Определение твердости металлов
Производство стали в мартеновских печах: состав шихты, методика плавки. Технико-экономические показатели работы. Перечень свойств, характеризующих пластичность. Факторы, влияющие на свариваемость. Виды, назначения и технология выполнения цементации.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 11.11.2010 |
Размер файла | 712,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
18
1. Производство стали в мартеновских печах: состав шихты, технология плавки. Технико-экономические показатели работы
Мартеновская печь (от имени П. Мартена), пламенная регенеративная печь для переработки чугуна и стального лома в сталь заданного химического состава и качества.
Мартеновская печь состоит из следующих основных частей: рабочего пространства (под, передняя и задняя стенки, свод), где осуществляется плавка; головок (правой и левой), состоящих из собственно головок и вертикальных каналов для подачи топлива и воздуха в рабочее пространство и отвода из него продуктов сгорания; шлаковиков (воздушных и газовых) -- для осаждения и накопления пыли и частиц шлака, выпадающих из проходящих через них продуктов сгорания; регенераторов (воздушных и газовых) -- для подогрева поступающих в печь газа и воздуха теплом выходящих из рабочего пространства продуктов сгорания; боровов (каналов) для воздуха, газа и продуктов сгорания; системы перекидных клапанов, предназначенных для изменения направления подачи в печь топлива и воздуха и отвода из рабочего пространства продуктов сгорания; котла-утилизатора; дымовой трубы. Рабочее пространство и головки печи расположены выше рабочей площадки цеха и условно называются верхним строением печи. Остальные части находятся под рабочей площадкой и называются нижним строением. Мартеновская печь -- агрегат симметричный: правая и левая её стороны относительно вертикальной оси одинаковы по устройству. Топливо и воздух для горения поступают в рабочее пространство поочерёдно то с правой, то с левой стороны; продукты сгорания отводятся из рабочего пространства соответственно с противоположной стороны. Изменение направления подачи топлива и воздуха, то есть изменение направления факела в рабочем пространстве, осуществляется системой клапанов и шиберов и называется «перекидкой» клапанов. Продукты сгорания поступают из шлаковика в регенератор сверху при температуре 1500-- 1600 °C и, проходя по насадке (огнеупорная кладка регенераторов), передают ей значительную часть содержащегося в них тепла. При последующем прохождении через нагретую насадку холодного воздуха или газа они нагреваются до 1100-- 1200 °С.
Все элементы Мартеновская печь выкладывают из огнеупорных материалов (см. Огнеупоры). В зависимости от характера огнеупорных материалов, из которых выложено рабочее пространство, Мартеновская печь делятся на основные и кислые. Для кладки основной Мартеновская печь применяют магнезитовый, магнезито-хромитовый, хромомагнезитовый кирпичи, магнезитовый порошок (для наварки пода), для кладки кислой Мартеновская печь -- динасовый кирпич и кварцевый песок. В нижнем строении печи используются форстеритовый, высокоглинозёмистый, магнезитовый и шамотный кирпичи. Для придания строительной прочности всей конструкции печи кладка крепится металлической арматурой. Узлы и детали Мартеновская печь, работающие в условиях высоких температур, постоянно охлаждаются.
Мартеновская печь бывают двух типов -- стационарные и качающиеся. Большинство Мартеновская печь стационарные. Качающиеся Мартеновская печь обычно применяются для переработки фосфористых чугунов, так как при этом требуется несколько раз «скачивать» богатый фосфором шлак, что легче осуществлять на качающихся печах. Мартеновская печь могут отапливаться жидким (мазутом) или газообразным (природный, смешанный, генераторный газ) топливом. Смешанный газ (коксовый и доменный) и генераторный газ, обладающие недостаточной теплотой сгорания, перед поступлением в рабочее пространство подогреваются в регенераторах примерно до 1150 °С. Природный газ и мазут используются без подогрева. Кислород, служащий для интенсификации горения топлива, вводится через фурмы, помещенные в головках печи, а подаваемый для продувки ванны -- через фурмы, опускаемые в отверстия в своде. Некоторое количество топлива может поступать вместе с кислородом в рабочее пространство печи с помощью топливо-кислородных горелок, также опускаемых через свод. Печи, отапливаемые низкокалорийными видами газообразного топлива, имеют две пары шлаковиков и две пары регенераторов (для подогрева газа и подогрева воздуха), располагаемых попарно соответственно под каждой головкой печи; отапливаемые мазутом или природным газом имеют под каждой головкой по одному шлаковику и одному регенератору -- только для подогрева воздуха. Несмотря на наличие регенераторов, отходящие газы перед дымовой трубой имеют температуру 400--800 °С. Для утилизации этого тепла за Мартеновская печь устанавливают котлы-утилизаторы. Печи оборудованы контрольно-измерительной аппаратурой, позволяющей не только контролировать их работу, но и автоматически поддерживать заданный тепловой режим в различные периоды плавки.
