим значениям рН среды 6,0-8,0. При графическом изображении на кривой колоколообразной формы имеется определенная точка, в которой фермент проявляет максимальную активность; эту точку называют оптимумом рН среды для действия данного фермента (рис. 5). При определении зависимости активности фермента от концентрации водородных ионов реакцию проводят при разных значениях рН среды, обычно при оптимальной температуре и наличии достаточно высоких (насыщающих) концентраций субстрата. В табл. 4.3 приводятся оптимальные значения рН среды для ряда ферментов.

Рис. 5. - Зависимость скорости катализируемой ферментом реакции от

рН (стрелка указывает оптимум рН).

Из данных табл. 4.3 видно, что рН-оптимум действия ферментов лежит в пределах физиологических значений. Исключение составляют пепсин, рН-оптимум которого 2,0 (при рН 6,0 он не активен и не стабилен). Объясняется это, во-первых, структурной организацией молекулы фермента и, во-вторых, тем, что пепсин является компонентом желудочного сока, содержащего свободную соляную кислоту, которая создает оптимальную кислую среду для действия этого фермента. С другой стороны, рН-оптимум аргиназы лежит в сильнощелочной зоне (около 10,0); такой среды нет в клетках печени, следовательно, аргиназа функционирует, по-видимому, не в своей оптимальной зоне рН среды.

Согласно современным представлениям, влияние изменений рН среды на молекулу фермента заключается в воздействии на состояние и степень ионизации кислотных и основных групп (в частности, СООН-группы дикарбоновых аминокислот, SH-группы цистеина, имидазольного азота гистидина, NH2-группы лизина и др.). При резких сдвигах от оптимума рН среды ферменты могут подвергаться конформационным изменениям, приводящим к потере активности вследствие денатурации или изменения заряда молекулы фермента. При разных значениях рН среды активный центр может находиться в частично ионизированной или неионизированной форме, что сказывается на третичной структуре белка и соответственно на формировании активного фермент-субстратного комплекса. Имеет значение, кроме того, состояние ионизации субстратов и кофакторов.

Влияние температуры

Термолабильность ферментов. Скорость химических реакций зависит от температуры, поэтому катализируемые ферментами реакции также чувствительны к изменениям температуры. Установлено, что скорость большинства биохимических реакций повышается в 2 раза при повышении температуры на 10°С и, наоборот, снижается в 2 раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45-50°С, скорость реакции увеличивается согласно теории химической кинетики. При температуре выше 50°С на скорость реакции большое влияние начинает оказывать тепловая денатурация белка-фермента, приводящая к полному прекращению ферментативного процесса (рис. 6).

Рис. 6. - Зависимость скорости катализируемой ферментом реакции от

температуры

Таким образом, термолабильность, или чувствительность к повышению температуры, является одним из характерных свойств ферментов, резко отличающих их от неорганических катализаторов. В присутствии последних скорость реакции возрастает экспоненциально при повышении температуры (см. кривую «а» на рис. 6). При температуре 100°С почти все ферменты утрачивают свою активность (исключение составляет, очевидно, только один фермент мышечной ткани - миокиназа, которая выдерживает нагревание до 100°С). Оптимальной для действия большинства ферментов теплокровных животных является температура 40°С; в этих условиях скорость реакции оказывается максимальной вследствие увеличения кинетической энергии реагирующих молекул. При низких температурах (0°С и ниже) ферменты, как правило, не разрушаются, хотя активность их падает почти до нуля. Во всех случаях имеет значение время воздействия соответствующей температуры. В настоящее время для пепсина, трипсина и ряда других ферментов доказано существование прямой зависимости между скоростью инактивации фермента и степенью денатурации белка. Следует отметить, что на термолабильность ферментов определенное влияние оказывает концентрация субстрата, рН среды и другие факторы.

Влияние эффекторов

Вещества, которые оказывают влияние на активность ферментов, называют эффекторами. Это могут быть ингибиторы - соединения, тормозящие каталитический процесс, или активаторы - вещества, которые этот процесс ускоряют.

Активаторы ферментов: ионы Ме с 19 по 30 в системе Менделеева, восстановленные формы соединений НАДН2, ФАДН2, аллостерические активаторы, гормоны - адреналин, инсулин.

Учение об ингибиторах ферментов имеет большое теоретическое и практическое значение для фармакологии и токсикологии. Многие лекарственные препараты являются ингибиторами ферментов. Например, ингибиторы амилаз успешно применяются для лечения заболеваний, связанных с повышенной активностью этих ферментов - диабета, ожирения, кариеса. Используемые в военном деле нервнопаралитические газы представляют собой специфические ингибиторы ферментов. В научных исследованиях специфические ингибиторы используются для изучения механизма действия ферментов, строения их активного центра. Например, многие из промежуточных продуктов гликолиза и дрожжевого брожения были открыты благодаря использованию ингибиторов, блокирующих последовательные стадии процесса. В результате такого блокирования соответствующие промежуточные продукты накапливались в количествах, достаточных для их выделения и идентификации.