Использование кислорода для интенсификации работы Мартеновская печь приводит к постепенному уменьшению роли регенераторов. В связи с этим в 60-х годах 20 века на ряде металлургических заводов были пущены в эксплуатацию так называемые двухванные печи, вообще не имеющие регенераторов.
Основные показатели, характеризующие работу Мартеновская печь, -- её производительность (годовая, часовая и съём стали с 1 м2площади пода в сутки) и расход топлива. Годовая производительность наиболее полно характеризует работу печи, так как позволяет учесть все простои -- горячие (без прекращения подачи топлива) и холодные (с отключением топлива) и объективно сравнивать работу однотипных печей. Производительность крупных Мартеновская печь превышает 0,5 млн. т стали в год. Съём стали с 1 м2 площади пода позволяет сравнивать работу печей разной ёмкости в различных условиях. Обычно съём стали составляет 12--13 т/м2. В СССР достигнуты наиболее высокие в мире технико-экономические показатели работы Мартеновская печь
Устройство мартеновской печи: 1 -- рабочее пространство; 2 -- свод; 3 -- подина; 4 -- сталевыпускное отверстие; 5 -- отверстие для спуска шлака; 6 -- завалочные окна; 7 -- передняя стенка; 8 -- задняя стенка; 9 -- головки; 10 -- вертикальные каналы; 11 -- шлаковик; 12 -- регенераторы: 13 -- насадка регенераторов; 14 -- борова; 15 -- рабочая площадка.
2. Стали с высокой технологической пластичностью и свариваемость. Свойства, характеризующие пластичность. Факторы, влияющие на свариваемость
Свариваемость -- способность металлов образовывать высококачественные сварные соединения арматуры, швеллера или других изделии при кузнечной и других способах сварки. Хорошо свариваются стали с малым содержанием углерода, плохо -- высокоуглеродистые и легированные.
Пластичность -- способность металлопроката необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.
Под свариваемостью понимают совокупность технологических характеристик основного металла, определяющих его реакцию на термический цикл сварки, и способность при принятом технологическом процессе обеспечивать надежное и долговечное в эксплуатации сварное соединение. Свариваемость не является неотъемлемым свойством металла или сплава, подобным физическим свойствам, она определяется способом и режимом сварки, составом присадочного металла и сварочных материалов, конструкцией сварного узла и условиями эксплуатации изделия.
Отношение металла к конкретному способу сварки и режиму принято считать технологической свариваемостью. Физическая свариваемость определяется процессами, протекающими в зоне сплавления свариваемых металлов, в результате которых образуется неразъемное сварное соединение.
В зависимости от марки основного металла и условий эксплуатации конструкции изменяется и совокупность показателей, определяющих понятие свариваемости. Например, под хорошей свариваемостью низкоуглеродистой стали понимают возможность получения сварного соединения,равнопрочного с основным металлом, без трещин в металле шва и без снижения пластичности в околошовной зоне; при сварке легированных сталей, применяемых для изготовления химической аппаратуры,-- кроме указанных выше подразумевают также обеспечение специальных свойств (коррозионной стойкости, прочности при высоких или низких температурах); при наплавке деталей, работающих на истирание, -- стойкость металла против изнашивания.
Свариваемость, как правило, оценивают не по абсолютным величинам, а по сравнению со свойствами ранее применявшихся материалов или со свойствами основного металла. Результаты испытания на свариваемость признают удовлетворительными в том случае, если они соответствуют нормативам, установленным техническими условиями на данный вид продукции.
Ввиду того, что свариваемость определяется многими показателями, не удается создать единую методику испытания, позволяющую однозначно описать эту комплексную технологическую характеристику. Поэтому для оценки свариваемости применяют ряд испытаний. Выбор методов испытания обусловлен назначением конструкции и свойствами основного металла или сплава.
В процессе кристаллизации металла шва под воздействием возникающих при сварке растягивающих напряжений возможно образование кристаллизационных трещин, являющихся весьма серьезным дефектом. Стойкость металла шва против кристаллизационных трещин -- один из важнейших показателей свариваемости. В металле шва возможно образование и холодных трещин.
Под воздействием применяемого при сварке источника теплоты в околошовной зоне изменяется структура основного металла, что может привести к образованию околошовных холодных трещин. Стойкость металла околошовной зоны против образования трещин является вторым показателем свариваемости при сварке в металле сварного соединения происходят процессы, которые могут привести к снижению стойкости его против перехода в хрупкое состояние. Поэтому проводят испытания стойкости металла околошовной зоны и шва, а также сварного соединения в целом против перехода в хрупкое состояние.
Обычно металл шва по химическому составу и структуре заметно отличается от основного металла. Заметные изменения происходят также в металле околошовной зоны. Это может привести к существенному отличию прочностных и других специальных характеристик металла шва и околошовной зоны от свойств основного металла. Поэтому в комплекс определения свариваемости входит проверка механических свойств металла шва и сварного соединения при различных температурах, а также стойкости против коррозии, износостойкости и других специальных характеристик.
Основные методы определения свариваемости. Применяемые на практике методы определения свариваемости используют для проверки свойств основного металла и выяснения пригодности данной технологии сварки или сварочных материалов для изготовления конструкции, соответствующей требованиям эксплуатации. Методы определения показателей свариваемости весьма разнообразны и многочисленны.
Пластичность противоположна упругости. Если при неточном ударе молотка сгибается гвоздь, никто не надеется, что он выпрямится без посторонней помощи. От удара на консервной банке остаются глубокие вмятины. Все это проявления пластичности металла.
При художественной обработке металла имеет очень большое значение пластичность.
Высокую пластичность должен иметь металл, используемый для выколотки, чеканки, скани, инкрустации, басмы.
Алюминиевую проволоку можно легко строгать ножом, снимая тонкую стружку.
Алюминий мягче стали, из которой сделано лезвие ножа. В то же время, проведя алюминиевой проволокой по поверхности свинца, можно оставить на нем глубокую царапину. Свинец мягче алюминия и, разумеется, стали. Говоря иначе, сталь тверже алюминия, а алюминий тверже свинца.
Из металлов и сплавов, имеющих высокую твердость, изготавливают всевозможные инструменты: напильники, пилы, сверла, зубила, фрезы, стамески, рашпили, инструменты гравера и резчика по дереву. Инструменты из инструментальной стали обязательно закаляют, благодаря чему увеличивается твердость их рабочей части.
Прочность и твердость металла можно увеличить не только путем термической, но и химико-термической обработки: цементации и азотирования стали, цианирования и др.
Наиболее дешевым и производительным является упрочнение металлических изделий способом поверхностного наклепа. Сейчас разработаны методы упрочнения поверхности металлических изделий нейтральным потоком, но суть остается прежняя: на поверхности металла образуется плотный твердый слой. Его умели создавать еще в медном веке. Чтобы сделать прочным и твердым лезвие медного топора или ножа, их тщательно проковывали на наковальне. При увеличении прочности и твердости соответственно уменьшались пластичность и вязкость меди. Да и теперь такой способ упрочнения металла широко применяется в быту. В сенокосную пору по утрам и вечерам в деревнях слышен дробный перестук молотка. Это отбивают косы перед выходом на покос или же впрок, к следующему утру. Выражаясь техническим языком, крестьяне упрочняют жало косы «методом поверхностного наклепа».
Технологические свойства имеют очень важное значение при выборе металла и его последующей обработке. Найти металл, свойства которого были бы идеальными для какого-то конкретного изделия, не так-то просто. Взять хотя бы обычную кастрюлю. В старину ее делали из меди, так как медь является хорошим проводником тепла, но она быстро окислялась от приготавливаемой в ней пищи. На помощь меди еще в XVIII веке пришел другой металл, стойкий к воздействию слабых кислот, олово. Медную посуду, в том числе и знаменитые русские самовары, обязательно лудят изнутри. Таким образом, верхний слой посуды был медным, внутренний -- оловянным.