По типу действия ингибиторы можно разделить на обратимые и необратимые. Удаление обратимых ингибиторов из системы (диализом, гельфильтрацией и др.) восстанавливает каталитическую активность фермента. Обратимо действуют эффекторы:

1. Близкие аналоги субстрата, которые связываются активным центром фермента, но не подвергаются превращению. Занимая активный центр, они препятствуют связыванию истинного субстрата, конкурируя с ним, и поэтому называются конкурентными ингибиторами.

2. Кофакторы ферментов, без которых апофермент вообще не обладает активностью. Постепенное добавление их приводит к появлению активности, которая затем повышается до определенного предела, соответствующего полному насыщению.

3. Вещества, которые взаимодействуют с дополнительными, регуляторными центрами, несовпадающими с активным центром. Тем не менее, это взаимодействие изменяет конформацию в районе активного центра и влияет на кинетику ферментативного процесса.

Такие соединения называются аллостерическими эффекторами. Они имеют важное биологическое значение, так как с их помощью осуществляется один из механизмов регуляции каталитической активности. Необратимую инактивацию вызывают соединения (найденные в живой природе или полученные путем синтеза), которые вступают в химическую реакцию с участком фермента, важным для проявления каталитической активности. Такие соединения, специфически реагирующие с определенными группами в молекулах ферментов (групп-специфические реагенты), используют для идентификации функциональных групп активного центра (метод химической модификации). С этой целью широко используются соединения, блокирующие SH-группы (иодацетамид, n-хлормеркурибензоат и др.), окисляющие остатки триптофана в кислой среде (N-бромсукцинимид), ацетилирующие остатки тирозина (N-ацетилимидазол), связывающие металлы (азид натрия) и т.д.

Список литературы

1. Уайт А. Основы биохимии: в 3 т. - М.: Мир, 1981.

2. Биохимия. Учебник для ВУЗов. // Под ред. чл.-корр. РАН, проф. Е.С. Северина.

3. [Электронный ресурс]. Режим доступа: http://62.76.7.146/cgi-bin/divisions/index.pl?actio=labs&id=enzymes&kod=7sk66u0p8b62w4u

4. [Электронный ресурс]. Режим доступа: http://www.xumuk.ru

5. Овчинников Ю.А. Биоорганическая химия. - М.: Просвещение, 1987.

6. Диксон М., Уэбб Э. Ферменты: в 3 т. - Т. 1. - М.: Мир, 1982.

Размещено на Allbest.ru


Подобные документы

  • Роль скорости химических реакций, образования и расходования компонентов. Кинетика химических реакций. Зависимость скорости реакции от концентрации исходных веществ. Скорость расходования исходных веществ и образования продуктов. Закон действующих масс.

    реферат [275,9 K], добавлен 26.10.2008

  • Химическая кинетика и ее значение в управлении химическими процессами. Классификация реакций по средам протекания, их отличительные черты. Скорость химических реакций, зависимость ее от температуры среды и наличия света. Принцип действия катализаторов.

    реферат [152,7 K], добавлен 29.05.2009

  • Природа и внутреннее строение ферментов. Рассмотрение кинетических закономерностей односубстратных ферментативных реакций, осложненных ингибированием. Исследование кинетики реакции окисления сукцината натрия в фумарат натрия под действием сукционимидазы.

    курсовая работа [407,3 K], добавлен 13.10.2011

  • Виды фотохимических процессов, протекающих при фотовозбуждении молекул. Различие кинетики фотохимических и темновых реакций. Полные и локальные скорости фотохимических реакций. Кинетика флуоресценции, фосфоресценции и интеркомбинационной конверсии.

    курсовая работа [2,8 M], добавлен 13.10.2011

  • Стадии цепных разветвленных реакций. Стационарный и нестационарный режимы быстрого самоускорения. Зависимость пределов воспламенения от давления, температуры и критических размеров реактора. Кинетика цепных реакций с вырожденным разветвлением цепей.

    реферат [182,5 K], добавлен 09.03.2015

  • Зависимость скорости PGH-синтазной реакции от концентрации гемина, кинетическое уравнение процесса. Константа Михаэлиса и величина предельной скорости реакции. Зависимость начальных скоростей реакции от концентраций субстрата при наличии ингибитора.

    курсовая работа [851,2 K], добавлен 13.11.2012

  • Ознакомление с понятием и предметом химической кинетики. Рассмотрение условий химической реакции. Определение скорости реакции как изменения концентрации реагирующих веществ в единицу времени. Изучение общего влияния природы веществ и температуры.

    презентация [923,5 K], добавлен 25.10.2014

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Принципы независимости скоростей элементарных реакций в системе и детального равновесия. Последовательные односторонние реакции. Метод квазистационарных концентраций Боденштейна и мономолекулярные реакции. Аррениусовская зависимость в газах и жидкостях.

    реферат [85,7 K], добавлен 29.01.2009

  • Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат [26,7 K], добавлен 27.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.