3. Виды, назначения и технология выполнения цементации
Под цементацией принято понимать процесс высокотемпературного насыщения поверхностного слоя стали углеродом. Так как углерод в ?-фазе практически нерастворим, то процесс цементации осуществляется в интервале температур 930-950 °С -- т. е. выше ? > ?-превращения. Структура поверхностного слоя цементованного изделия представляет собой структуру заэвтектоидной стали (перлит и цементит вторичный), поэтому для придания стали окончательных -- эксплуатационных -- свойств после процесса цементации необходимо выполнить режим термической обработки, состоящий в закалке и низком отпуске; температурно-временные параметры режима термической обработки назначаются в зависимости от химического состава стали, ответственности, назначения и геометрических размеров цементованного изделия. Обычно применяется закалка с температуры цементации непосредственно после завершения процесса химико-термической обработки или после подстуживания до 800-850 °С и повторного нагрева выше точки АС3 центральной (нецементованной) части изделия. После закалки следует отпуск при температурах 160-180 °С.
Цементация как процесс химико-термической обработки, в основном, применяется для низкоуглеродистых сталей типа Ст2, СтЗ, 08, 10, 15, 20, 15Х, 20Х, 20ХНМ, 18ХГТ, 25ХГТ, 25ХГМ, 15ХГНТА, 12ХНЗА, 12Х2Н4А, 18Х2Н4ВА и др., однако в ряде случаев может быть использована при обработке шарикоподшипников -- стали ШХ15, 7Х3 и коррозионностойких сталей типа 10Х13, 20Х13 и т. д. Стали, рекомендуемые для цементации, должны обладать хорошей прокаливаемостью и закаливаемостью цементованного слоя, которые должны обеспечить требуемый уровень прочности, износостойкости и твердости. Прокаливаемость сердцевины должна регулироваться в весьма узком диапазоне твердостей, который составляет 30-43 HRCЭ. Учитывая длительность процесса цементации и высокую температуру процесса, рекомендуется при этом виде химико-термической обработки использовать наследственно мелкозернистые стали, размер зерна которых не должен превышать 6-8 баллов. В противном случае в ходе цементации отмечается значительный рост зерна сердцевины изделия, что приводит к снижению его эксплуатационных свойств.
Цементация производится в углероднасыщенных твердых, жидких или газообразных средах, называемых карбюризаторами, основные составы которых приведены в табл. 1, а в табл. 2 и 3 даны рекомендации по режимам термической обработки цементованных изделий.
При твердофазной цементации процесс ведут следующим образом. Цементуемые детали упаковываются в цементационные ящики таким образом, чтобы их объем, в зависимости от сложности конструкции детали, занимал от 15 до 30 % объема цементационного ящика. Ящики загружают в печь, нагретую до температур от 600-700 °С и нагревают до температуры цементации -- 930-950 °С. По окончании процесса цементации ящики вынимаются из печи -- охлаждение деталей ведется внутри цементационных ящиков на воздухе. К числу недостатков цементации в твердых карбюризаторах относятся: невозможность регулирования степени насыщения и невозможность проведения закалки непосредственно после цементации, дополнительный непродуктивный расход энергии на прогрев цементационных ящиков и т. п. Однако простота метода, возможность проводить процесс на стандартном печном оборудовании без установки дополнительных устройств делают этот метод весьма распространенным в условиях мелкосерийного производства в ремонтных цехах и на участках крупных предприятий. Цементация в жидкофазном карбюризаторе применяется для мелких деталей. К недостаткам этого процесса относятся неравномерность глубины цементованного слоя и необходимость частых регенераций углероднасыщенного расплава. В случае серийного и крупносерийного производства цементованных изделий наибольшее распространение получила цементация в газообразных карбюризаторах. Этот метод обеспечивает наибольшую равномерность по толщине и свойствам цементованного слоя, снижает время, затрачиваемое на процесс химико-термической обработки, а в ряде случаев позволяет производить закалку изделий непосредственно после цементации. В последнее время получил распространение процесс вакуумной цементации. Печи для вакуумной цементации состоят из нагревательной камеры, снабженной вентилятором для обеспечения интенсивной циркуляции воздуха, закалочного бака и транспортных устройств. Подготовленные для вакуумной цементации детали помещают в нагревательную печь, вакуумируют и нагревают до 1000-1100 °С, затем в печь подается газообразный карбюризатор -- очищенный природный газ, пропан или бутан. Этот метод позволяет ускорить процесс цементации, повысить качество получаемого слоя.
Качество процесса цементации оценивается по эффективной толщине цементованного слоя, которая определяется по одному из двух показателей -- твердости или структуре слоя. Структура поверхностного слоя цементованной стали состоит из нескольких зон: поверхностной -- заэвтектоидной (перлит + цементит), эвтектоидной -- перлитной и доэвтектоидной -- перлито-ферритной. Эффективную толщину цементованного слоя по структуре принято измерять на металлографических шлифах в отожженном состоянии при увеличениях от 100 до 500 раз. Границей цементованной зоны считается структура состоящая из 50 % перлита и 50 % феррита, что соответствует концентрации углерода равной 0,4 масс. %.
В случае, когда за критерий оценки толщины цементованного слоя принимается твердость или микротвердость после цементации, то оценка ведется на термически обработанных образцах, а за конец цементованного слоя принимается зона с твердостью 50 HRCЭ или 540-600 НV (табл. 4).
Существует еще один приблизительный метод оценки глубины цементованного слоя. Метод оценки изломов проб в закаленном состоянии, а также данные о влияние температуры и продолжительности цементации на глубину слоя по излому закаленных проб приведены в табл. 5. Такой метод является одним из старейших при оценке глубины цементованного слоя, используется при твердофазной цементации и состоит в следующем. В середине передней стенки цементационного ящика вставляются пробные прутки, которые время от времени извлекают и закаливают; по излому судят о глубине цементованного слоя.
4. Сплавы с заданным температурным коэффициентом линейного расширения, температурным коэффициентом модуля упругости
Для ряда отраслей машиностроения и приборостроения необходимо применение материалов со строго регламентированными значениями в определенных температурных интервалах эксплуатации таких физических свойств, как температурные коэффициенты линейного расширения ? (ТКЛР) и модуля нормальной упругости ? (ТКМУ). Эти коэффициенты определяют характер изменения размеров детали и модуля упругости сплава при нагреве.
ТКЛР сплава определяют с помощью дилатометра по относительному удлинению образца в заданном температурном диапазоне.
Согласно правилу Курнакова, в том случае, если компоненты образуют твердый раствор, то ТКЛР сплава изменяется по криволинейной зависимости внутри пределов, ограниченных значениями ТКЛР этих чистых компонентов. Коэффициент линейного расширения ? возрастает с повышением температуры (рис. 24.1). Однако сплавы Fe--Ni не подчиняются общим закономерностям. В области концентраций от 30 до 45% для них характерны аномалии, связанные с инварным эффектом (рис. 24.2). Самое низкое значение ТКЛР в диапазоне температур от -100 до 100 °С имеет сплав, содержащий 36% Ni. Этот сплав был открыт Гийомом в 1897 году и назван инваром (лат. неизменный) из-за минимальных значений теплового расширения.
Для металлов с кубической кристаллической решеткой ТКЛР изотропен. Его значения не зависят от направлений кристаллической решетки и преимущественной ориентации текстуры. Термический коэффициент объемного расширения втрое превышает ТКЛР.
Рис. 2. Кривая расширения сплавов при повышении температуры
Рис. 3. Температурный коэффициент линейного расширения сплавов Fe--Ni
Рис. 24.3. Температурный коэффициент модуля упругости сплавов Fe--Ni
Для сплавов Fe--Ni инварного состава помимо низких значений ТКЛР характерна еще одна аномалия -- аномалия термического коэффициента модуля упругости ТКМУ. В любых твердых телах, в том числе металлах, при нагреве наблюдается уменьшение модуля упругости, являющегося мерой сил межатомных связей. В сплавах с инварным эффектом модуль упругости растет или остается постоянным с повышением температуры. Характерно, что максимальной величиной ТКМУ обладает тот же сплав Fe--Ni с самым низким значением ТКЛР, содержащий 36% Ni. Подбор определенного химического состава позволяет разработать сплавы, модуль упругости которых практически не зависит от температуры. Сплавы, сохраняющие постоянство модуля упругости в широком температурном диапазоне, называют элинварами. Природа аномального изменения ТКЛР инварных сплавов, так же как и модуля нормальной упругости, имеет ферромагнитное происхождение.
В ферромагнитных сплавах Fe--Ni инварного типа велик уровень объемной магнитострикции -- изменения объема за счет внутреннего магнитного поля. При нагреве происходит уменьшение магнитострикционной составляющей объема. Выше температуры точки Кюри магнитострикционные деформации полностью исчезают в связи с переходом металла в парамагнитное состояние.
ТКЛР ферромагнетиков определяется формулой: ? = ?0 - ?, где ?0 -- нормальный коэффициент линейного расширения, определяемый энергией связи атомов; ? -- составляющая ТКЛР, обусловленная магнитострикцией парапроцесса.
Нормальная составляющая ТКЛР при нагреве растет вследствие уменьшения энергии связи атомов. Этот рост компенсируется уменьшением магнитострикции в результате снижения намагниченности, как следствие усиления тепловых колебаний атомов. В итоге при нагреве до температуры точки Кюри объем инварных сплавов мало меняется. ТКЛР для некоторых сплавов может даже приобретать отрицательные значения, и их объем даже уменьшается. Внешние растягивающие напряжения действуют на Fe--Ni-ферромагнетики инварного состава подобно магнитному полю и также способствуют проявлению объемной магнитострикции, обычно называемую в этом случае механострикцией. Высокий уровень механострикции в элинварных сплавах способствует аномальному изменению модуля упругости при нагреве. Влияние нагрева на модуль упругости элинварных сплавов может быть описано формулой Еt = Е0 (1 + ?t), где Е0 -- модуль упругости обычных сплавов, ? -- температурный коэффициент модуля нормальной упругости. В элинварных сплавах этот коэффициент всегда имеет положительное значение. Снижение модуля упругости при нагреве обычных сплавов компенсируется составляющей за счет механострикции, что в итоге способствует стабилизации модуля упругости в широком температурном диапазоне. Для обеспечения стабильности температурного коэффициента линейного расширения и модуля упругости для каждого конкретного случая необходимо применение сплавов строго определенного химического состава. Такие сплавы обычно называют прецизионными сплавами (от фр. precision), т.е. отличающимися высокой точностью химического состава.
5. Части элементы токарного прохода резца. геометрия его режущей части
При работе на токарных станках применяют различные режущие инструменты: резцы, сверла, зенкеры, развертки, метчики, плашки, фасонный инструмент и др.
Токарные резцы являются наиболее распространенным инструментом, они применяются для обработки плоскостей, цилиндрических и фасонных поверхностей, нарезания резьбы и т. д. Элементы резца показаны на рисунке.
Резец состоит из головки (рабочей части) и стержня, служащего для закрепления резца в резцедержателе. Передней поверхностью резца называют поверхность, по которой сходит стружка. Задними (главной и вспомогательной) называют поверхности, обращенные к обрабатываемой детали. Главная режущая кромка выполняет основную работу резания. Она образуется пересечением передней и главной задней поверхностей резца. Вспомогательная режущая кромка образуется пересечением передней и вспомогательной задней поверхностей. Вершиной резца является место пересечения главной и вспомогательной режущих кромок.
Для определения углов резца установлены понятия: плоскость резания и основная плоскость. Плоскостью резания называют плоскость, касательную к поверхности резания и проходящую через главную режущую кромку резца (смотри рисунок). Основной плоскостью называют плоскость, параллельную направлению продольной и поперечной подач; она совпадает с нижней опорной поверхностью резца.
Углы резца разделяют на главные и вспомогательные (смотри рисунок). Главные углы резца измеряют в главной секущей плоскости, т. е. плоскости, перпендикулярной проекции главной режущей кромки на основную плоскость.
Главным задним углом a называется угол между главной задней поверхностью резца и плоскостью резания. Углом заострения--b называется угол между передней и главной задней поверхностями резца. Главным передним углом g называется угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания и проходящей через главную режущую кромку резца. Сумма углов--a+b+g=90 градусов. Углом резания d называется угол между передней поверхностью резца и плоскостью резания. Главным углом в плане j называется угол между проекцией главной режущей кромки на основную плоскость и направлением подачи. Вспомогательным углом в плане j1 называется угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением подачи. Углом при вершине в плане e называется угол между проекциями главной и вспомогательной режущих кромок на основную плоскость. Вспомогательным задним углом a1 называется угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости. Углом наклона главной режущей кромки l--называется угол между главной режущей кромкой и плоскостью, проходящей через вершину резца параллельно основной плоскости, перевод инструкций голландский недорого
Резцы классифицируются: по направлению подачи - на правые и левые (правые резцы на токарном стане работают при подаче справа налево, т. е. перемещаются к передней бабке станка); по конструкции головки - на прямые, отогнутые и оттянутые (смотри рисунок);
Резцы: а - прямые, б - отогнутые, в - оттянутые по роду материала - из быстрорежущей стали, твердого сплава и т. д.; по способу изготовления - на цельные и составные (при использовании дорогостоящих режущих материалов резцы изготовляют составными: головка - из инструментального материала, а стержень - из конструкционной углеродистой стали; наибольшее распространение получили составные резцы с пластинами из твердого сплава, которые припаиваются или крепятся механически); по сечению стержня - на прямоугольные, круглые и квадратные; по виду обработки - на проходные, подрезные, отрезные, прорезные, расточные, фасонные, резьбонарезные и др. (смотри рисунок).
Токарные резцы для различных видов обработки:
а - наружное обтачивание проходным отогнутым резцом, б - наружное обтачивание прямым проходным резцом, в - обтачивание с подрезанием уступа под прямым углом, г - прорезание канавки, д - обтачивание радиусной галтели, е - растачивание отверстия, ж, з, и - нарезание резьбы наружной, внутренней и специальной
Подобные документы
Исследование физических и химических свойств металлов, особенностей их взаимодействия с простыми и сложными веществами. Роль металлов в жизни человека и общества. Распространение элементов в природе. Закономерность изменения свойств металлов в группе.
презентация [1,7 M], добавлен 08.02.2013Методы определения металлов. Химико-спектральное определение тяжелых металлов в природных водах. Определение содержания металлов в сточных водах, предварительная обработка пробы при определении металлов. Методы определения сосуществующих форм металлов.
курсовая работа [24,6 K], добавлен 19.01.2014Общая схема сернокислотного производства. Сырьевая база для производства серной кислоты. Основные стадии процесса катализа. Производство серной кислоты из серы, из железного колчедана и из сероводорода. Технико-экономические показатели производства.
курсовая работа [7,1 M], добавлен 24.10.2011Изучение роли железа как двигателя производства и технического прогресса. Раскрытие секретов изготовления булатных клинков и дамской стали металлургами Аносовым и Черновым. Методы производства стали из чугуна в доменных и газовых печах, конвертерах.
реферат [32,5 K], добавлен 18.01.2010Основные физические и химические свойства платиновых металлов и их соединений, способы их вскрытия и реагентная способность. Технология проведения аффинажа различных платиновых металлов, важнейшие этапы процесса экстракции и сорбции их комплексов.
курс лекций [171,2 K], добавлен 02.06.2009Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.
реферат [19,2 K], добавлен 05.12.2003Изучение влияния металлов, входящих в состав твердого раствора, на стабильность к окислению порошков. Исследование свойств наноразмерных металлических порошков. Анализ химических и физических методов получения наночастиц. Классификация процессов коррозии.
магистерская работа [1,4 M], добавлен 21.05.2013Физико-механические показатели плит. Номенклатура выпускаемой продукции. Катализатор отверждения и вспенивающие вещества. Технология производства заливочных фенольных пенопластов. Выбор технологической схемы, режим работы предприятия, материальный поток.
курсовая работа [581,9 K], добавлен 24.10.2011Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.
реферат [76,2 K], добавлен 18.05.2006Классификация и виды полиэлектролитов, различные факторы, влияющие на контракцию геля. Примеры и перспективы использования полимерных гидрогелей: в очистных и горнообагатительных технологиях, как носители лекарственных препаратов и в биотехнологиях.
реферат [37,9 K], добавлен 24.07.2010